; TN

&

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
| BP105
78153 Le Chesnay Cedex
France

Tel(1)39635511

Rapports de Recherche
2

W niversaire

N° 1446

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

PROGRAMMING REAL TIME APPLI-
CATIONS WITH SIGNAL

Paul LE GUERNIC
Michel LE BORGNE
Thierry GAUTIER
Claude LE MAIRE

Juin 1991

NN
446 =

*RR .1

l R l S INSTITUT DE RECHERCHE EN INFORMATIQUE
| ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX

. FRANCE
Téléphone : 99.36.20.00
Télex : UNIRISA 950 473F
Télécopie : 99.38.38.32

Programming real time applications with SIGNAL

Paul LE GUERNIC Thicrry GAUTIER
Michel LE BORGNE Claude LE MAIRE

IRISA
Campus de Beaulieu
35042 Rennes CEDEX
FRANCE

April 5, 1991
Publication Interne n° 582 avril 1991 (36 pages) - Programme II

Abstract

This paper! presents the main features of the SIGNAL language and its compiler. Designed to provide safe
real time system programiming, the S1IGNAL language is based on the synchronous principles. Its semantics
is defined via a mathematical model of multiple-clocked flows of data and events. SIGNAL programs describe

.

relations on such objects, so that it is possible to program a real time application via constraints. The
compiler calculates the solutions of the system and may thus be used as a proof system. Moreover, the
equational approach is a natural way to derive multiprocessor executions of a program. Finally, this approach
meets the intuition through a graphical interface of block-diagram style, and the system is illustrated on a
speech recognition application.

Programmation d’applications temps-réel en SIGNAL
Résumé

Ce papier présente le langage SIGNAL et son compilateur. SIGNAL est un langage synchrone de type équation-
nel. Un programma SIGNAL décrit des relations entre flots de données d’horloges différentes, de sorte qu'il
est possible de programmer la synchronisation d’un systéme par spécification de contraintes. Le compilateur
est lui-méme son prouveur. Enfin, le langage est muni d’une interface graphique de type bloc-diagramme.

'this paper is to appear in the special issue of the Proceedings of the IEEE entitled Another Look at Real-Tsme

Programming
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 1 INSTITUT NATIONAL DE RECHERCHE
(U.RA. 227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES | I.N.S.A. DE RENNES

{ UNITE DE RECHERCHE DE RENNES)

-2

Programming real time applications with
SIGNAL

Paul LE GUERNIC Thierry GAUTIER
Michel LE BORGNE Claude LE MAIRE

IRISA
Campus de Beaulieu
35042 Rennes CEDEX
FRANCE

Abstract

This paper presents the main features of the SIGNAL language and its compiler.
Designed to provide safe real time system programming, the SIGNAL language is based
on the synchronous principles. Its semantics is defined via a mathematical model of
multiple-clocked flows of data and events. SIGNAL programs describe relations on
such objects, so that it is possible to program a real time application via constraints.
The compiler calculates the solutions of the system and may thus be used as a proof
system. Moreover, the equational approach is a natural way to derive multiprocessor
executions of a program. Finally, this approach meets the intuition through a graphical
interface of block-diagram style, and the system is illustrated on a speech recognition
application.

1 Introduction

SIGNAL is a block-diagram oriented synchronous language for real time programming. Ac-
cording to the synchronous approach, time is handled according to the first two of its three
following characteristic aspects: partial order of events, simultaneity of events, and finally
delays between events. In a synchronous framework, time is modeled as a chronology; du-
rations are constraints to be verified at the implementation. Then it is possible to consider
that computations (and in particular computations about time) have zero duration. This
hypothesis is acceptable if any operation of ideal zero duration has a bounded effective
duration. We refer the reader to [1] for a discussion of the principles of synchronous pro-
gramming. As discussed in this introductory paper, the styles of synchronous languages
may be classified into imperative ones and equational ones. The first style relies on models
of the state-transition machine family. CSML [17], EsTEREL [18], and the STATECHARTS
[20] follow this style. The second one relies on models of multiple-clocked interconnected

dynamical systems. LusTRE [19] follows this style, based on a strictly functional point
of view. In SIGNAL, programming is performed via the specification of constraints or re-
lations on the involved signals. As a consequence, the SIGNAL compiler performs formal
calculations on synchronization, logic, and data dependencies to check program correct-
ness and produce executable code.

The paper is organized as follows. The section 2 is devoted to an informal presenta-
tion of the main features of the language. The mathematical model supporting SIGNAL
is briefly discussed in section 3, further information may be found in [2, 3, 4, 11]; based
on this formal model, it is explained how the SIGNAL compiler operates. Distributed code
generation is discussed in the section 4. Finally, a speech recognition application that was
introduced in [1] is described in section 5.

2 The language

In this section we introduce the reader to programming in SIGNAL. For that purpose, we
investigate the two examples introduced in [1], namely the digital filter and the mouse.
Finally the use of SIGNAL as a proof system to verify temporal properties is introduced in
the last subsection.

The SIGNAL language handles (possibly infinite) sequences of data with time implicit:
such sequences will be referred to as signals. At a given instant, signals may have the
status absent (denoted by L) and present. Jointly observed signals taking the status
present simultaneously for any environment will be said to possess the same clock, and
they will be said to possess different clocks otherwise. Hence clocks may be considered
as equivalence classes of signals that are always present simultaneously. Operators of
SIGNAL are intended to relate clocks as well as values of the various signals involved in a
given dynamical system. Such systems have been referred to as Multiple-Clocked Recurrent
Systems (MCRS) in [1}. To introduce the SIGNAL operators, we first discuss single-clocked
systems, and then consider multiple-clocked ones.

2.1 Getting started in SIGNAL programming: simple examples

2.1.1 Monochronous signals: digital filtering

A classical second order digital filter is a representative for the class of dynamical systems
having a single time index:

Yn = @1Yn—1 + G2Un-2 + botin + byun_1 + b2un— (1)

It allows us to introduce the operators of SIGNAL which handle what we will call monochronous
(or synchronous) signals, i.e., signals with a common time index.
Such a filter is built from two types of equations:

1. yp=un+

2. 2, = Yn-1

Corresponding to these two types of equations, we have two types of monochronous opera-
torsin the SIGNAL language: the “static” ones and the “dynamic” one. Provided that the
equations refer to the same index n, it is possible to make it implicit. Then the operators
are defined on sequences of values (the signals).

Static monochronous operators are the extensions to sequences of the classical arith-
metic or logical operators. Typical examples are +, -, «, /, #x, or, and, not, =, <, etc. For
instance, the SIGNAL equation

Y:=U+V
is nothing but the coding of
m2>0 Yn = Un + Uy

with implicit handling of the time indez n.
Dynamic monochronous operator: the delay

The SIGNAL delay operator defines the output signal whose nt* element is the (n — k)t*
element of the input one (k is a positive integer), at any instant but the first one at which
it takes an initialization value. For example, the SIGNAL equation

Z =Y $1

is the coding of
Vn>0 2, =yn-1

(the initial value yo is given in the declaration of Z).
An example of the behavior of the delay operator (with zero as initial condition) is
shown in the following diagram:

Y:

251041379
Z: 0 2 510 4137
To summarize, the $k operator corresponds to the z~* shift operator used in signal pro-
cessing or in control.

Composition of processes

SIGNAL equations such as those presented above define elementary processes; the com-
position

P1 | P2

of two processes P1 and P2 defines a new process, where common names refer to common
signals (P1 and P2 communicate through their common signals). This is just the notion
of conjunction of equations in mathematics. This operator is thus associative and com-

mutative.

Defining 24y = Yn-1, 22Yn = 2Yn-1 = Yn-2, ... mmakes the translation into SIGNAL of
the filter (1) straightforward:

(1 2Y := Y $1
| 2Z2Y := ZY $1
| zU := U $1

| 2ZU := 2U $1
| Y := A1 = 2ZY + A2 = ZZY + BO = U + B1 * ZU + B2 » ZZU |)

An alternative program uses the vector signals VY,, VUy,, and constant vectors A and 03:

30
, D=1 Bl
B2

Al

[y 2 Un-2
Cy. o= '"_] . VU, =] upy , .4:[,12

|
L J Up

‘i'hose vector signals are handled in SIGNAL with the following window operator:
VU := U window 3

defines a sliding window of length 3 on U.
The alternative program is then the following:

(1 VY := Y $1 window 2
| VU := U window 3
| Y := PROD {A, VY} + PROD {B, VU} I|)

with initial values given in the declarations of the vectors VY and VU. (PROD {Vi, V2}is
an externally defined function which computes the inner product of the vectors V1 and

v2).

2.1.2 More advanced features

The model concept (or process declaration) encapsulates a set of equations; it allows the
user to isolate local definitions and provides parameterized descriptions. A process model

can be expanded (an instance of a model is a process).

Modular programming: block-diagrams

A graphical interface [5] has been designed to allow a user friendly definition of SIGNAL
programs. A composition of processes has a hierarchical block-diagram representation
(parallelism is thus a built-in concept in SIGNAL); the processes are represented by boxes;
interconnections between input-output ports (or input-output signals) of the processes
are represented by lines. The processes may be defined using equations or composition
of equations (see figure 1), references to previously declared processes (see figure 4), or
embedded graphical composition of processes.

FILTER A1, A2, B0, B1, B2

(] 2= Y 81

| ZZvis IV $1

L j 2U:e U S1 v
| 22U:s U 81

| Yie (AI8ZY)el A26ZZY o (BOSU do(B1aZU)e(B2e7ZU)

i

Figure 1: A declaration of the process model FILTER

The figure 1 depicts the graphical specification of the process model FILTER corre-
sponding to equation (1). It is built using the SIGNAL graphical interface!. Note that Y is
the only output signal visible from the outside of the process (the other ones are “local”
signals).

Array of processes
The structure of “array of processes” is useful when specifying systolic algorithms or

when describing regular architectures. As a simple example, the componentwise extension
to vectors of a given operator may be defined by an array expression. For instance,

MIn this paper, all block-diagram figures, except for figure 2, are copies of actual screens from the SIGNAL
graphical interface.

array I to N of V := Vi[I] » V2[I] end

is the extension of the product, as represented in the figure 2.

v1|3

k-

vzli
¥

v(1):=Vi[1}eva]1) - V(N]:=V1[N}eV2([N]

Figure 2: An array of processes

2.1.3 Summary

At this point, we are able to describe arbitrary dynamical systems possessing a single
time index. Their coding is straightforward in SIGNAL. The modularity offered by the
language is equivalent to that of signal flowgraphs or block-diagrams. Moreover, we can
also describe regular arrays of processes.

Although these constructs are sufficient for classical digital signal processing or control,
additional primitives are needed for developing complex real time applications. These will
be introduced next.

2.2 Handling multiple-clocked systems

2.2.1 A small example: clicking on a mouse

We consider the mouse handler described in [1]. Let us recall its specifications. This
process has two inputs:

e CLICK: a push-button,
e TICK: a clock signal.

The mouse handler has to repeatedly decide if, during some interval following an initial
CLICK, some other CLICKs have been received; intervals are composed of a constant number
A > 0 of TICKs and are disjoint. At the end of each such interval, the mouse emits
a signal DOUBLE when another CLICK has been received since the initial one, a signal

SINGLE otherwise. In [1], it has been discussed how this example may be specified using
Multiple-Clocked Recurrent Systems (MCRS), see section 4.3 of this paper and equations
(6-9) therein. From this discussion follows that two additional fundamental primitives are
needed to specify such MCRS, namely:

e extracting a new time index from an existing one (equations (7,8,9) are instances of
this),

e interleaving signals to produce the union of time indices (equation (6)).

The reader may also convince himself that these are convenient primitives; it has been
argued in (2] that these are in fact the convenient primitives to provide a synchronous lan-
guage with maximum expressive power for synchronization and control. These primitives
are indeed primitive operators of SIGNAL. These are presented next.

2.2.2 Polychronous operators

The extraction: the SIGNAL process
Y := X vhen B

where X and Y are signals and B is a boolean signal, delivers Y = X whenever X and B are
present and B is true, and delivers nothing otherwise. The behavior of the when operator
is illustrated in the following diagram:

X:1 2 1L 3 4 1 5 6
B: ¢t f t f t f L f
Y: 1.4 1 1 4 1L L 19

9
t

(L stands for “no value”). The when operator may be proved associative and idempotent
in the set of events. When X is a constant, the clock of X when B is the clock of B when
B.

The deterministic merge: the SIGNAL process
Y := U default V

defines Y by merging U and V, with priority to U when both signals are present simultane-
ously. It yields Y = U whenever U is available, and Y = V whenever V is available but U is
not; otherwise, Y is not delivered. The behavior of the default operator is illustrated in
the following diagram:
v: 1 2 1 3 4 L § 1L 9
V: 1 1 3 4 10 8 9 2 1
Y: 1 2 3 3 4 8 5 2 9

The default operator may be proved associative (which avoids the use of parentheses).
Moreover, when is right distributive on default. When V is a constant, the clock of Y is
any clock greater than the clock of U.

2.2.3 Some extensions

When specifying time constraints, it may be useful to refer to the clock of some signal.
The following derived operators are of particular interest in that case.

e ‘I'he variation
T := when B

of the when operator defines the event type signal T which is present whenever the
boolean signal B is present and has the value true and delivers nothing otherwise;
it is cquivalent to T := B when B. An event type signal (or “pure” signal) is an
always true boolean signal. Hence not T denotes the boolean signal with clock T
which always carry the value false.

¢ Given any signal X,
T := event X

defines the event type signal T whose occurrences are simultancous with those of X:
it represents the clock of X.

o Finally constraints may be defined on the clocks of signals. In this paper, the
following notations are used:

X =Y XandY have the same clock ?;

X "< Y Xisnomorefrequent than Y, which is equivalent toX “= (X when event Y).

The following derived operator specifies a synchronized memory: the SIGNAL process
Y := X cell B

where B is a boolean signal, delivers at the output Y either the present value of X (when
the latter is present), or the last received value of X when B is present and true. It is
equivalent to:

(1 Y := X default (Y $1)
| Y “= (event X) default (when B) |)

2it is written synchro {X, Y} in the syntax of the current version

8

2.2.4 Programming the mouse

1
| ll_llllllllllllllllllllll

-t (%]
.—‘p—‘
Qsllz

>l

LLILLLLLLE

—
e

|

A
-
=
|
—

I&'""“”IM'"""”

Figure 3: A chronogram of the mouse

A “chronogram” of the mouse is described in the figure 33. This shows the sequence of
intervals where CLICKs are monitored (in the figure, the number of TICKs in an interval
is A = 10). As it appears in the figure, we introduce naturally the two following pure
signals:

o START, which indicates the beginning of a new interval,
e RELAX, which indicates the end of the current interval.

Then, consider a first module which aims at producing the outputs of the MOUSE, namely
SINGLE and DOUBLE. This module gets as its inputs CLICK, START and RELAX. The corre-
sponding specification is:

(| DOUBLE_CLICK := ((not START) default (CLICK in]START, RELAX]))) cell RELAX
| SINGLE := RELAX when (not DOUBLE_CLICK)
| DOUBLE := RELAX when DOUBLE_CLICK |)

The meaning of these equations is the following. DOUBLE_CLICK is a boolean signal which
states at the end of the elapsed time whether a single (status false) or several (status
true) CLICKs have been received. For this purpose, each START sets DOUBLE_CLICK to false
(not START is taken with priority). Since STARTs are also CLICKs, at least one CLICK has
been received in the considered interval. Then if a second CLICK is received within the
allowed delay, DOUBLE_.CLICK is set to true. Testing for this is performed by the expression
“CLICK in]START, RELAX]” defined as follows:

delivers those X's which belong to the left-open and right-closed interval]JS,T], where
S and T are both pure signals. Note the cell RELAX expression which delivers at every
RELAX the current status of DOUBLE_CLICK.

What remains now is to indicate how to produce the events START and RELAX. For this
purpose, two operators are introduced:

X not in JS,T] (ii)
#X in J]S,T] (iii)

3this figure depicts a simulation environment for the mouse written in SIGNAL under SunView

Expression (ii) delivers those X's which do not belong to]S, T]. Expression (iii) counts
the occurrences of X within the mentioned interval and is reset to zero every S; this signal
is delivered exactly when equation (i) delivers its output. Using these operators, the
second module of the MOUSE program is presented next:

(! START := CLICK not in JSTART, RELAX]

I (I N := (#TICK in]JSTART, RELAX]) cell event N
| ZN := N $1 % initial value O %
| N “= CLICK default TICK
| RELAX := TICK when (ZN = (DELTA-1)) |)

1)

The first equation selects those CLICKs that are also STARTs, and selects also the first
CLICK. The other equations count the TICKs and deliver the result as frequently as needed
(thanks to cell event N). A graphical editing of the resulting MOUSE program is shown
in the figure 4 using the SIGNAL graphical interface. In this figure, the two modules we
introduced are labelled SIMPLE.MOUSE and GO respectively. Note that CLICK and TICK are
independent inputs of this program.

no ne
START STARS
P st sovaLe
GO(DELTA)
SIMPLE_MOUSE()
Qi b Mo snerly ot oousLE
Lo LI P

Figure 4: The process model MOUSE

Comments: the text of the two above modules should be taken as a specification since
the operators we introduced are not available in the current version of the language. They
will be available however in a forthcoming version of it, with all variations on the shape
of the considered interval ([S,T[, [S,T], etc.). Thus we shall present without further
discussion this program written in the current version of SIGNAL where these macros are
built as SIGNAL processes. Then we shall provide the expansion in SIGNAL of the operator
(1).

10

-

The actual program is the following:

process MOUSE = (integer DELTA)
{ ? event TICK, CLICK
! event SINGLE, DOUBLE }
(} (! START := NOT_IN_INTERVAL {CLICK, START, RELAX}
] (I N := COUNT_IN_INTERVAL {TICK, START, RELAX} cell event N

| ZN := N $1
| N "= CLICK default TICK
| RELAX := TICK when (2N = (DELTA-1)) |)

| (] DOUBLE_CLICK := ((not START) default IN_INTERVAL {CLICK, START, RELAX})

cell RELAX
| SINGLE := RELAX when (not DOUBLE_CLICK)
| DOUBLE := RELAX when DOUBLE_CLICK |)
(D)
where event START, RELAX; integer N, ZN init 0; logical DOUBLE_CLICK
end

The first three lines specifie the name of the process model and its interface (DELTA is a
parameter; ? stands for “input” and “!” for “output™). IN_INTERVAL, NOT_IN_.INTERVAL
and COUNT_IN._INTERVAL are instances of subprocesses corresponding respectively to the
operators (i), (ii) and (iii) presented above.

As an example, the process IN.INTERVAL, corresponding to the express:on X in]S,T],
may be defined as follows:

process IN_INTERVAL = { ? X; event S, T
'Y}
(| BELONGS_TO_INTERVAL “= (S default T default (event X))
| (] WILL_BELONG := (not T) default S default BELONGS_TO_INTERVAL
| BELONGS_TO_INTERVAL := WILL_BELONG $1 |)
| Y := X when BELONGS_TO_INTERVAL
p
where logical WILL_BELONG, BELONGS_TO_INTERVAL init false
end

Processes NOT_IN_INTERVAL and COUNT_IN_INTERVAL corresponding to operators (ii) and
(iii) are defined similarly.

Using SIGNAL for specifying a Multiple Clocked Recurrent System [1] releases the pro-
grammer from the burden of handling explicitly multiple time indices. Every signal in the
language has an implicit time indez and the SIGNAL operators define relations between the
time indices.

11

2.3 Summary: SIGNAL-kernel

To summarize, the kernel-language SIGNAL possesses only five basic constructions which
are recalled here:

Y := £(X1,...,Xn) | extending instantancous functions to signals with common clock
Y := X $N delay (shift register)

Y := X when B condition based downsampling

Y := U default V merge with priority

P | composition of processes

All other operators are built as macros on this kernel-language and model declarations.
Moreover the language allows modular programming and external functions calls. It can
be used to describe internally or externally generated interruption or exception handling,
data-dependent down- and upsampling {3], mixed passive/active communications with the
external world [4]. Thus the SIGNAL language has all the features needed for real time
applications programming. It has been proved in [2] that SIGNAL possesses maximum
expressive power for synchronization mechanisms, in particular data dependent upsampling
can be expressed in SIGNAL which proved very useful in most of the applications we
developed.

The following feature of SIGNAL programming style should be emphazised. Since the
compiler synthesizes the global timing from the programmer’s specifications, the following
programming style is recommanded: specify local timing constraints involving very few
different clocks, and let the compiler do the rest. This is different from LUSTRE’s pro-
gramming style, where the programmer must have a global view of the timing to write
the program.

2.4 Specifying logical temporal properties

Various techniques are used to verify programs: temporal logic [6, 13} in CSML and the
STATECHARTS, automata reductions and verification {14, 15] in ESTEREL and LUSTRE for
instance. The LUSTRE language also uses assertions to express constraints on boolean
signals, and offers tools to compute boolean dynamical expressions written in LUSTRE
itself [8]. Thanks to the powerful model of SIGNAL, the SIGNAL language itself can be
used as a partial proof system.

As an example, consider a memory M, which can be written (signal WRITE) and read
(signal READ):

(| M := WRITE default (M $1)
| READ := M when (event READ) |{)

Each value written in M (first line) is read when needed (second line).

12

Now supposec that writing in the memory is allowed only when the previous value of
the memory has been read. Let us encode the status (being written or being read) of the
memory as follows:

FULL := (event WRITE) default (not (event READ))

Then the above constraint is expressed by the following equation:
WRITE "= vhen (not (FULL $1))

Conversely, if we want any written value to be read at most once, we have to write:
READ ~“= when (FULL $1)

Finally, putting these three additional equations together specifies a single token buffer, it
turns out that this is also its programming.

This example illustrates an important feature of the SIGNAL language. To insure that
a property is verified on a SIGNAL program, encode this property as SIGNAL equations.
This equations may be used in different ways. First it could be checked whether the
corresponding constraints are already implied by the program. Second the equations may
be simply added to the program to make sure that the desired property be satisfied. We
will see in the next section how SiGNAL’s “clock calculus™ can be used for this purpose.

3 The SIGNAL compiler as a formal calculus system

3.1 The formal model

The reasoning mechanisms of SIGNAL handle (i) the presence/absence, (ii) boolean values
since they are important in modifying clocks, and (iii) the dependency graphs to encode
data dependencies in non-boolean functions. Dependency graphs are needed to detect
short circuits such as in X := X+1, and to generate the execution schemes. Three labels
are used to encode absent, true, false as well as the status present we consider as a non-
determinate “true or false” value. The finite field F; of integers modulo 3 is used for this
purpose?:
true — +1, false — —1, absent — 0, present — 1

For instance, using this mapping, (a or b) = event a and y := u+v are respectively
encoded as follows:

a®=0b% , abla~1)(b-1)=0 (2)

2 2 v? v?

Y=zulz=v! ,u—y , v—y (3)

In these equations, the variables a,b,...refer to infinite sequences of data in F3 with time
index implicit. The first equation of (2) expresses that the two signals a and b must have

{elements of F; are written {-1,0,1)

13

the same clock, while the second one encodes the particular boolean relation. The first
equation of (3) again expresses that all signals must have the same clock, while the labelled
graph expresses that the mentioned dependencies hold when y? = 1, i.e., when all signals
are present. This is referred to as the conditional dependency graph, since signals may
be related via different dependencies at different clocks. Let us describe how the other
primitive operators of SIGNAL are encoded in this way.

Process y := x $1.
As easily checked, boolean shift registers are encoded as follows:

bnpr = (1-2)at+z , E=yo
y = 2%,

In this equation, £, is the current state, and §,,4, is its next value according to any (hidden)
clock which is more frequent than the clock of z (§ = yo is the initial value). This is a
nonlinear dynamical system over F3. The non-boolean shift register is just encoded via
the equality of clocks: y? = z2.

Process y := x when b.
In the boolean case, we get the coding

y=z(=-b-b%
while in the non-boolean case, we must encode the constraints on clocks and dependencies:

2
=22 (-b-b2) , x—y

Process y := u default v.
In the boolean case we get
y=u+o(l-u?)

while in the non-boolean case we get:
v=u+v*Q-uY) , u—y , V—0m——y
Process P | Q.
Here P, Q denote SIGNAL processes. The graph of the process P1Q is the union of graphs of
P and Q; in the same way, the equations associated with the process P|Q are the equations

of P and those of Q.

Moreover, in addition to dependencies between signals, dependencies relating signals and

14

clocks must be considered. In particular, any signal y depends on its clock y?, as expressed

by the dependency:

v?
yP—y

Finally we end up with the gencral form to encode any SIGNAL program:

En+l = A(Eny Yn)
0 = B(Z,,Yn)
0 = C(ZoYo)
H(i.j) Y(i)?

Y(i) ——Y(§) , Y() (1) (4)

In this system, =,Y are vectors with components in F3, A, B, C denote polynomial vectors
on the components =(1),Y(j) of Z,Y. The components of = are the states of the boolean
registers, and the components Y (j) of Y are the encoding in F3 of all signals Y(3j) involved
in the program. The time index n may be any time index which is more frequent than the
clocks of all components of Y. The two last equations specifie the conditional dependencies,
where H(i,j) = 1 specifies the clock where the referred dependency holds. The equations
(4) show why the work of the SIGNAL compiler relates to formal calculus on dynamical
systems involving the finite field 3 and graphs.

It is shown in [3, 4, 9] how this coding can be used, with the help of polynomial ideal
theory, to answer fundamental questions about the properties of a given program:

1. Does the program ezhibit contradictions? Consider for instance the following pro-
gram:

(

:= a vhen (a > 0)
:= a when not (a > 0)
t=x+y 1)

N < M

Writing a for short instead of (a > 0), its clock calculus yields —a — a? = a — a?
whence a = 0: this means that a must be always absent, the program refuses its
inputs and does nothing.

2. Are there short circuits? Consider the following program:

(I x := gin {y} + b
| y := a default x |)

The clock calculus and conditional dependency graph are

h=z=b=y?=a+ (1 - a®)b?

15

(1 - a?)2?

Due to the short circuit including x and y, this program is deadlocked unless the
clock of this short circuit is always absent, i.e., (1 — a®)z2 = 0, or equivalently,
(1 — a?)b? = 0. Hence, y? = a?, and this program implements:

(ly :=a
| x := 8in {a} + b |)

. Is the program setting constraints on its inputs? Consider the program:

(| x := a when (a > 0)
{2z :=a+x|)

Writing o instead of (a > 0), the clock calculus is

2=2a?=2? , 2®=d¥-a-0a%) , a’=a
which forces
a’=0 or 1+a+a®=0ie a=1

Hence when a is present, we must have a > 0 otherwise the program is deadlocked
by a contradiction. However SIGNAL cannot reason on non-boolean data types.
Hence, considering that a is the output of a non-boolean function (testing a > 0),
the constraint a?(1 — a) = 0 is replaced by the stronger one a? = 0, which does
not involve the value (true or false) of a any more: a is then refused so that this
program refuses to do anything.

. Is the program deterministic, i.e., is it a function? Consider the following program
(which specifies a counter with external reset):

process P = { 78 ! t}
(I nt := (0 when 8) default (t+1)
| t :=nt $1 |)

end

Its clock calculus yields

nt? =1 = 2 4 (1 - s%)t?
which is equivalent to 12 > s%: if s is the specified input, the clock of the output
t is not a function of any external signal. Hence this program is not a function.
Inserting the following synchronization equation, t “= (8 default u), where u is
another input) completely specifies the timing and we get a function.

16

5. Does the program verify some property?—the specification of the buffer presented in
section 2.4 is a good exercise.

3.2 The work of the compiler

We have briefly described the mathematical model supporting the work of the compiler.
The way the compiler uses this model is the following. The compiler uses a very efficient
algorithm to construct a hierarchy of clocks with respect to the following rules:

e If C is a free boolean signal (i.e., it results from the evaluation of a function with
non-boolean arguments, or it is an input signal of the program, or it is the status
of a boolean memory), then the clock defined by the true values of C (i.e., when C)
and the clock defined by the false values of C (i.e., when not C) are put under the
clock of C; both are called downsamplings.

e If a clock K lies under a clock H then every clock which lies under K also lies under H.

e Let H be a clock defined as a function of downsamplings H;,..., H,, if all these
downsamplings lie under a clock K, then H also lies under K.

The resulting hierarchy is a collection of interconnected trees, say a forest. The partial
order defined by this forest represents dependencies between clocks: the actual value of
a clock H may be needed to compute the actual value of a given clock K only if H lies
above K according to this partial order. No hierarchy is defined on the roots of the trees,
but constraints can exist. When this forest reduces to a single tree, then a single master
clock does exist, from which other clocks derive. In this latter case, the program can be
executed in master mode, i.e., by requiring the data from the environment. If several trees
remain, additional synchronization has to be provided by the external world (e.g. small
real time kernels, see [1]) or by another SIGNAL program.

The conditional dependency graph is attached to the forest in the following way. The
signals available at a given clock are attached to this clock, and so are the expressions
defining these signals. The so obtained “conditional hierarchical graph” is the basis for
sequential as well as parallel code generation.

Moreover, the proper syntax of SIGNAL can be used to represent this graph. For that
purpose, the compiler rewrites the clock expressions as SIGNAL boolean expressions: the
operator default represents the upper bound of clocks (sum) and the operator when rep-
resents the lower bound (product); then, any clock expression may be recursively reduced
to a sum of monomials, where each monomial is a product of downsamplings (otherwise,
the clock is a root). The definitions of the signals are also rewritten to make explicit the
clocks of the calculations that define these signals.

The rewritten process is equivalent to the initial one, but the clock and dependency
calculus is now solved, and all the clocks handled in the program are made precisely
explicit. The so obtained process will be referred to as the solved form of the considered
program.

17

An example taken from the MOUSE is developed in the appendix. Its solved form, which
exhibits a forest of several clock trees, is detailed. Then, a simulated real-time monitor
is provided which delivers the inputs CLICK and TICK to this program. This simulator is
itself written in SIGNAL. The pair {program, monitor} is then processed by the compiler
and produces a single tree for its solved form. This solved form is shown and the sequential
C code generated from this program is given.

4 Toward parallel implementation
A distributed implementation of a SIGNAL program P consists of a definition of P as
P=(P]...|PnJ)

into modules Py, ..., P, which will be one to one mapped onto a set of n processors.
Thanks to the equational approach, the modules P; can be built either downwards by
breaking, or upwards by clustering subprocesses. Hence we have developed a systematic
method to serialize such modules, while avoiding possible deadlocks. This method, which
generalizes the use of semi-granules such as presented in {10}, is outlined next. It turns
out that the same method can be used to improve the efficiency of the implementation,
by reducing the overhead due to process scheduling.

4.1 Some issues on distribution

The following notations will be used for the figures throughout this section: solid arrows
denote data dependencies enforced by the considered programs, dashed arrows indicate
additional ordering that results from a given implementation. For instance, in figure 5-a,
the program specifies that a must be received first before producing x (and similarly for
b and y), and the dashed arrows express that in the considered implementation, it is first
waited for both a and b, and then x and y are produced. Adding dashed lines within a
dependency graph will be referred to in the sequel as performing order enhancement.

Using these notations, consider the following program, where £ and g are some arbitrary
functions:

P=(ly:=g() | x:=12@)])

The sequence of getting values followed by putting results, repeated forever, is a correct
execution scheme of P if we assume that any input signal is available whenever needed:
each step is described in figure 5-a.

Unfortunately, the context of P may for instance be the following SIGNAL program:

R= (] a:=h(y))

where h is again some function. Its only correct execution scheme is the sequence of getting
y followed by putting a, repeated forever as described in figure 5-b.

18

a) obj-P b) obj-R

c) Deadlock

Figure 5: Contert dependent implementation

The SIGNAL source program PR is certainly a correct one. However, the concurrent
execution of their sequential implementation obj_P and obj.R, is obviously deadlocked
(figure 5-c): obj.P is waiting for a; to produce a, obj-R needs y which cannot be delivered
by obj_P. This is depicted by the cycle in the figure 5-c. Now if we consider the following
program (see figure 6-a):

Q=(ly:=ga,p) | x:=£(a,b) |)

then for any program R’ such that y or x is needed to calculate a or b, the program Q |
R’ is incorrect. Thus any implementation of this program Q in which communications are
serialized in agreement with the local partial order specified by the graph of figure 6-a is
a correct one. For instance, sequence of {getting b ; getting a ; putting y ; putting x}
repeated forever does not cause additional deadlocks whatever the environment is. This
implementation obj_Q is depicted by the added dashed lines in figure 6-b.

This is what we call order enhancement of the graph. Thus the key to code distribution
is the dependency graph, and possible deadlocks with the environment that might result
from an unclever order enhancement must be prevented. Appropriate tools for the general
case of multiple clocks are briefly presented in the next section.

4.2 Conditional dependency graph, interface conditional graph, and
code distribution

Motivated by the discussion of this simple example, we present now the following method
for code distribution. We assume that the distribution of the graph of the program has
been performed according to suitable criteria we don’t consider here. Then we concentrate

3in the sense of multitasking systems

19

Figure 6: Second example

on one particular module. For this module, the method consists of the three following
stages:

1. calculate transitive dependencies of external signals: this yields the interface condi-
tional graph;

2. given this interface conditional graph, calculate all legal order enhancements (that
are guaranteed compatible with any arbitrary correct environment);

3. from these legal order enhancements, calculate a proper execution scheme of the
considered module.

The so-obtained object code can be stored as a reusable executable module. Steps 1, 2, 3
are also the way to separate compilation of modules.
4.2.1 Getting the interface conditional graph

It is easily derived using the two following rules:

h hk
rule of series X—Y—2Z = X— 12 (5)

(X precedes Z whenever X precedes Y, at the instants where h = 1, and Y precedes 2, at
the instants where k = 1).

h
—_— hvk
rule of parallel X k Y} > X—y (6)
X —Y

where hv k = h 4 (1 - h)k denotes the supremum of the two clocks A and k (h and k are
polynomial functions in F3 taking 0,1 as only values): X precedes Y whenever X precedes
Y at the instants where h = 1, or X precedes Y at the instants where k = 1.

20

Successive applications of these rules yield the kind of graph depicted as solid branches
in the figure 7 (in which local nodes do not appear).

Figure 7: Order enhancement

4.2.2 The legal order enhancements

Referring to the figure 7, let us concentrate on two interface signals, say X and Y. Denote
generically by h,.(X,Y) the clock of some legal order enhancement that puts X before Y
in the execution scheme. The conditions which must be satisfied by h,.(X,Y) are the
following:

1. Nointernal cycle should result from the additional clock h..(X,Y) in the graph. This

yields the condition:
hoe(X,Y) A~ =0 (7)

2. No possibility of an additional cycle due to the environment results from h,.(X,Y);
this yields the inequalities:

Vi,j hix hoe(X,Y) hy; < hi; (8)

(every input e; which precedes X also precedes every output s; following Y: this
insures that, in any context, no dependency from an output s; to an input e; can
be introduced, which could create a deadlock).

21

Elementary algebra shows that (7,8) can be summarized as the single inequality:

hoe(X,Y) € h* 4+ X?Y}(1 = h™ = h*)T(1 - hixhy;(1 - hij)) (9)
$J
We will say that a conditional dependency graph G, is lower than another one G,
if and only if they have the same nodes, and each time z — y occurs in G; (when its
label A, is equal to 1), then z — y occurs in G (h; = 1); so hy < hy. Applying order
enhancement results in a graph where each ho.(X,Y) takes its maximal value (it is not the
graph of a partial order but the upperbound of the maximal order enhancements).

4.2.3 Getting execution schemes

Consider again the program P above, and denote by h the clock of all solid branches in
the figure 5-a. The original graph coincides with the interface conditional graph, and the
formula (9) shows that no legal order enhancement does exist in this case, so that the only
reusable form is the source code.

a)S b) applying order enhancement ¢) execution scheme

Figure 8: Sequential order enhancement

Now, consider some program S whose conditional dependency graph is shown in the
figure 8-a; the resulting order enhancement is depicted in the figure 8-b. S has the unique
sequential execution scheme shown in the figure 8-c. It is obtained by picking the subgraph
of the dashed or solid branches that is both a path and covers all nodes.

For some programs, the order enhancement may result in a cyclic graph as shown in the
figure 9-b. Such cycles do not express that deadlocks have been created, but just indicate
that external communications within the cycle can be performed in an arbitrary order,
depending on the environment’s offer or request at a particular instant. For instance, we
may equally well first receive a and then b or the converse: this is depicted in the figure
9-c.

22

a)Q b) applying order enhancement c) execution scheme

Figure 9: Cyclic order enhancement

4.2.4 The lazy evaluation of a module

Similar techniques may be used to calculate the clock hz of those instants where it is really
needed to compute a signal Z at the execution: Z must be computed when it is needed to
compute some output of the module or some state variable, and the corresponding clock
is calculated using the “rule of series” (5) and “rule of paralle]” (6) we have shown before.

4.2.5 Getting a methodology for distributed implementations

From the discussion above emerges the following method:

e Separate compilation may be performed following the method we outlined above:
synthesizing the interface conditional graph, and then deducing the scheduling from
the order enhancements yields a control process C associated with a given program
P, this module can then be used as executable code in any environment.

o Alternatively, it is also possible to specialize this control process using some prior
information on the environment (e.g. other SIGNAL modules or the properties of
their interfaces) that are also stated in suitable control processes.

5 Programming environment

We present here a realistic experience with SIGNAL, which has been used to describe the
acoustic-phonetic decoder of an automatic speech recognition system. Our purpose is not
to detail the program (which would be much too long—the interested reader is referred
to [12]), but rather, to give a flavour of how a large project could be developed with the
SIGNAL environment.

23

> FFT -
plosive
burst
- detection event
segmentation labelling .
signal - + phonetic
™ . vQ lattice
voiced-
unvoiced-
- silent
|| high pass segmentation detection
filtering —_——

Figure 10: Modular description of an acoustic-phonetic decoder

DECODER resl F_EQH;
integer KMIN, LIMITBACK, MAXTAS
ftmm Aﬂunma&“
b MAXTAB) *
LABE .
LABELL ING n a—rTe
g (- T
MAXTAB)
¥Q_MODUL
¥ i -]
—1 BLURST_MODEL ¢ F_ECH, C
—1 ¢ P_ECH, 24 'z‘:’“;:-)
a AB .
OICE_ARERL(¢ THAIN RIS ¢ 2 WP, WA I)) I NIV) .)
SOMIIAGEEL(# ¢ _NCm ¢ (B, WA ¢ § St S -t e ma mew .
ot #RRER T g M. YEIN C. VAIN L W, VEIW. M, e 16k, Laets) ¢ ¢ enm
" _"ela ¢ l'_(ul-Ad‘L‘-"'l“m‘ WRILER 1 g A 3¢0) K _ 9
u&.ﬂvixul(srem LIMITOM, eWi@ ¥ ¢ e -

Figure 11: A graphical view of the DECODER process model which is composed of
an automatic segmentation (SEGMENTATIONMODULE), a voiced-unvoiced-silent decision
(VOICE_MODEL), a detection of plosive bursts (BURST_MODEL), a coordination between bound-
aries labelling (LABELLING) and vector gquantization (VQ_MODULE)

5.1 A speech-to-phoneme recognition system: global description

The reader is referred to [1] for a more detailed description of this application. The
figure 10 depicts a block-diagram of a part of the speech-to-phoneme recognition system as
developed at IRISA. The FFT box involves a sliding-block processing of the speech signal.
The filtering and segmentation boxes process the speech signal sample-by-sample. The
— (resp. <) inside the segmentation boxes indicates that the signal is processed forward
only (resp. forward-backward): the data-dependent upsampling mechanism is used in the
corresponding SIGNAL programs. The detection and event labelling boxes involve
event detection. Thus several sophisticated mechanisms that are provided by SIGNAL

24

were used in this application. We should emphasize that the IRISA speech group was
reluctant to write any real time oriented FORTRAN programming of this application, only
Si1GNAL allowed us to develop such a real time programming. Finally, the SIGNAL graphical
interface proved well suited for developing this application. The figure 11 shows a graphical
view of the decoder as written in SIGNAL.

5.2 Building a control panel for experimentation

To take advantage of the SIGNAL approach, a tool-box for the on-line scanning of the
results has been developed using SIGNAL. These developments were intended to allow an
on-line interaction of the user during the execution, with both the program itself and the
display of its results. This is achieved without modifying the source program, but just by
connecting “probe” and “debug” modules we describe briefly:

e “probe” processes allow to monitor the program without disturbing its execution.
Such a process is associated with a port of the program. The figure 12 shows a probe
process associated with the speech signal. A probe process is a SIGNAL process with
no output, which is declared as an external process to be analyzed by the display
system (X-windows or SunView).

o=

o10mm >$EGJCRUARDMARD somnries

Figure 12: A probe process is associated with the speech signal

o “debug” processes allow to control the running of the program through a panel-driven
down- or upsampling of some signals, or the on-line change of some parameters. Such
a process is associated with a link between two ports (figure 13).

EBUG_OK_BACK

PBACKWARD_DECISION P ® R BREINJECT

Figure 13: A debug process is associated with the backward signal

e An intermediate tool consists of a “pace maker”, which makes only the program
running slower by encapsulating it in a program accessing a physical clock. The
logical time may be a subset of this clock managed by up and down buttons.

25

CqELEY> e

KPILT . MIMK.> 2P

Vi, TESOLD

DIVERQDKCE TLST
(PORvARD DIR.)

VAR, THREMOLD

OIvERGENCE TLST
(8ACXVARD OIR.)

vOICE TEXT
FIXED TIREDOLD

DIVERGEMCE TCST
On FILTERED
SUShal

XYY Ty
el
PPN

] 7]

IWUT SIoNAL
PORVARD RE-DTRY
SACXVARD RE-DNTRY

CT) (OBt oamis AL x swers O
. “ODELS OnoERs O 16
4 BACKVARD PROCESS T on

Figure 14: Synchronous environment for an acoustic-phonetic decoder (pronounced digit:

‘l6”)

The figure 14 shows an environment for the acoustic-phonetic decoder, developed under

the SunView window management system.

6 Conclusion

We have presented the SIGNAL synchronous programming language for real time systems
development. The following key features should be mentioned:

e SIGNAL is a block-diagram oriented language. As such, it is provided with a graphical
interface for program editing and execution.

e Since block-diagrams naturally specify constraints or relations between the involved
signals, SIGNAL is a language of equational style. This has several important conse-
quences we list now:

- The programmer has only to specify local synchronization constraints involving
few signals; synthesizing the whole synchronization is the task of the compiler.

26

~ SIGNAL is its own proof system: desired properties can be expressed as (pos-
sibly non deterministic) SIGNAL programs, and processed by the compiler as
additional equations. Checking for contradictions in the resulting program is
the mechanism for proofs.

— The behavior of a program P in a context C may be easily studied as a program
C | P (proofs, simulation...).

e The conditional graph associated with control equations is the universal tool for
proving, distributing, optimizing SIGNAL programs.

To summarize, various services such as proof, compilation, distributed implementation,
are all supported by the SIGNAL formal system. This releases the user from handling
different formalisms and associated tools for these tasks.

SIGNAL is currently available under two different versions that were developed with differ-
ent objectives. The INRIA H2 SIGNAL system provides the interface used in this article,
and produces the intermediate level hierarchical code we have discussed. Sequential FOR-
TRAN or C code is currently produced. Developments on distributed implementation are
in progress based on this version. Tools for proving dynamical properties will be integrated
in a short time.

The CNET-TNI V3 version is commercially available. A multiple windowing system
of Macintosh style is provided for both program editing and on-line monitoring and super-
vision of the execution. Sequential C code is produced. Experiments have been performed
based on this version to produce distributed OccaM [16] code for a multi-Transputer
system.

The SIGNAL environment has been experimented on significant applications in the area
of signal processing and control: a speech recognition system, a radar system, a digital
watch, a rail road crossing were the major ones.

Finally, the SYNDEX system [7] has been developed at INRIA to distribute automat-
ically SIGNAL programs onto multiprocessor architectures; it uses the hierarchical condi-
tional graph as input.

Appendix: a sample work of the compiler

Let us consider an excerpt of the MOUSE process presented in section 2.2.4, namely the
SIMPLE_MOUSE process in which we specify also the subprocess IN_.INTERVAL; moreover, we
add the constraint (which is verified in the overall MOUSE process) that STARTs are also
CLICKs:

START “< CLICK
The SIMPLE_MOUSE process is the following:

27

process SIMPLE_MOUSE = { ? event START, CLICK, RELAX
! svent SINGLE, DOUBLE }
(I START “< CLICK
| DOUBLE_CLICK := ((not START) default IN_INTERVAL {CLICK, START, RELAX})
cell RELAX
RELAX when (not DOUBLE_CLICK)
RELAX when DOUBLE_CLICK

| SINGLE :
| DOUBLE :
1
vhere logical DOUBLE_CLICK
process IN_INTERVAL = { ? X; event S, T
'Y}
(| BELONGS_TO_INTERVAL "= (S default T default (event X))
| (| WILL_BELONG := (not T) default S default BELONGS_TO_INTERVAL
| BELONGS_TO_INTERVAL := WILL_BELONG $t |)
| Y := X vhen BELONGS_TO_INTERVAL
D)
where logical WILL_BELONG, BELONGS_TO_INTERVAL init false
end
end

Its solved process, as calculated by the compiler, is as follows:

process SIMPLE_MOUSE_TRA = { 7 event START, CLICK, RELAX
! event SINGLE, DOUBLE)}
(l (1 START ~= START |)
| (| CLICK "= (START default CLICK) |)
| () RELAX “= RELAX |])
| (| H_12_H := START default RELAX |)
I (I H_15_H := CLICK default H_12_H
| H_IS_HO 1)
(| SINGLE := RELAX when H_28_H |)
(| DOUBLE := RELAX wvhen H_27_H |)
Y := CLICK when H_21_H |)
(] H_25_H := START default Y {)
6_H := RELAX default H_25_H
6_HO 1)
4_H := vhen ((not H_12_H) default CLICK) |)
8
4

~

H_2
| H.2
I (1 H_1
| (1 H_1
I (1 H.2
)
vhere
process H_1S_H = { ? event H_15_H, H_14_H, H_18_H, RELAX
! event H_21_H }
(| H_15_H "= WILL_BELONG "= BELONGS_TO_INTERVAL
| (I H_.21_H := ghen BELONGS_TO_INTERVAL |)
| (] BELONGS_TO_INTERVAL :e WILL_BELONG $1
| WILL_BELONG := (not RELAX) default H_18_H
default (BELORGS_TO_INTERVAL vhen H_14_H) |)

H := ghen ((not RELAX) default START) |)
H := shen ((not START) default Y) |[)

)
where logical VILL_BELONG, BELONGS_TO_INTERVAL init false
end;

28

process H_26_H = { 7 event H_26_H, H_24_H, START

! event H_27_H, H_28_H }
(| H_26_H ~= DOUBLE_CLICK
| (I H_27_H := when DOUBLE_CLICK
| H_28_H := when (not DOUBLE_CLICK) |)
| (! DOUBLE_CLICK := ((not START) default H_24_KH) cell H_26_H)
1)
where logical DOUBLE_CLICK

end

end

The hierarchy is represented as the embedding of declared subprocesses. If a clock is
an external event, its name is the name of this external signal, otherwise it is named H_i_H.
For each clock named X, the solved process contains:

its definition (for instance, H.12_H := START default RELAX) or constraint (CLICK
“= (START default CLICK));

a process with the same name containing the graph and clocks depending on X (see
the processes H.15_H and H_26_}), or directly the subgraph of synchronous calcula-
tions (cf. the body of declared subprocesses).

Let us comment the SIMPLE_MOUSE_TRA process. In the hierarchy,

events START and RELAX are free clocks; it is the reason why they appear at the top
of SIMPLE_MOUSE_TRA with the constraint X ~= X;

CLICK is constrained to be greater than START and thus is also placed at the top level
(it would also be possible to consider that CLICK is free and START constrained);

H_12_H and H_15_H are clocks built on more than one of those free clocks and then
also appear at the top of SIMPLE MOUSE_TRA with their definition;

H_15_H is the clock of the boolean signals WILL_BELONG and BELONGS_TO_INTERVAL, it
is used to build the clock H_21_H defined by the true values of BELONGS_TO_INTERVAL:
H_21 H is under H_15_H; its definition and that of the signals BELONGS_TO_INTERVAL
and WILL_BELONG are contained in the subprocess H_15_H;

RELAX, H_.18_H and H_14_H are “computation clocks” of WILL_BELONG; computation
clocks associated with a given signal are exclusive clocks, i.e., clocks which do not
have common instants (for instance, H_.18_H is the “complementary” of RELAX in
START); the expressions of definition of the signals (for example, WILL_BELONG :=
(not RELAX) default H.18_H default (BELONGS_TO.INTERVAL when H_14_H)) pro-
vide as a byproduct the conditional data dependencies;

SINGLE (for instance) is built on RELAX, which appears at the top level, and H.28 H,
which is under H.26_H, and thus it 8lso appears at the top level (see also DOUBLE, Y,
H.25.H and H_26.1); finally, the computation clocks H_.14 H, H_18_H and H.32.H also
appear at the top level.

29

The compiler does not synthesize a unique master clock for the SIMPLE_MOUSE process:
no synchronization requirement is specified on the inputs START, CLICK and RELAX. This
process is used as a subprocess of the MOUSE process. It can also be directly executed.
We have then to define a communication protocol with its asynchronous environment.
A scanning mode of asynchronous execution is described in the following process (to
simplify the presentation, we consider that the process SIMPLE_MOUSE delivers the signal
DOUBLE_CLICK as output):

process S_SIMPLE_MOUSE = { ? logical S_CLICK, S_RELAX, S_START
! logical DOUBLE_CLICK }
(1 (} S_CLICK -= S_RELAX
| CLICK := when S_CLICK
| RELAX := when S_RELAX
| (I S_START "= CLICK
| START := when S_START |)

1)

| SIMPLE_MOUSE()

D)

end

Here, the compiler synthesizes a single master clock: this process can be run in a
master mode. The solved process is the following (we have kept only the skeleton of the
program, dropping the definitions of the signals and the clocks which are only computation
ones):

process S_SIMPLE MOUSE_TRA = { ? logical S_START, S_CLICK, S_RELAX
! event SINGLE, DOUBLE }

(I (| H_.6_H := event S_CLICK
| H_6_H “= S_RELAX
} H.6_HQO 1)
(D)
vhere

process H_6_H = { 7 event H_6_H; logical S_START, S_CLICK, S_RELAX
! event SINGLE, DOUBLE }
(1 (| CLICK := when S_CLICK
| CLICK “= S_START
| CLICK() 1)

| (| RELAX := when S_RELAX |[)
} (1 H_33_H := CLICK default RELAX
| H.33_HO) 1)
| (1 Y := CLICK vhen K_27_H)
| ¢l H_36_H := RELAX detault START |)
| (1 H_37_H := Y default H_36_H
| H_37_H *= DOUBLE_CLICK |)
D
shere

process CLICK = { ? event CLICK; logical S_START
! event START }
(! (| START := when S_START [)
)

end;

30

process H_33_H = { ? event H_33_H
! event H_27_H }
(1 H_33_H “= WILL_BELONG “= BELONGS_TO_INTERVAL

{ (I H_27_H := wvhen BELONGS_TO_INTERVAL |)
(D)

end

end
end

The clock H_6_H (which is the clock of the signals S_.CLICK and S_RELAX) is the single
root of the hierarchy; the clocks CLICK (which is the clock of the signal S_START), RELAX,
H.33.H (which is the clock of the signals WILL_BELONG and BELONGS_TO.INTERVAL), Y,
H_36_H, and H.37_H (which is the clock of the signal DOUBLE_CLICK) lie under H_6_K; the

clock START lies under CLICK; the clock H_27_H lies under H_33_H.
As an example of sequential code generation, the C code generated from this simplified
program is a loop

shile(cs_simple_mouse());

with this function defined as follows:

extern logical cs_simple_mouse()
{

h_6_h = TRUE;

rs_click(&s_click,h_4_h);

if ('h_4_h) return FALSE;

rs_relax(ks_relax,kh_4_h);

if ('h_4_h) return FALSE;

start = FALSE;

h_33_h = g_click || s_relax;

h_27_h = FALSE;

if (s_click)
{
rs_start(ks_start,kh_4_h);
it ('h_4_h) return FALSE;
start = s_start;
}

it (h_33_h)
{
if (s_relax) vill_belong = FALSE;
else if (atart) will _belong = TRUE;
else vill_belong = belongs_to_interval;
h_27_h = belongs_to_interval;
belongs_to_interval = will_belong;
)}

y = s_click &% h_27_h;

h 37T h=y || s_relax || start;

if (h_37_h)
{
it (start) double_click = FALSE;
else if (y) double_click = TRUE;
wdouble_click(double_click);

31

}
.return TRUE;

The variable belongs.to.ihterval is initialized with FALSE and.rs_¢lick, rs_relax,
_ rs_start, wdouble_click are input-output functions (the condition ('h_4_h) tests for the
end of each input).

| R_.‘eferences’ ‘

" [1] A. BENVENISTE, G. Bsauv,""Rgal-Time Systerﬁa design and programming”, see this special
section.

(2] A. BENVENISTE, P. LE GUERNIC, Y. SOREL, M. SORINE, “A denotational theory of syn-
chronous communicating systems”, INRIA Research Report 685, Rennes, France, 1987, to ap-
pear in Information and Computation.

[3) A. BEnveNisTE, P. LE GUERNIC, “Hybrid Dynamical Systems Theory and the SIGNAL Lan-
guage”, IEEE transactions on Automatic Control, 35(5), May 1990, pp. 535-546.

(4] A. BENVENISTE, P. LE GUERNIC, C. JACQUEMOT, Synchronous programming with cvents
and relations: the SIGNAL language and its semantics, IRISA Research Report 459, Rennes,
France, 1989.

[5] P. BourNal, V. KERSKAVEN, P. LE GUERNIC, “Un environnement graphique pour la con-
ception d’applications temps réel”, Collogue sur lingénierie des interfaces homme-machine,
Sophia-Antipolis, France, 1989, pp. 181-190.

[6] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA, “Automatic verification of finite-state con-
current systems using temporal logic specifications”, ACM Transactions on Programming Lan-
guages and Systems, 8(2), April 1986, pp. 244-263.

[7) N. GHEzAL, S. MATIATOS, P. PIOVESAN, Y. SOREL, M. SORINE, SYNDEX Un environnement
de programmation pour multi-processesr de traitement du signal. Mécanismes de communication,
INRIA Research Report 1236, Rocquencourt, France, 1990.

[8] N. HaLBwacHs, D. PiLaup, F. OUABDESSELAM, A.-C. GLORY, “Specifying, Programming
and Verifying Real-Time Systems Using & Synchronous Declarative Language”, in Automatic
Verification Methods for Finite State Systems (Sifakis, ed.), Lecture Notes in Computer Science,
Vol. 407, Springer-Verlag, Berlin, 1989, pp. 213-231.

[9) M. LE BoRGNE, A. BENVENISTE, P. LE GUERNIC, “Polynomial Ideal Theory Methods in
Discrete Event, and Hybrid Dynamical Systems”, in Proceedings of the 28th IEEE Conference
on Decision and Control, IEEE Control Systems Society, Volume 3 of 3, 1989, pp. 2695-2700.

(10] B. LE GorF, “Inférence de contréle hiérarchique : application au temps-réel”, PhD thesis,
Université de Rennes I, France, 1989.

32

[11] P. LE GuerNIic, T. GAUTIER, Data-flow to von Neumann: the SIGNAL approach, INRIA
Research Report 1229, Rennes, France, 1990, also in Advanced topics in data-flow computing
(Gaudiot and Bic, eds.), Prentice-Hall, 1981, pp. 413—438.

[12) C. LE MAIRE, Le langage SIGNAL : un ezemple en segmentation automatique de la parole
continue, INRIA Research Report 1217, Rennes, France, 1990

[13]) A. PNuELL, “Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends”, in Current Trends in Concurrency (de Bakker and al.,
eds.), Lecture Notes in Computer Science, Vol. 224, Springer-Verlag, Berlin, 1986, pp. 510-584.

[14] V. Roy, R. DE SIMONE, An AUTOGRAPH Primer, INRIA Technical Report, Sophia-Antipolis,
France, 1989.

[15) D. VERGAMINI, Verification by Means of Observational Equivalence on Automata, INRIA
Research Report 501, Sophia-Antipolis, France, 1986.

(18] INMOs LTD, The OCCAM programming manual, Prentice Hall, 1984.
[17) “CSML", see this special section.
(18] “ESTEREL”, see this special section.

[19) “LUSTRE", see this special section.

[20] “STATECHARTS", see this special section.

33

Pl 570:

Pl 571

PI 572

Pl 573

Pl 574

PI 575

PI 576

PI 577

Pl 578

Pl 579

Pl 580

PI 581

Pl 582

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA
1991

DESIGN DECISION lpr THE FTM : A GENERAL PURPOSL IFAUTL
TOLERANT MACHINE
Michel BANATRE, Gilles MULLER, Bruno ROCHAT, Patrick SANCHEZ
Janvier 1991, 30 pages

ANIMATION CONTROLEE PAR LA DYNAMIQUE
Ceorges DUMONT, Parie-Paule GASCUEL, Anne VERROUIST
Février 1991, 84 pages

MULTIGRID MOTION ESTIMATION ON PYRAMIDAL REPRESENTA-
TIONS FOR IMAGE SEQUENCE CODING .
Nadia BAAZIZ, Claude LABIT

Février 1991, 48 pages

A SURVEY OF TREE-TRANDUCTIONS

Jean-Claude RAQULT

Février 1991, 18 pages

THE OPTIMAL ADAPTIVE CONTROL USING RECURSIVE IDENTI-
FICATION

Anatolij B. JUDITSKY

Février 1991 - 26 pages

MANUEL SIGNAL

Patricia BOURNAI, Bruno CHERON, Bernard HOUSSAIS, Paul LE
Paul LE GUERNIC

Février 1991, 84 pages

AN INFORMATION BASED RELIABILITY PREDICTOR FOR SYSTEMS
IN OPERATIONAL PHASE

Kamel SISMAIL

Février 1991 - 22 pages

MULTISCALE STATISTICAL SIGNAL PROCESSING AND RANDOM

FIELDS ON HOMOGENEOUS TREES
Albert BENVENISTE, Michéle BASSEVILLE, Ramjne NIKOUKHAH,
Alan S. WILLSKY, Ken C. CHOU .

Mars 1991 - 18 pages A

TOWARDS A DECLARATIVE METHOD FOR 3D SCENE SKETCH

MODEL ING
Stéphane DONIKIAN, Gérard HEGRON

Mars 1991 - 22 pages

SYSTEMES MARKOVIENS DISCRETS STATIONNAIRES ET APPLICATIONS

Jean PELLAUMAIL
Mars 1991 - 284 pages

DESCRIPTION ET SIMULATION D'UN SYSTEME DE CONTROLE DE
PASSAGE A NIVEAU EN SIGNAL

Bruno DUTERTRE, Paul LE GUERNIC

Mars 1991 - 66 pages

THE SYNCHRONOUS APPROACH TO REACTIVE AND REAL-TIME SYSTEMS

. Albert BENVENISTE

Avril 1991 - 36 pages

PROGRAMMING REAL TIME APPLICATIONS WITH SIGNAL
Paul LE GUERNIC, Thierry GAUTIER, Michel LE BORGNE, Claude LE MAIRE

Avril 1991 - 36 pages

ISSN 0249-6399

