N

HAL

open science

On corner and vertex detection
Gerard Giraudon, Rachid Deriche

» To cite this version:

Gerard Giraudon, Rachid Deriche. On corner and vertex detection.

INRIA. 1991, pp.35. inria-00075121

HAL Id: inria-00075121
https://inria.hal.science/inria-00075121
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research Report] RR-1439,


https://inria.hal.science/inria-00075121
https://hal.archives-ouvertes.fr

INIA Rapports de Recherche

¢

UNITE DE RECHERCHE N° 1439
INRIA-SOPHIA ANTIPOLIS

Programme 4
Robotique, Image et Vision

ON CORNER AND VERTEX
DETECTION

Institut National -
de Recherche.
en Informatique

et en Automatique

Gérard GIRAUDON
Rachid DERICHE

Domaine de Voluceau
Rocquencourt
- BP105
° 78163 Le Chesnay. Cedex: |
-~ Fance Juin 1991

(13963561 (VSR

e




On Corner and Vertex Detection !

Sur la détection des jonctions et des points
anguleux |

Gérard GIKAUDON and RKachid DERICHE

INRIA Sophia Antipolis
2004 Route des Lucioles - 06561 VALBONNE Cedex
FRANCE

April 1991

Programme 4: Robotique, Image et Vision

! This work has been partially made under PRC Orasis contract and Esprit Project P2502 Voila.



:Abstract

In a previous paper [Der90], an accurate scale-space based corner detector has
been proposed. It has been derived from an analytical study that clarifies completely
the behavior of some well known approaches used to detect corners. This paper is
an extension of the work to the problem of vertices characterjzation and detection in
real images. We first deal with an analytical study for a general vertex model that
allows to better understand the behavior of this important feature in the scale-space.
In particular, we show that a trihedral vertex has two elliptic maxima on extremal
contrast surfaces if the contrast is sufficient, and this allows to classify vertices in
2 classes: "vertex” and "vertex as corner”. The corner detection approach previ-
ously developed is applied to accurately detect trihedral vertices. A test is executed
to make a distinction between vertex and corner among detected features. Several
promising experimental results given in the last section have been carried out using
noisy synthetic and real images including corners and vertices.

Résumé

Dans un papier précédent [Der90]), nous avons proposé un détecteur de points
anguleux se basant sur une analyse multi échelle et permettant une localisation exacte
de ces points. Le formalisme adopté nous a permis de faire une étude analytique
clarifiant complétement le comportement des détecteurs de points anguleux utilisés
jusqu’a présent, et montrant 'impossibilité qu’ils ont & délivrer une localisation exacte
du point. Ce rapport est une extension de ce travail au probleme de la caractérisation
des jonctions et de leur détection dans les images. Nous commencons tout d’abord
3 faire une étude analytique a partir d’un modeéle trés général de jonction trihédrale
(jonction a trois branches) ce qui nous permet de bien comprendre son comportement
dans ’espace multi échelle. En particulier, nous montrons que ce type de jonctions a
toujours deux maxima elliptiques positionnés sur les surfaces de contraste extréme et
cela uniquement si le contraste est suffisant. De plus, nous montrons que le passage
d’un point anguleux & une jonction se fait continument. Cela nous permet alors de
classer les jonctions en deux classes : les "jonctions™ et les ”jonctions-coin”. Ensuite,
nous montrons que l'on peut utiliser le détecteur de point anguleux [Der90} pour
détecter précisément a la fois les points anguleux et les jonctions trihédrales. Un test
est effectué a posteriori pour la distinction entre ces deux caractéristiques. Enfin, de
trés nombreux résultats sur des images de synthése bruitées ainsi que sur des images
réelles sont présentés, résultats montrant la précision de localisation et I'intérét de
I'approche.
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1 Introduction

In scene analysis, the goal of low level vision is image segmentation, in particular fea-
ture extraction. One of the most popular technique is edge extraction. An expansive
literature has been developed from Marr and Hildreth’s works [Mar80] to Canny or
Deriche’s works [Can86], [Der87] based on the first or second derivatives of images.
These works use a very simple model for the edge model : the step edge or Heavi-
side function. This model, essentially one-dimensional, cannot give access directly to
another class of important features in scene analysis : corners or vertices. To obtain
these features from edges, line segments from polygonal approximation or curvature
analysis along edge chains must be used [Asa36], [Der88}, [Med86].

Detection of corners or vertices is very important because these features represent
a relevant information in computer vision. These features are often used to iden-
tify objects in the scene or used for stereoscopic matching or displacement vector
measuring etc... So, accurate localization of these features is of great interest.

An alternative method can be used to detect these features directly from a gray-
level image. So, several techniques have been proposed in this way. These tech-
niques are based either on heuristic techniques like the ”interest operator” of Moravec
[Mor77] or on the measurement of the gradients and of the curvatures of the surface.
In this second type and for corner detection, we find works of Dreschler and Nagel
[Dre82], [Nagg83], Kitchen and Rosenfeld [Kit82] and more recently works of Noble
[Nob88] Harris and Stephen [Har88] and Guiducci [Gui88].

In a recent paper [Der90], we have presented an analytical study, in the second
type of approach, to detect corners. Our approach is based on zerocrossing of Lapla-
cian and a differential measure named DET [Bea73] in multi scale space. The main
characteristic of this paper is to give a formal representation of corner detection. In
particular, this study has been allowed us to know exactly what is the behavior of
some classical measures like the one proposed by Nagel or Kitchen and to correct
their faulty localization.

In this paper, we extend our approach to vertex detection and we show that
this approach is a general methodology for an accurate detection of discrete surface
intersection. As corner detection, we make an analytical study based on vertex model.
This study allows to classify vertex in 2 sets in function of the number of DET maxima
Finally, we present results of robustness of detector on synthetic noisy image with a
very low ratio SNR and on real data.

The paper is organized as follows. The first section starts with the presentation
of some previous works on corner and vertex detection. The second section is de-
voted to the presentation of an analytical study that deals with the vertex detection
problem, and allows us to better understand what happens around such features. A
last section is then devoted to experimental results on synthetic and real images. An
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appendix gives some elementary results on surface differential geometry needed to the
comprehension of this report.

2 Previous Works

In this section, we briefly review a few classical feature detectors presented in the
literature on corners and vertices. Our review is neither intended to be exhaustive
nor does it aim to present corner-vertex detectors in detail (in general, there are many
papers on corner detection and a few papers on vertex detection). Several approaches
to the problem of detecting feature points have been reported in the literature in the
last few years. They can be broadly divided into two groups.

The first group involves first extracting edges as a chain code and then searching
for points having maximal curvature as corner point. Maximal curvature points can
be found as following :

o At every chain code point, the unit vector tangent is estimated by using pixel
coordinates of chain code (see [Asa&6], [Med86] or [Mok86])

¢ A every chain code point, the unit vector tangent is estinated by using the
partial derivatives of image I(x,y) with respect to z and y (see [Der88]).

For vertex detection, people use polygonal approximation after chaining and compute
the vertex location as the intersection of three segments whose extremities are in a
window of size NxN. A interesting work [Bey89] which uses segment grouping can be
read for this technique. :

The second group consists of approaches that work directly at the gray scale level.
Gray scale level based corner detectors are then used to compute locally a measure of
cornerness C defined as the product of gradient magnitude and the rate of change of
gradient direction. Corners are then obtained by thresholding. Among the most pop-
ular corner detectors are those proposed by : Beaudet [Bea78|, Dreschler and Nagel
[Dre82], Kitchen and Rosenfeld [Kit82], and Zuniga and Haralick [Zun83]. In fact,
it has been reported by Nagel [Nag83] and by Shah and Jain [Sha84] that the three
last detectors are equivalent. We have shown in [Der90] that these detectors cannot
detect the exact position of corner. A more recent approach is the one developed by
Harris and Stephens [Har88] and Noble [Nob88]. De Michelli et al [Mic89] present a
comparative study between zero crossing and gradient approaches on corner and tri-
hedral vertex detection. One of the conclusions is that their scheme cannot correctly
detect corners or vertices. However, they remark that a vertex V is a zero crossing at
every scale and its Gaussian curvature is always negative (hyperbolic type).
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Now, we present in details, Beaudet’s approach for corner detection. Then we will
present our own approach on this problem. For a large comment of the other methods
on corner detection, see [Der90].

In 1978, Beaudet [Bea78) proposed a rotationally invariant operator called DET.
If I{z,y) is the intensity surface of an image, then:

2
DET = ]-’lf‘-’il.l/y - I;x:y (1)

The corner detection is based on the thresholding of the absolute value of the
extrema of this operator. In fact, this operator can be interpreted as the determinant
of the second derivatives Hessian,

Lo 1
H — rx Ty 2
e @
which yields the product of the principal curvatures Kmin Kmaz, called the Gaussian
Curvature [Lip69]. More exactly, for an intensity surface :
DET 2
(It 21 12)2 (3)

(Kminkmar) =

In terms of differential geometry (see Appendix), we can say : for a pixel I(z,7),
If KminKmaz > 0 <<= the pixel is an elliptic point
If KminKmaezr < 0 <== the pixel is a hyperbolic point
If Kminkmer = 0 <= the pixel is a parabolic point

DET and Gaussian Curvature have the same sign because the denominator of
equation (3) is always positive. This means near a corner, DET gives an elliptic and
hyperbolic parts (respectively a positive and negative response) on both side of the
edge. In a recent paper [Der90|, we have stressed an interesting characteristic : the
location of an elliptic maximum point is always inside the corner, independently of the
local image contrast. Moreover near a corner, DET has an elliptic maximum (positive
maximum in all directions) and but has not a hyperbolic maximum (negative mini-
mum in all directions). DET has a hyperbolic maximum only in a particular direction,
but this elliptic point detection does not allow to locate the corner accurately.

In the same way, for a trihedral vertex composed of three surfaces A,B and C,
DET gives elliptic and hyperbolic parts. But in this case, the location of these parts
depends on the contrast between A,B and C. This property will be illustrated in
section 3 and will be used to classify vertices in two classes.

In our last paper [Der90], we have proposed an analytical study for a accurate
corner detection. This detector is based on the two following remarks :
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¢ The exact localization of corner is always given by a zero crossing in scale space
i.e. it does not move when the size of the Gaussian filter varies as noted by
(Ber84] and [Mic89].

e Near a corner, a elliptic maximum ol DET exists and its location moves in scale
space. But its trajectory is a line which passes through the location of corner.
In this case, this line is exactly the bisector of the corner angle. We have found
that the local maximum in all the directions for such a surface is located exactly
in the bisector line at (z = 1.171340,y = 1.171340) for a right angle. Therefore,
detecting the corner point as the point where this local maximum occurs leads
to a displacement between the true point and the one detected equal to 1.6565¢.
Dealing with an angle of £ leads to displace the position of the local maximum
to (z = 2.582310,y = 1.069630) { i.e in the bisector line of the angle ). The
displacement from the true corner point is in this case equal to 2.795¢.

So, we have proposed the following detector :

¢ Using equation
DET = I,..1,, — Ify (4)

compute two images DET; and DET, corresponding to two different values
o, < o, for the scale space.

e Detect and threshold all the local maxima (only positive value) of DET) and
DET;.

e For each position (z2,y2) of a local maximum in DET3, search for a local max-
imum in DET),. The search is performed along a spiral centered on (z2,¥,),
limited to a 7x7 window and we take the first local maximum (z1,¥;) which is
found. In order to improve the precision of the localization, we fit a quadric
around each local maximum (a;,y;) and select the corrected position of each
local maximum with sub-pixel precision.

e Compute the line equation joining (x,,y; ) and (23, y2). This gives the estimated
bissector line where the exact corner position must lie. Along this line, starting
from (z2,y2) and moving in an opposite direction to (1, 1), validate the first
zero-crossing location (X,Y) of the Laplacian as the exact localization of the
corner at pixel resolution (if we get the minimum absolute value of Laplacian
pixel), or in sub-pixel resolution (if we track the exact zero-crossing by a curve
fit on laplacian).

In the next section, we apply the corner detection methodology for vertex detec-
tion. From a vertex modelisation, we observe the behavior of equation (4) in scale
space.
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3 A General trihedral Vertex Model and its Analytical
study

In this section, we consider a general trihedral vertex model and study its behavior in
the scale space. This allows us to derive results that clarify completely the behaviour
of the surface described by the intensity function of a Gaussian filtered trihedral
vertex. The elements of the first and second fundamental form of the intensity surface
function of the trihedral vertex are calculated analytically and some useful measure
as the determinant of the Hessian are then derived. In particular, we will show that
depending of the contrast between the different parts of the trihedral vertex, there
are one, two or three local extrema associated to the determinant of the Hessian.
These local maxima move in the scale-space along a line that passes through the
exact position of the central point of the vertex (i.e 0,0). Based on this study, we will
present an approach that allows us to characterize and extract with good accuracy the
central point of the vertex. This approach makes use of two important properties of
the vertex in the scale space. First, the property that the Laplacian image is zero at
the exact position of the vertex and second a property associated to the measure we
propose to use in order to get the vertex. It will be shown that vertex extracted using
this measure moves in the scale space on a line passing through the exact position of
the vertex. We then combine these properties in order to get the exact position of
the vertex.

3.1 Notations and definitions

We introduce here some functions that will be largely used in the rest of the paper.

Let g(z) denote the zero-mean Gaussian filter :

22

1 _
g(w)zﬁe T ] (5)

The two-dimensional Gaussian filter G can be expressed as :

G(z,y) = g9(z)g(y) (6)

Following Berzins [Ber84], we work in coordinate system where the unit length is
equal to the scale factor o of the filter. In order to convert the results into a more
general coordinate system (X,Y’), we use the following transformation:

=~
Il
A

(7)

=3
i
=
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Let ® denote the error function given by :

®(z) = /L g(t)dt (8)

Let U define the unit step function

0 otherwise

U(a:):{l ifz>0 9)

The output of the 2D Gaussian filter G' for a 2D input function I(z,y) can be
computed by evaluating the following convolution integral

+00 +ox
S(z,y) = Glee, )2 — a,y - B)dad
(2,9) /=_oo/,=-.x. (e B)(z - ayy - B)dedB (10)

3.2 A General Trihedral Vertex Model

A general trihedral vertex as shown in Figure 3.1 can be modeled by the following 2D
intensity function.

A ifa<0 andy<m'z
I(z,y)=<¢ B if2>0 andy<mz (11)
C ify>maz and y>m'z

where m = tan(8) and m’ = —tan(¢).

From this model, we can derivate the corner model given in [Der90] with A=B and
g=0.

Using the step function U(z) defined by ( 9) yields the following expression for
I(z,y):

Ig4)(z,y) = AU(=2)U(m'z - y) + BU(2)U(mz - y)+ CU(y — mz)U(y - m'z) (12)

If we convolve this 2D intensity function with the 2D Gaussian filter given by (6)
we get the following filtered image S(x,y) :

S(z,y) = A + C(JZ,, 9()®(y — m(z - a))da + [ g(a)®(y - m'(z — a))da)
~A([° g(a)®(y - m'(z ~ a))da) -~ B([Z__ g(a)®(y - m(z — a))da) + (B - A)‘(I>(:z:)
13)
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This equation describes a Gaussian filtered version of the general trihedral vertex
given by ( 12) with angle 8 and ¢ and intensity amplitude of A,B and C on each part.
Figure 3.2 illustrates such surface for the case where § = 7/3, ¢ =7/4,A=1,B =2
and C = 3.

In order to deal with an analytical expression for the different elements of the first
fundamental form of the intensity surface described by the trihedral vertex, we have
to get the components Sz(z,y) and Sy (x,y) of the gradient vector V§(z, y).

Using the following changes of variables:

u = zsin(8) — ycos(9)
v = zcos(0) + ysin(8)
o = —zsin(¢p) — ycos(P) (14)
v = zcos(P) — ysin(¢)

The components S;(z,y) and Sy(z,y) of the gradient vector V-'S(z,y) can be
calculated after some manipulations and put in the following analytical and simplified
form :

s, p) = | (B~ AWEIOL0) = (4= CIIE-0)in(0) + (5~ Ch(w)0(s)in()
Y (C - B (u)®(v)cos(8) + (C — A)g(a)P(—-v)cos(d)
(15)
An analytical expression _for the norm of the gradient vector can then easily be
calculated. The 3D plot of || VS(z,y) || leads to see that gradient magnitude decreases -

near the origin point and affects the edge extraction process as it will be shown in
the next subsection.

As seen in the previous section devoted to the differential geometry, the Hessian
matrix is important for the description of surfaces. The elements of such a matrix can
be calculated by deriving two times in the x and y direction the surface S(z,y). Ap-
plying this to our vertex model surface yields after some manipulations the following
elements:

Szz(z,y) = (A - B)zg(z)®(-y) + (C - A)g(a)sin(#)(®(~D)usin(¢) — g(~7T) cos(4))
+(B = C)g(u)sin(6)(g(v) cos(d) ~ uq’( bm( )
Szy(Z,y) = Syz(z,y) = (A = B)g(z)g(y) + (C — A)sin(¢)(2g(a)®(—) cos()
+9(z)g9(y)sin(8)) + (B — C)sin(8)(ug(u)@(v) cos(8) + g(z)g(y)sin(h))
Syy(z,y) = (C — B)cos(8)(ug(u)®(v)cos(8) + g(x)g(y) sin(8)) + (C — A) cos(¢)
(ug(@)®(-v)cos(¢) + g(z)g(y)sin(¢))

(16)
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It is worth noticing that letting § = ¢ and ' = 0 leads to the particular results
obtained for the symmetric trihedral vertex studied by Michelli et al [Mic89] in their
interesting contribution to the study of the localization in edge detection. In fact,
this part of our study generalizes a part of the work addressed by Michelli [Mic89].

3.3 On the extraction of the edges of a trihedral vertex

It is well known that edges can be extracted from an image using the non-maximum
suppression scheme [Can86], [Der87] or the zero-crossing scheme [Ber84]. In this
subsection, we briefly remind the main difference between both approaches in the
case where general vertices have to be detected (see [Mic89] for the particular case of
a symmetric vertex). In the first approach, edges are extracted as local maxima of
the gradient magnitude in the gradient direction. This is equivalent to extract points
where the second directional derivative of the gradient magnitude image along the
gradient direction is equal to zero. An explicit representation of the second directional
derivative in the gradient direction n can be found to be :

0?8 S:5.5242.5:.5,.5ry + Syy. 52
dn? (52 + 52)

(17)

The location of the zero-crossings of { 17) corresponds to the location of the dis-
continuity in the 2D step filtered function (13) extracted following the non-maximum
suppression scheme. Figure 3.3 displays the curve that represents the set of points
extracted through the use of this measure in the case of a vertex with § = /3,6 =
7/4,A = 1,B = 2 and C = 3. This figure illustrates a rounding effect of the edge
extraction with the non-maxima suppression scheme. It is worth noticing that we do
not have a zero crossing for the central point Z—n-sz (0,0) # 0.

In the second approach, edges are extracted as zero-crossings in the Laplacian
image given by :

ViS(2,y) = Serlz,y) + Syul2,9) (18)

Dealing with the vertex described by (13) leads to the following expression for the
Laplacian :

V25(z,y) = (A - B)zg(z)®(~y)
+(C — A)g(w)sin(@)(®(—v)usin(o) — g(—1) cos(¢))
+(B — C)g(u)sin(8)( g(v)cos(ﬁ) - u<I>(v)sm(0)) (19)
+(C - B)cos(8) (ug(1t)<I> )cos(8) + g(x)g(y)sin(8))
+(C — A)cos(p)(ug(a)P(-1)cos(d) + g(z)g(y)sin(e))
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Equation (19) can be solved numcrically to find the contours where the Laplacian is
equal to zero. The resulting contours are shown in Figure 3.4 for a Gaussian filtered
vertex with the following set of parameters :

o Figure34.a: 0 =r/3,¢ = r/d and A=1,8=2,C=3.
o Figure 3.4.b: §=0,¢6 =0 and A=2,B=1,C=0

o Figure 34.c: 8 =0,6 =0 and A=1,B=-1,C=0

Let us remember that both z and y are given in units of standard deviations o
of the Gaussian filter. This illustrates very well the rounding effect due to the use of
the Laplacian instead of the non-maxima suppression scheme.

From these remarks, an important point to notice is that the Laplacian allows
to recover exactly the position of the vertex since it can easily be checked that
V25(0,0) = 0 ( i.e the spatial position of a general vertex does not change in the
scale space ). This is not the case for the non-maximum suppression scheme. We
will make use of this important point in order to correct the position of the extracted
vertex.

Note : For a particular corner case with C=B and # = ¢ = 0, equation (19) becomes

ViS(z,y) = (A - B)lag(x JB(—y) + Yg(y)®(-z)) (20)

3.4 On DET extrema extraction of a trihedral vertex

Now, the behavior of the DET equation (1) is analyzed. In our formalism, we can
write this equation as following :

DET(z,y) = Szz(2,9)Syy(,y) — Szy(z,y)? (21)

Replacing the different second derivatives that appear in the expression of the DET
by their expression given ( 16), we get a complex expression for the DET that depends
on :

e contrast values : value(A-B), (C-A) and (B-C)

e angle values : ¢ and 6.

For the particular case where ¢ = 6 = 0, the equation becomes :

DET(z,y) = (A - B)g(2)g(yNxy®(-y)((B - C)®(z)

+(A = C)d(~2)) — (4 - Blg(x)g(y)) (22)
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For the particular corner case where ¢ = # = 0 and B=C, we obtain a corner [Der90}
and the equation becomes :

DET(z,y) = (A - B)*g(x)g(y N xy®(~z)®(~y) - g(z)g(y)) (23)

In this case, DET(0,0) is always negative (i.e. it is a hyperbolic point) and its
value moves in scale space (i.e. depends on a).

The DET behavior will strongly depend on contrast between A,B and C. To
illustrate this fact, we show on figures 3.5, 3.6 and 3.7 plots of DET versus contrast

(with ¢ = 8 =0)
e For A > C > B, Figure 3.5.a shows a 3D plot of DET and figure 3.5.b shows
the level curves of surface (4 = 1.8 = -1,C = 0).

e Figure 3.6 shows the level curves of surface for A > B>C (A=2,B=1,C =
0).

o Figure 3.7 shows the level curves of surface for A >> B > C (A = 10, B
1,C =0)

Some comments can be made on these results :

e Vertex point (z = y = 0) is always an hyperbolic point.

o In function of contrast, DET presents one or two elliptic parts and only one
hyperbolic part. For the elliptic part, we have always one or two elliptic extrema
(maxima in all direction). The location of these extrema is always inside the
extremal contrast surface. For example, in 3.5 the elliptic maxima are in A and
B and in figure 3.6 they are in A and C. In the case 3.5, the maxima are found
inz = -1.320,y = ~1.1950 (location in surface A) and z = 1.320,y = —1.1950
(location in surface B) The case presented in figure 3.7 is very interesting. It
means that if we have only a big contrast (A >> B and B = C), the behavior of
vertex looks like the behavior of corner ([Der90}). So only one elliptic maximum
exists and it is located on surface A.

o Hyperbolic parts are less stable. In the case of figure 3.5, we have an extremal
hyperbolic point located in vertex (0,0) but the hyperbolic part is on surface
A,B and C with the most proportion in surface C (intermediate contrast). In
the case of figure 3.6, two hyperbolic extrema exist on B and C surface and in
the case 3.7 there is not hyperbolic maximum.

o These results have been verified with other values of ¢ and 6.
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As corner detection, we have studied the hehavior of elliptic maxima in scale space.
And we have plotted the curve which passes through the position of this maximum
and the position of vertex. So,

e Fig 3.8. presents this curve for contrast | (A = 1,B = -1,C = 0).
o Fig 3.9 presents this curve for contrast 2 (A =2,B = 1,C = 0).

e Fig 3.10 presents this curve for contrast 3 (4 =10,B =1,C =0).

These figures show that elliptic maxima localization move in scale space for the
three types of contrast along a line which passes through the vertex. This means that
the approach developed for the corner detection can also be applied for the vertex
detection.

Moreover, some comments can be made on these curves. First, the curves pre-
sented above are not always the bisector of angles (¢ and 8). Second, we can class
vertices in two classes function of contrast and so function of the number of elliptic
maxima existing around the vertex. If two maxima exist (case 1 or 2), we have what
we call "real or robust vertex” and if only one maximum exists (case 3), we have a
"vertex like corner”.

3.5 Combining informations to extract accurate vertex

Following the analysis that we have done, two important points have to be noted

e The exact.position of a vertex can bhe detected as a stable zero-crossing in the
scale-space.

e The local maximum in Beaudet measure moves in the scale space along a line
that passes through the exact position of the vertex point.

So the method used to detect corners presented in [Der90] can also be used to
detect vertices backing to the following strategy :

1. First a Laplacian image is calculated.

2. Second, Beaudet’s measure at two or more different scales are calculated and
a maxima detection (on elliptic parts) in all directions is performed. Around
each detected maximum in the image corresponding to the first scale, we look
in the second image for the position of the local maximum. Once this second
maximum detected, we then look for the exact position of the corner as the
point that belongs to the line segments joining the two positions and where
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a zero-crossing occurs in the Laplacian image. With this approach, we have
combined the two important points that we have mentioned. Experimentally,
this approach has been found to be reasonably stable.

So, with this algorithm, we detect corners and vertices. If a distinction must be
made between a corner and a vertex, we can use a remark given above. In the case
of "real or robust vertex”, we have two detections on vertex location because each
detection is created by a curve joined two elliptic maxima. So a distinction between
vertex and corner can be made easily. But for the second type of vertex (”vertex
like corner”), we have just one elliptic maximum curve, and so we will have only on
detection on vertex position like a corner detection. So our detector cannot solve this
ambiguity and an other local contrast study would be needed. distinction.

An other possible classification is to say :

o A detected feature is named a "vertex” if its localization is created by the
existence of two elliptic maxima curves

¢ A detected feature is a “corner” i its localization is created by the existence of
only one elliptic maximum curve.

4 Experimental results

In this section, we give some experimental results obtained on running our corner and
vertex detector on noisy synthetic and real images. All low-level processing required
in the approach (smoothing and deriving steps) is performed using the Gaussian
filter operator and its derivatives. The detection is performed at pixel precision.
To find vertex position (X,Y), we validate the first zero-crossing location (X,Y) of
the Laplacian at pixel resolution (we get the minimum absolute value of Laplacian
pixel). To reach sub-pixel precision, we are in the process of implementing a tracking
approach for the exact zero-crossing by a curve fit on laplacian.

4.1 Results on noisy images

An additive Gaussian noise with standard deviation o has been added to each syn-
thetic image in order to deal with noisy data. The Signal to Noise Ratio (SNR) is
computed as follow :

Y3 flz,y)? (24)

SNRyp = 10iog( S5 e(z.g)7
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where {(x,y) denotes the original image and e(x,y) is the noisy one.

In figures 4.1 to 4.4, we present results on trihedral vertex detection. We have
synthethized two types of vertices depending on contrast. We have chosen a vertex
with an equal angle for 6 and ¢ of 0 for the first type and we have taken A = 150,
B=100and C =0.

Figures 4.1.a and 4.1.b present DET maxima for ¢ = 1 and ¢ = 2. We show here

that two maxima exist, one on surface A (=150) and one on surface C (=0). The
value of the maximum on C is very low with regard to the one on A (a ratio of 5)
and then it could be rejected by a threshold. These maxima are aligned. Figure 4.1.c
shows the two detections which are localized on vertex position.
For the second type, we have taken A = 150, B = 0 and C = 100. Figures 4.2.a and
4.2.b present DET maxima for ¢ = 2 and ¢ = 3. We show that again two maxima
exist also one on A (=150) and one on B (=0). In this case, the value of the maximum
on C is greater than the one of surface A (a ratio of 3). These maxima are not aligned.
Figure 4.2.c shows the two detections which are localized on vertex position. (we have
the same result with 0 = 1 and 0 = 2.

For the behavior on noisy images, we have considered the first type of vertex.
Figures 4.3 and 4.4 present vertex detection with SNR; = 13dB and SNR, = 7dB.
In the first case, a Gaussian filtering with ¢ = 1 and ¢ = 2 allows to detect exactly the
position of vertex. (We have made a threshold to keep just one maximum of DET).
But with 7dB and taking ¢ = 2 and ¢ = 3, we have not a good localization and more
we have a false detection. Finally, in figure 4.4, we show the best result obtained with
oc=3and o =7 witha SNR = 7dB.

In summary, we have verified experimentaly the theoretical results. With a cor-
rect contrast between surfaces, we have shown in the vertex case that two elliptic
maxima of DET exist always on the surfaces of extremal contrast independently of
their locations in scene. Their locations depends on the contrast. Robustness of our
detector has been demonstrated on a very low SNR with adapted ¢ in scale space.

Finally, we show in figure 4.5 and 4.6 results on checkboard image with gray level
surface equal to 150 and to 0. This does not correspond to our vertex model (the
feature is the intersection of four surfaces) but it is an interesting case. In this special
case, four DET maxima exist (compute with ¢ = 1 and 2, figure 4.5) and the detection
of vertices is good (figure 4.6).
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4.2 Results on real data

To illustrate the efficiency of our detector, we show on figure 4.7 the location of
features detected by our algorithm. In this image (512.512 pixels with 256 grey
level), we have corners and vertices. The parameters of this detection are :

o Laplacian computed by a Gaussian filtering with o = 1

¢ DET computed by a Gaussian filtering with e = 1 and ¢ = 2
e Threshold on DET maxima = 200

o a 7x7 spiral window from a; to a,

s a quadratic fitting for subpixel precision on location of elliptic maximum.

In order to illustrate the detector behavior on vertices, figures 4.8 (a, b, c) shows
some local zoom of vertices detection. The corrected position derived by our algorithm
seems 10 be quite promising. As we have indicated in the previous section, we detect
as vertex features which are created by the intersection of zero crossing and two lines
(existence of two elliptic maxima). So, from point of view scene analysis, all vertices
which are present in this image are not extracted because some of them are classified
as corner (see figure 4.12 for every feature detection)

Remark : Note that decreasing the threshold for the magnitude of maxima would
have caused on more features points to be detected. The results obtained by running
the algorithm on a triplet of trinocular stereo images are very stable and suggest
that the matching process will be much more easier and reliable using these features.
We have implemented the algorithm with a complete multiscale representation using
o = 1to o =6. We have used a polygonal approximation of the maxima line instead
of simply joining two maxima. This implementation does not increase the precision
of localization and yields inferior results on noisy images than presented here. This
is due to the bad localization with ¢ = 1 or 2 and its influence on the mean square
process to compute the line.

5 Conclusion

A formal representation of corner and vertex detection has been proposed in this
paper. In particular, an analytical study that allows us to know exactly what is
the behavior of our detector proposed in [Der90] around trihedral vertices has been
developed. We have shown that near three surfaces, two elliptic maxima of DET exist
and their location is inside extremal contrast surface. The intermediate surface shows
always an hyperbolic minima. We have shown that our detector allows us to find
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the exact position of vertex. The approach proposed has been tested on many noisy
synthetic data and real images and its robustness seems very promising.
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Figure 3.5.a : 3D of DET
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41la:0=1

42.a: o=2

41b:0=2 4.1.c : Vertex localization

No 4.1 : sub-image with a vertex of type 1

42b:0=3 4.2.c : Vertex localization

No 4.2 : sub-image with a vertex of type 2
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No 4.7 : Features extracted on real image with o = (2,1)
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No 4.8 : Vertex localization on real image with o = (2,1)
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Differential Geometry for Surface Curvature Analysis

Differential geometry is an important tool for the analysis of surfaces. In this
annex, we give some elementary results of surface differential geometry that are used
in the paper. The differential properties given will be employed to perform detailed
curvature analyses on surfaces and applied in order to get the exact position of the
corner and trihedral vertex.

Let us consider the surface S(x.y) associated to the grey-level intensity image
I(z,y) described by the equation

S(x,y)=ai+yJ+ (x,y)k (25)

An infinitesimal distance element between two neighboring points (z,y) and (z +
dz,y + dy) on this surface is given by :

dSdS = [ dr dy ] [ 1[' é ] [ Z; ] (26)

where the elements E,F and G of the defining matrix noted G are given by

E = SxSx
F =84Sy (27)

This equation is known as the first fundamental form of the surface S(x,y) It
is usually noted ®; and can be rewritten as :

$, = Ede® + 2Fdady + Gdz? (28)

For an image surface described by equation (25), it is easy to show that the
coefficients E,FF and G reduce to:

E=1+1.1, _
F= Ia'Iy (29)
G=1+1,1,

These metric coefficients provide the basis for the measurements of lengths and
areas on the surface. The first fundamental form gives the distance dS? between
neighboring points (2,y) and (2 + dx, y + dy) on a surface, to first order in dr and dy.
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The distance element dS lies in the tangent plane of the surface at (z,y) and therefore
yields no information on how the surface curves away from the tangent plane at the
given point. To deal with surface curvature, we have to consider the displacement
between neighboring points (2,y) and (& + dx,y + dy) to second order in dz and dy.
The component of this displacement perpendicular to the tangent plane at (z,y) is
given by:

- dSdN = [ dx dy ] [ ALI 1]‘3 ] [ Z; } (30)

where N is the surface unit normal given by :

S+ A S,

NETS ST ey

and the elements L,M and N of the defining matrix noted H and known as the
Hessian matrix, are given by :

1/ = NSxx
M = NSyy (32)
A’ = NSyy

Equation (30) is known as the second fundamental form of the surface S(x,y).
It is usually noted by ®; and can be rewritten as :

&y = Lda? + 2M dady + Ndy? (33)

The second fundamental coefficients L.M and N form the basis for defining and
analyzing the curvature of a surface. For an image surface described by equation (25),
it is easy to show that these coeflicients reduce to :

L= Iz5(z.y)
\/1+Ix(r1.y)(’+li,(r.u)°
. xyl2.y
1= \/l-l-lx(.1:.5/)2-#-1y(1’v!/)2 (34)
A’ - lyy(2.y)

T V(e ()

At each point of the surface, the family of planes containing the normal N at
the given point cut the surface in a familv of normal section curves for that point.
The normal curvature x of the surface at a given point is defined as the curvature of
normal section curve at that point and is given by the ratio of the second and the
first fundamental form:
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K= Lda2? + 2Mdady + Ndy?
T Edx? 4 2Fdady + Gdy?

(35)

At each point, a direction (dx,dy) is associated to the curvature x given by the
equation (35). There are two directions for which x has maximum and minimum
values. They are solution of the equations

Aw
=7

e (36)
Mdyy ~ 0
Using equation (35) and deriving yields the following equations:
(=L+rE)de+(-M+xF)dy=0 a7
(-M +rF)dax+(-N+rG)dy=0 (37)
For a solution to exist, £ must satisfv
K2 =21+ KN =0 . (38)

where the coefficients K and H denote the Gaussian curvature and the mean
curvature respectively :

L = LN -A1?

N3

— EN+GL-2FM
= ——fnr—Fq—'Q( X2

The solutions to equation (38) represent the maximum and minimum curvature
at the given point and are called the principal curvatures

(39)

Kmin = I - \/11'2 - K 40
Kpaa = I+ vV ]IE - I ( )

Substituting Kmin and Kmes for & in equation (38) yields the solutions (dz,dy) for
the principal directions that are alway orthogonal.

When H? = K, Kpmin = Kmar and the curvature is independent of direction. Such
point is called an umbillic or spherical point since the surface locally approximates a
sphere at that point.

The Gaussian and Mean Curvatures introduced above can easily be expressed
as the product and average of the Principal Curvatures, respectively :
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N = Nonrtonin
(41)
— Bwart i
I = —eadionn
It is worthnoting that if we define the matrix /3 as follows :
3 = [G7']|[H] (42)

It can be shown that K and H can easily be expressed as the determinant and half
the trace of the matrix 3 respectively.

More details and results about the dilferential geometry of surfaces can be found
in the reference {Lip69).
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