N

N

Elimination of redundancy from functions defined by
schemes
Didier Caucal

» To cite this version:

Didier Caucal. Elimination of redundancy from functions defined by schemes. [Research Report]
RR-1429, INRIA. 1991. inria-00075131

HAL 1d: inria-00075131
https://inria.hal.science/inria-00075131
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075131
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 1429

Programme 2
Calcul Symbolique, Programmation
et Génie logiciel

ELIMINATION OF REDUNDANCY:
FROM FUNCTIONS DEFINED BY
SCHEMES

Didier CAUCAL

Mai 1991

l R I S INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX
FRANCE

Téléphone : 99.36.20.00

Télex : UNIRISA 950 473F
Télécopie : 99.38.38.32

ELIMINATION OF REDUNDANCY

FROM FUNCTIONS DEFINED BY SCHEMES

Didier CAUCAL

Abstract. The infinite tree obtained classically by unfolding the definition of a recursive scheme,
contains several identical subtrees. When they are identified, the resulting graph is generated by a

deterministic graph grammar, if the scheme is monadic. We show how 1o extract one such a grammar from

the scheme.

ELIMINATION DE LA REDONDANCE

DE FONCTIONS DEFINIES PAR SCHEMAS

Résumé. L'arbre infini obtenu de fagon ususlle par dépliage des régles d'un schéma récursif, a de

nombreux sous-arbres identiques. Lorsqu'ils sont identifiés, on obtient un graphe engendrable a I'aide d'une

grammaire déterministe de graphes, si le schéma est monadique. On montre comment extraire une telle

grammaire a partir du schéma.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(U.RA. 227)

EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES | LN.S.A. DE RENNES (UNITE DE RECHERCHE DE RENNES)

[

-

ELIMINATION OF REDUNDANCY

FROM FUNCTIONS DEFINED BY SCHEMES (V)

Didier CAUCAL
IRISA, Campus de Beaulieu, F35042 Rennes Cedex, France

email : caucal@irisa.fr

Introduction

A good strategy for evaluating functional programs should (1) avoid computing useless
values, i.e. values that are never used, and (2) avoid computing twice the same value. Neither point
can be detected statically, but point (2) can be done syntactically by a shared representation of the
program. This shared representation will be deduced from the text of the program and has to be
finite. The method that we use for this construction is to consider a free interpretation of the
recursive scheme obtained classically by unfolding the definitions infinitely. The resulting infinite
tree is then contracted as much as possible: identical subtrees, corresponding to the same
computation are shared. The result is an infinite graph. It turns out that this infinite graph is
generated by a finite system of patterns, which will be the shared representation of the program. To
clarify matters, let us introduce the classical example of the Fibonacci function :

F(n) = if n<1then 1 else F(n-1) + F(n-2) endif .
An associated recursive program scheme [Ni 75], [Gu 81], in short RPS, can be the following
equation :

F(n) = f(p(n), g(F(h(n)) , F(h(h(n)))))
where f,g,p,h are base function symbols with respective arities 2,2,1,1. The base function f is

interpreted as the conditional which gives 1 when its condition is realized and its second argument

(1) This work was presented at GRAGRA 90 (GRAph GRAmmar workshop) and will appear in LNCS.

-4 -

otherwise ; g is the addition ; p is the predicaten< 1, and h is the decrement function.

Every RPS can be seen as a term rewriting system : the defining equation of F can be oriented to

give the following rule :

F f
| — g
n F
; h h
n h
n

To the defined function F, we associate the infinite tree below, obtained by unfolding the right-hand

side of the rule, starting from F(n).

This unfolded tree describes all possible computations of the defined function, but it does not impose
any evaluation strategy. Nevertheless, because of the two recursive calls of F in its definition,
every evaluation of F by unfolding its tree, is of exponential complexity.

As in [St 80], [Pa 82], [Ba et al. 87], [Ho-P1 88], we can identify the occurrences of identical

subtrees in the definition. We then obtain the following graph grammar where the edge labels

indicate the rank of the argument :

-

n
Here again, because of the two recursive calls of F in the right-hand side of the grammar rule,
every evaluation of F by unfolding the above graph is of exponential complexity.

There exists a better quotient obtained by identifying all the identical subtrees in the unfolded tree.

We obtain the following ‘canonical’ graph :

2 2
f g f g f g f
>~ - - - — —
1) 1Y 1 1y
® p b p P P oo
19 1Y 1 1y
n 1 h 1 h 1 h

Such a graph is a 'pattern’ graph, or an equational graph in the sense of Bauderon [Ba 89] and

Courcelle [Co 89 a] [Co 89 b], i.e. this graph is obtained by iterated rewritings of a deterministic

-6 -

(see Section 3) graph grammar, having the following unique rule :

2
A f g
@ 2 L A2
14 @ ® © @
1 2 N p @ .
"o ©
(b) © . b

The right-hand side of that rule is the basic pattern of the Fibonacci function. Taking into account the
interpretation of the base functions, this grammar can be transformed easily into the following

evaluation program of the Fibonacci function :

procedure A(a,b,c);
d «b<l;
if d then a « 1 endif;
e &< b-1; _ ‘
call A(lce,!f) ; (the ! signs mean that the call returns immediately}
g &« c+f; {if ¢ and f are evaluated}
a e g; '

endprocedure

and the execution of A A(a,b,c) gives a=Fib(b).

This evaluation program of the Fibonacci function is of complexity linear in time ;':1nd space.

Of course, the difficulty of this method is to construct the pattern(s) of the canonical gral;h from th‘e
RPS. In this paper, we solve this problem for 'monadic' RPS (meaning that only the base functions
may have several arguments). Since there exist [Ca-Mo 90] (or Example 7 in Section 3) canonical
graphs of polyadic RPS which are not pattern graphs, this method cannot be applied to all RPS, a
fortiori to all term rewriting systems. This is one difference with the approach of [Ho-P1 87]. Also,
our method is by no means akin to an optimized interpreter and in particular the RPS is not required
to terminate. It is more like an optimizing compiler, translating the original RPS into a (syntactically)
optimal intermediate code : a deterministic graph grammar. One aspect of this optimality consists in
getting rid of folding rules during evaluation : this has been taken care of by factoring the infinite tree

into the canonical graph.

«

1. Scheme

This preliminary section recalls basics about recursive program schemes, see among others [Ia 60],

[Ga-Lu 73], [Ni 751, {Gu 81}, [Co 83].

Definition. A (Greibach) recursive program scheme S (in short a scheme), on a graded
alphabet F and on a set X = {x,,...,x,,...} of variables, is a finite set of equations of the
form fx;...x, =t (where fe F_,te T(F,{xy,....x,})), satisfying the following conditions :
(i) the scheme is functional : ((fx,...x,=s)e S A (fx;..x,=t)€ S) = s=t
(ii) the scheme is in Greibach form : (fx,...x, =gt;...t;) € S = ge& P(S) where
®(S) denotes the set { f1(fx,...x,=t) € S} of defined functions by’ S.

Example 1. The recursive function A defined by
A(n) = if n=0 then O else n- A(B(n-1)) endif
B(n) = if n=0 then 0 else n- B(A(n-1)) endif
can be represented by the following scheme :
A(n) = f(p(n),g(n,A(B(h(n)))))
B(n) = f(p(n),g(n,B(A(h(n))))) .

The equations of a scheme S may be used as rewriting rules, and allow to unfold a given term t into a

(usually infinite) derivation tree S(t).

Definition. Given a scheme S and a term t e T(F,X), the unfolded tree S(t) is defined as
®H SO = £(S8(t)),....S(ty) if t=ft...t; and fe O(S)
(i) S = SU[x; by, ..., x, et 1) if t=ft...t, and (fx;..x,=t)e S.

The existence (resp. unicity) of such a tree results from condition (ii) (resp. (i)) of the scheme

definition.

-8-

Example 2. From the scheme of Example 1, the unfolded tree from An is equal to

f(pn,g(n f(p(f(phn,g(hn,...)),...))) .

Unfolded trees generally contain isomorphic subtrees, describing redundant computations. Avoiding
redundancy via systematic sharing of isomorphic subtrees leads to ‘canonical’ graphs. Wc.show in the
sequel that canonical graphs turn out to have a regular structure for schemes, satisfying the following
three conditions :

(1) the scheme is monadic : ®(S) C F;, i.e. every defined function is of arity 1

(i) the scheme is without constant : Fy=@

(iii) the scheme is reduced : (fx;...x, =t) € § = S(fx;...x,) has a leaf.
I'rom now on, a scheme is to be understood as a monadic and reduced scheme with(;ut constant (we let
the reader check that this is the case with Example 1) and the set X of variables is restricted to {x}.

For any graded alphabet F, the 'split’ W(F) of F is defined as the set pf 'split' symbols :

WE) = {(fi) | fe F, A 1<i<n}.

Given a scheme S, let (fx =t) be an equationin S. All leaves of the unlabelled tree S(fx) are then
labeled by x (since S is monadic and uses no constant). In the sequel, we allow o_urs_clves to identify

(9.1)

S(fx) with the set of lubeled arcs u g—’i)ui where u and ui are nodes of the unfolded tree, and g is

the label of u.

Example 3. The tree of Example 2 is identified with the following set of labeled arcs :

(1)
®1)

To eliminate syntactic redundancy, we identify isomorphic subtrees.

-9-

Definition. The canonical graph Can(S(fx)) of every unfolded tree S(fx) is defined by

Can(S(fx)) = { [ul- — [vlz | (u = v) € S(fx))

where u=v if and only if the subtrees of S(fx) on u and v are isomorphic.

To decide the isomorphism of subtrees of an unfolded tree T, we associate to every vertex u the path-
language L(T,u) of the path labels from u to a terminal vertex (a vertex which is source of no arc),

1.e. L(T,u) is the smallest language over W(F) such that

L(Tu) = U{al(Tv) | (u =5 v)eT).
In particular L(T,u) =@ if u is a terminal vertex. So, the isomorphism of subtrees of T is equivalent

to the equality of their path-languages.

Proposition 1.1 The subtrees bf an unfolded tree S(fx) on u and v are isomorphic
ifand only if u and v have the same path-languages : L(S(fx),u) = L(S(fx),v).
Proof.
Clearly, isomorphic subtrees have the same path-language. Conversely, the unfolded tree S(fx) is
deterministic : two arcs with the same source have different labels. Furthermore S being reduced,
from every vertex u ‘of S(fx), there exists a path from u to a terminal vertex. Consequently, the
subtree of S(fx) on u is isomorphic to the deterministic graph associated with L(T,u), i.e. the

following graph :
{ v1L(T,u) = (va)l.L(Tu) | ve W(E)* A ae WEF) A 3w, vawe L(T,u) }

where v1.L(T,u) = {w | vwe L(T,u) } is the left quotient of L(T,u) by v.

So, the subtrees of S(fx) are isomorphic if they have the same path-languages. ¢

Now, we need an effective construction of the canonical graph Can(S(fx)) from S and fx.

-10 -
2. Prefix transition graph

In order to construct the canonical graph Can(S(fx)) of S(fx), we want to show that such a graph
is isomorphic to the prefix transition graph [Ca 90] of a reduced simple grammar constructible from
S.

Let us recall that a simple grammar is an e-free cf-grammar in Greibach normal form which is
LL(1), i.e. for all rules A — au and A — av of G where a is a terminal, we have u=v. A'cf-
grammar is reduced if G generates a terminal word from any non-terminal. |
Given an e-free cf-grammar in Greibach normal form, and a non-terminal A, the prefix transition

g}aph P(G,A) of G accessible from a non-terminal A is the following graph :
P(G,A) = {uL)lei—G—)‘uAul%)v}

where |—°G> is a prefix rewriting step on the non-terminal words, labelled by a terminal a, and defined

by u s%)v if there existarule X — ax of G and aword y such that u=Xy and v =xy,

and *7;’ * is an arbitrary sequence of such unlabelled steps.

Theorem 2.1 Any pair (Sf) of a scheme S and an axiom f may be effectively
transformed into a reduced simple grammar G such that the graphs Can(S(fx)) and P(G,f)

are isomorphic.

The sketch of the proof is given in 3 steps.

Step 1 : we put the scheme S into Greibach normal form : each rule has the form fx =. gty...ty
where the t; 's are in T(®(S),{x}) which corresponds to <I>(S)‘.x because S is monadic.

To do this, it suffices to replace iteratively each proper tree t € (F-®(S)).(®(S)".x)" in a right-hand
side of arule of S by hx where h is a new symbol in F,, and to add in S. the equation hx =t. So,
we obtain a scheme S' in Greibach form which is equivalent to S : S'(fx) = S(fx) forevery fe

D(S).

-11 -

Example 4. From Example 1, we obtain the following scheme in Greibach normal form :

Ax = f(Px,Cx)
Bx = f(Px,Dx)
Cx = g(x,ABHx)
Dx = g(x,BAHXx)
Px = px

Hx = hx.

Step 2 : As [Co-Vu 76], we convert the scheme S in Greibach normal form into a simple grammar
G. This elementary transformation amounts to replace each equation fx = gu;x...u,x toa grammar rule
f = (g,u; +... +(g,mu, (here, terminals are in the split alphabet W(F-®(S)), and non-terminals are
in @(S)). So, the language of terminal words generated by G from f is equal to the path-language

L(S(fx),f) of the unfolded tree S(fx) (see Proposition 1.1), hence G is reduced.

Example 5. From Example 4, we obtain the following simple grammar

A = (f1)P + (f,2)C
B = (f,1)P + (f2)D
C = (gl + (g2)ABH

D = (g1) + (g2)BAH

P = (p,1)
H = (h1).

Step 3 : Finally, we transform the grammar to an equivalent simple one, and ensures that non-
terminal words define always different languages [Co 74]. Such a transformation may be done by a
polynomial algorithm [Ca 89]. By Proposition 1.1, the prefix transition graph of the simplified

grammar (from the axiom f) is isomorphic to the canonical graph of the tree S(fx).

Example 6. From Example 5, we obtain the following canonical simple grammar :

A= ()P + (£2)C

C

(g.1) + (g2)AAH

-12.

P = (p,1)
H = (h1)

which corresponds to the scheme

Ax = f(Px,Cx)
Cx = g(x,AAHx)
Px = px

Hx = hx

In the next and final section, we show that every prefix transition graph of an e-free and reduced cf-

grammar in Greibach normal form may be effectively generated by finite ‘patterns’.

-13-

3. Deterministic graph grammar

In this section, we indicate an algorithm which, given a prefix transition graph of a reduced cf-
grammar in Greibach normal form, produces its building blocks, called patterns.

Graphs considered henceforth are representatipn of (possibly infinite) terms : each node s hasa
finite outdegree, corresponding to some function symbol fe F,, and s has exactly n outgoing arcs,
respectively labeled (f,1), ..., (f,n). Let us specialize for the above 'term graphs' the usual notion of a

graph grammar.

Definition. A graph grammar is a finite set of production rules of the form

S

0
(rw - G
S cee S
1 n

where fe F,s;#s; if i#] and all the s; are vertices of the finite (term) graph G.

A non-terminal of a graph-grammar G is a label of a left-hand side of a rule of G ; a terminal of G
is a label of a right-hand side of a rule of G which is not a non-terminal.

Graph grammars induce graph rewriting as usual [Ra 84], {[Ha-Kr 87], [Ke 89].

Definition. Applying arule L — R to a graph G consists in finding a total mapping g

from the set Vi of vertices of R to the set of vertices such that

) gl)cG where gL)={(gs) — g®) | ¢ —> e L)
(i) grestrictedto Vg - VL isone-to-one and g(Vg -V) nVg = @.

The obtained graph is (G - g(L)) v g(R).

The condition (i) amounts to finding the pattern L in G, possibly collapsed. The second condition is
an alpha-conversion ensuring that the vertices of R which do not occur in L are also not in G.
Beware that the rewriting relation is not a function.

In analogy to Kleene's substitutions on scheme, we introduce parallel rewriting for graphs : G

-14 -

rewrites in parallel into H if H results from the simultaneous application of the rules vat all the
occurences of the left members (in G).

We focus now on deterministic graph grammars, meaning that there is one rule per non-terminal.
Given a graph H represented as a set of arcs and a deterministic graph grammar G, we define G°(H)
as the unique (up to isomorphism) graph represented by the set of terminal arcs of a sequence G"(H)
where GO(H) =H and G"(H) rewrites in parallel into GMI(H). We use the term pattern graphs to
denote the class of term graphs G®(H) for finite H; the right members of the rules in G are called
the patterns of G®(H).

In order to construct the canonical graph Can(S(fx)) of the unfolded wee S(fx) of a scheme S
from fx, we want to show that Can(S(fx)) may be effectively generated by a deterministic graph

grammar.
Theorem 3.1 Every canonical graph of a scheme is effectively a pattern graph.

Let us recall that a scheme is to be understood as a reduced monadic scheme without constant. As

shown in Example 7 below, Theorem 3.1 is false for polyadic schemes. -

Example 7. (given by G. Sénizergues). Let us consider the following reduced and polyadic scheme

S without constant :

Axy = f(x,y,A(Bx,BBy))

Bx = gx

The canonical graph Can(S(Axx)) of the unlabelled tree of S from Axx is represented below :
(£.3) (£3) (£3) (£3)

>

(£.2)

(£

and is not a pattern graph.

To prove Theorem 3.1 and from Theorem 2.1, it suffices to establish constructively the result of [Mu-

-\

-

-15-
Sc 85]_ restricted to reduced simple grammars : every accessible prefix transition graph of a reduced

simple grammar is a pattern graph.

Theorem 3.2 There exist a procedure which from a given reduced €-free context-free
grammar R in Greibach normal form, and a letter r, produces a deterministic graph-
grammar G and a finite graph H such that the pattern graph generated by G from axiom
H is equal to the prefix transition graph of R from r.
Proof.
The grammar G to be constructed, generates progressively the prefix transition graph
PRr) = PR, u...uPR,), U ...

by slices
PR, = {(s — t)e PR,p) | Isi=n}
of arcs whose sources are of growing lengths.
We recall [Bii 64] that |-é-) = }-?' is decidable and that the language {u | r p-;;-) u } of accessible

words by prefix rewriting from a given word r is a rational language recognized by an automaton

constructible from (R,r). In particular, the relation

;;R)o(..'_n-q = {(u,v)|3w,ui—;—>WAV}-'?)w}

is decidable.

i) From now on, s is a vertex of P(R,r) different from €. From s, the grammar G will generate

. the graph

P, = PRD), u{u-—> v |ue Vpgy A ul—:-)v A Vi< lul=1sl }

where P(R,r), is the connected component of the set

(@5 v)e PR |2kl A M2Isl},

containing s.

To establish finiteness of the P (up to isomorphism), let us express P(R,r); by the rewriting I—;—)n =

(F—n)" by vertices of length greater or equal to n 20, i.e.
R

-16 -

ul—n->,,v if u 'T)V A lulzn A vi2n.
As Irl =1, we have the following property (1) :

PR, = {u— v] 3Ite V(s), tb;R),s|u|%>|S,v} (1)
where V(s) is the subset of vertices of P(R,r), which are targets of arcs in P(R,r) whose sources
have of length <Isl, and including r if r is a vertex of P(R,1), , i.e.

V) = (rfo{v|3u, rou Fo>v A lul<lisl}) N Vpgy, -

We establish in (iii) that all the vertices of P(R,r); have a same suffix Suff(s) of length Isl- 1 and
that P, is isomorphic to P(R,V(s).Suff(s)}) where -

V(s).Suff(s)! = { u | u.Suff(s) e V(s) } is the right quotient of V(s) by Suff(s)

and PR,E) = U{ P(Re) | e e E} |

is the graph of the prefix transitions accessible from a set E of words.

ii) First, we show that V(s) is constructible. As I;R) is decidable, we can construct the finite set
W(s) = {r}uf{v]|3u, ri-;—>ul?>v A lul<ls)
of the vertices of P(R,r) accessible by arcs whose sources have of length < Isl.

To extract the subset V(s) of W(s), we establish that V(s) is the smallest part of W(s) closed by

;;R;ls,o |S|<._'R-4 and reaching s by ’;n)m'
Indeed, if u ;-'?),s,ols,e-'# v with ue V(s) and ve W(s) then v isa vertex of P(Rr); so ve

V(s). Hence V(s) is a subset of W(s) closed by l»—%—ns,o ISK;R" Furthermore s is accessible by

|;R)|s| from an element of V(s).

From (1) and for every proper subset P of V(s), there are two paths in P(R,r); with the same target,

such that the source of one of them is in P and the otherisin V(s) - P, i.e.

VP, @#PcV(s), Jue P,3ve V(s)-P, u l-';-ns,o,sg—'a—lv.

So, V(s) isincluded in the smallest part of W(s) containing an element t of V(s) and closed by

w)

-17 -

3150 e . Furthermore, if t& W(s) and t Foyys then te V(s).

Finally, V(s) is the smallest part of W(s) closed by |—7R—>,s| o |s|<—'a-4 whose an element is accessible by

|s|(—:R—I from s.
To construct V(s), it remains to decide on pl;)|s,o,s|<—'a—| restricted to W(s).

But for every word u=u'u" and v=v'v" of length 2Isl where lu"l = Isl-1 = Iv"l, we have

u ';R)ISIOISI(;R‘V iff u'=v'AdJwze, }%)W(LRI v'.

Then sy 0 e is decidable and V(s) is constructible.

iii) From (ii), the equivalence relation = on the set of the vertices of P(R,r) different from g,
defined by

s=t iff V(s).Suff(s)! = V(t).Suff(t)’!
is decidable.
Furthermore = is of finite index. Indeed from (ii), Suff(s) is a common suffix to all elements of V(s),
and every element of V(s) is of length at most Isl+ K- 1 where K is the maximal length of the right-
hand side of the rules of R.
Finally = is finer than the equivalence relation of the couples (s,t) such that Py is isomorphicto P, .
Indeed, from (1) and as Suff(s) is a common suffix to all elements of V(s), Suff(s) is a common

suffix to all vertices of P(R,r); , then

PR,r), = {u — v | 3te V(s).Suff(s)!, t Fo>pu p;.;, v }.Suff(s)

$O P, = P(R,V(s).Suff(s)!).Suff(s) .

iv) We can now construct a graph grammar G generating P(R,r) by vertices of growing length.

As = is an equivalence of finite index, a set A of representatives is constructible. It suffices to
construct A by vertices of growing length. In fact, if s =t then P(R,r), = (P(R,r)s.Suff(s)'l).Suff(t)

soif s l-—:T) s' and Is'12Isl then tl—:—)t' and s'=t' for t' = (s.Suff(s))).Suff(t) .

Take an injection j of A into the subset of the functions of F which are not in R, and such that j(s)

-18-

is of arity #V(s) forall se A. Thentoevery s in A, we associate a following elementary graph
L(s) = { Suffs) & 5, [1<i<p) where (sy,....5,} = V(s) and f=j(s).
Such a graph L(s) will be the left-hand side of a rule of G where the right-hand side has as terminal

arcs set, the graph

T(s) = ((u — v) e PR | lul=1sl)

={u-v)| u;—:av A lul=lsl A Jte V(s),t;-'?ns,u}

of the arcs of P(R,r); of sources of length Isl, and as non-terminal arcs set the graph N(s) to be
defined. For this and as R is reduced, to every vertex s of P(R,r) different from €, we take a

minimal set Ry of vertices of P(R,r); of length Is! + 1, such that

n

U(V®) | te R} = U[V(®) | te Vpgy A lti=Isl+1)

{v|3u,rl-'7)ul—;-)v/\lul<lsl+l < Ivl}

{ue VyguV(s) | ul>Isl).
This allows us to construct the deterministic graph grammar G:
G = {(L(s)T(s) UN(s)) | se A}
where N(s) = { (L(u).Suff(u)!).Suff(t) | te R, AueA Aust}).
By construction and for every s € A, G®(L(s)) is isomorphic to P, . In particular G“’(L(ro.)) is

isomorphic to P, where rpe A and rp=r; s0 G®(L(rp)) is isomorphic to P, =P(R,r). ¢
A similar result has been given by Baeten, Bergstra and Klop [Ba-Be-KI 87]. But, our construction is
slightly more complex, and is different of [Ca 90], because in our case, the progressive decomposition

of the transition graph proceeds by layers of term-graphs, not by layers of nodes.

Example 8. From Example 6, we obtain the following graph grammar :

.y}

-19-

®) O) @)
) [] L] Ll]
A l —> (RY 1 (g,l)l T B
)) >0 ¢— .
® ®n © @

) O 4 L ey
B l —> (f.l)l (X)) TB
° [} >0 <« L4

® @) & (D

which generates from A the canonical graph of the unfolded tree of Example 3 (or of the scheme of

Example 1).

Even taking into account a such optimization, the evaluation complexity of a recursive function

depends on the structure of its definition.

Example 9. From Example 8, we obtain a program of exponential complexity to evaluate the

recursive function A of Example 1. But this function can also be defined as follows :

A(n) = B(n,0,(T))

B(n,m,T) = if m=n then T(m) else B(n,m+l,j(m+1,T)) endif
i(h = T where TO) « O

jmT) = T where T(m) « m- T(T(m-1))

by using a table T. The complexity becomes linear.

This points out that our construction need be carried over also for a class of polyadic schemes.

-20-

Conclusion

Given a reduced monadic scheme without constant, we have presented a method to construct a

deterministic graph grammar generating the canonical graph of the scheme. This construction has just

been extended to a general subclass of polyadic schemes which includes the class of reduced monadic

schemes.

Aknowledgments

Let me thank P. Darondeau, R. Monfort and J.-C. Raoult for their help in the drafting of

this paper. I thank also a referee for his detailed remarks.

References
Ba-Be J.C.M. Baeten, J.A. Bergstra, JW. Klop Decidability of bisimulation equivalen-
Kl 87 ce for processes generating context-free languages, LNCS 259, p. 94-111, 1987.
Ba-Ee-Gl H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J.
Ke-Pl-S1 Plesmeijer, M.R. Sleep Term graph rewriting, LNCS 259, p. 141-158, 1987.
87
Ba 89 M. Bauderon On systems of equations defining infinite graphs, LNCS 344,
p. 54-73, 1989.
Bii 64 R. Biichi Regular canonical systems, Archiv fiir Mathematische Logik und
Grundlagenforschung 6, p. 91-111, 1964.
Ca 89 D. Caucal A fast algorithm to decide on simple grammars equivalence, LNCS
401, p. 66-85, 1989.
Ca 90 D. Caucal On the regular structure of prefix rewritings, LNCS 431, p. 87-102,
1990.
Ca-Mo D. Caucal, R. Monfort On the transition graphs of automata and grammars,
90 WG 90, to appear in LNCS, 1990.

)

Co 74

Co 83

Co 89 a

Co 89 b

Co-Vu

76

Ga-Lu
73

Gu 81

Ha-Kr
87

Ho-Pl1
88

~Ia 60

Ke 88

Mu-Sc
85

Ni 75

Pa 82

Ra 84

St 80

-21-

B. Courcelle Une forme canonique pour les grammaires simples déterministes,
Rairo 1, p. 19-36, 1974,

B. Courcelle Fundamental properties of infinite trees, TCS 25, p. 95-169, 1983.

B. Courcelle The monadic second-order logic of graphs, Il : infinite graphs of
bounded width, Math, Syst. Theory 21, p. 187-222, 1989,

B. Courcelle The definability of equational graphs in monadic second order
logic, LNCS 372, p. 207-221, 1989.

B. Courcelle, J. Vuillemin Completeness result for the equivalence of recursive
schemes, JCSS 12, p. 179-197, 1976.

S. Garland, D. Luckam Program schemes, recursion schemes, and formal
languages, JACM 7, p. 119-160, 1973.

I. Guessarian Algebraic semantics, LNCS 79, 1981.

A. Habel, H.J. Kreowski Some structural aspects of hypergraph languages
generated by hyperedge replacement, LNCS 247, p. 207-219, 1987.

B. Hoffmann, D. Plump Jungle evaluation for efficient term rewriting, LNCS
343, p. 191-203, 1988.

Ianov The logical schemes of algorithms, Problems of cybemetic, USSR,
p- 82-140, 1960.

R. Kennaway On ‘on graph rewritings’, TCS 52, p. 37-58, 1988.

D. Muller, P. Schupp The theory of ends, pushdown automata, and second
order logic, TCS 37, p. 51-75, 1985.

M. Nivat On the interpretation of polyadic recursive schemes, Symposia
Mathematica 15, Academic Press, 1975.

P. Padawitz Graph grammars and operational semantics, TCS 19, p. 117-141,
1982.

J.-C. Raoult On graph rewritings, TCS 32, p. 1-24, 1984,

J. Staples Computation on graph-like expressions, TCS 10, p. 171-185, 1980.

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA 1991

Pl 570: DESIGN DECISION lpR THE I'TM : A GENERAL PURPOSE FAUTL
TOLERANT MACHINL
Michel BANATRE, Gilles MULLER, Bruno ROCHAT, Patrick SANCIILZ
Janvier 1991, 30 pages

Pl 571 ANIMATION CONTROLEE PAR LA DYNAMIQUE
Coorges DUMONT, Parie-Paule GASCULL, Anne VERROIIST
Février 1991, 84 pages

Pl 572 MULTIGRID MOTION LESTIMATION ON PYRAMIDAL REPRESENTA-
TIONS FFOR IMAGL SEQULENCE CODING
Nadia BAAZIZ, Claude LABIT
['évrier 1991, 48 pages

Pl 573 A SURVEY OF TREE-TRANDUCTIONS
Jean-Claude RAQULT
Février 1991, 18 pages
Pl 574 THE OPTIMAL ADAPTIVE CONTROL USING RECURSIVE IDENTI-
FICATION
Anatolij B. JUDITSKY
Février 1991 - 26 pages
PI 575 MANUEL SIGNAL
Patricia BOURNAI, Bruno CHERON, Bernard HOUSSAIS, Paul LE
Paul LE GUERNIC
Février 1991, 84 pages

PI 576 AN INFORMATION BASED RELIABILITY PREDICTOR FOR SYSTEMS
IN OPERATIONAL PHASE
Kamel SISMAIL
Février 1991 - 22 pages

PI 577 MULTISCALE STATISTICAL SIGNAL PROCESSING AND RANDOM

FIELDS ON HOMOGENEOUS TREES
Albert BENVENISTE, Michéle BASSEVILLE, Ramine NIKOUKHAH,

Alan S. WILLSKY, Ken C. CHQOU
Mars 1991 - 18 pages

Pl 578 TOWARDS A DECLARATIVE METHOD FOR 3D SCENE SKETCH

MODEL ING
Stéphane DONIKIAN, Gérard HEGRON
Mars 1991 - 22 pages

PI 579 SYSTEMES MARKOVIENS DISCRETS STATIONNAIRES ET APPLICATIONS

Jean PELLAUMAIL
Mars 1991 - 284 pages

PI 580 DESCRIPTION ET SIMULATION D'UN SYSTEME DE CONTROLE DE
PASSAGE A NIVEAU EN SIGNAL
Bruno DUTERTRE, Paul LE GUERNIC
Mars 1991 - 66 pages

PI 581 THE SYNCHRONOUS APPROACH TO REACTIVE AND REAL-TIME SYSTEMS
Albert BENVENISTE
Avril 1991 - 36 pages

Pl 582 PROGRAMMING REAL TIME APPLICATIONS WITH SIGNAL
Paul LE GUERNIC, Thierry GAUTIER, Michel LE BORGNE, Claude LE MAIRE

Avril 1991 - 36 pages

PI 583 ELIMINATION OF REDUNDANCY FROM FUNCTIONS DEFINED BY SCHEMES
Didier CAUCAL
Avril 1991 - 22 pages

Imprimé en France
par |
. I’Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

