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Abstract : The purpose of this work is to couple different numerical models
for the calculation of high speed external flows.

The proposed coupling is achieved by the boundary conditions, which impose
viscous fluxes and friction forces on the body for the calculation of the global
external flow and which impose Dirichlet type boundary conditions on the in-
terface for the local model. *

Couplage numérique de modeles nonconservatifs ou cinétiques

avec les équations de Navier-Stokes compressibles

Résumé : Le principe de ce travail consiste a coupler des modéles différents
dans un calcul d’écoulements externes & grande vitesse. Le couplage proposé
est imposé par le biais des conditions aux limites, qui imposent les forces de
frottement et les flux de chaleur a la paroil pour le calcul Navier-Stokes et des
conditions de Dirichlet pour le calcul du modele local.
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1. Introduction

The purpose of this work is to couple different numerical models for the cal-
culation of high speed external flows.

More precisely, we want to be able to introduce a specific treatment of the flow
next to the body, this

1) for numerical purposes, in order to use locally a different solver (centered
scheme,...) ;

11) for approximation purposes, in order to use locally a much finer grid ;

i11) for physical motivations, in order to use locally a different equation such
as non equilibrium chemical models or Boltzmann kinetic models.

The proposed coupling is achieved by the boundary conditions, which will
impose viscous fluxes and friction forces on the body for the calculation of the
global external flow and which will impose Dirichlet type boundary conditions
on the local model.

2. Description of the coupling strategy
2.1. Navier-Stokes equations

Let us consider the compressible Navier-Stokes equations which we formally
write either as

_36_1/:7 + div[F(W)] =0 on £ (conservative form)

with W = (p, pv, pE) and U = (p,v,0) the conservative and non conservative
variables, F' = F¢ + Fp the total flux (convective and viscous part), T and D
the convective and viscous terms in the nonconservative writing of the Navier-
Stokes equations. The problem consists in computing a steady solution of these
equations, with boundary conditions

pv, pE given on I' o (exterior limit of the domain),

p given on I'x N {z,v(z) - n < 0} (inflow),
v = 0 on the body T,
60 = 6, on the body T',.



The global numerical treatment of these equations faces the following difficul-
ties:

- in a conservative calculation, the numerical viscosity of the discretization
scheme interferes with the physical viscosity and for a mesh of reasonable size
leads to an overprediction of the boundary layer. Moreover, no slip boundary
conditions on the body are difficult to handle for many TVD schemes ;

- in a nonconservative calculation, the correct calculation of a shock requires
locally a very fine grid if we want to satisfy the Rankine Hugoniot conditions.

In this framework, our strategy will couple a global conservative scheme, de-
fined on the whole domain, and based on a finite volume space discretization
[1], and a local approzimation, defined in the neighborhood of the body, which
is presently based on a mixed Finite Element approximation of the nonconser-
vative Navier-Stokes equations [2].

2.2. The Boltzmann equation

Denoting by f(z,v,t) the distribution function of gas particles at time ¢, po-
sition z and with velocity v, the Boltzmann equation takes the form

3] 0
af(xavat) +v af(zav’t) = Q(faf)(:v’vat)

with @ a collision operator, given by

QU )z v, 1) = / /  AF = F)a(o = o, w)dwdon,

fl :f(.'L','Ul,t),
f=f(z,v,t),v = v+ ((v1 —v) ww,
f], = f(il‘,'l);,t),’l); =V — ((vl - ’U) -w)w.

Above ¢g(v — vy, w) is the collision kernel ; for hard spheres, this kernel is pro-
portional to d*|(v — v;) - w|.



For rarefied gases, this equation must be used in place of the Navier-Stokes
equations, especially in the immediate neighborhood of the body (Knudsen
layer).

On the other hand, when density increases, collisions are very frequent, and
the numerical treatment of the Boltzmann equations requires very fine grids,
very long CPU time and is rapidly unfeasible.

Our strategy here will couple Navier-Stokes equations, used in their domain
of validity far from the body and Boltzmann equations, to be used locally in a
small domain next to the body. This strategy will then enable us to use more
realistic kinetic boundary conditions on the body, avoiding the so-called slip
boundary conditions generally used in such situations.

2.3. The general coupling strategy

For coupling global Navier-Stokes equations either with a local Navier-Stokes
model, or with a local Boltzmann kinetic model, we introduce two domains, a
global one 2, a local one Qy included in 2, and an interface I'; (Fig. 1). The
global solution W on § and the local solution Uj,c on 2y are matched by the
following boundary conditions, inspired of Schwartz overlapping techniques :

(W = given imposed value on I',

n-o(W)-1=n-0(Uy) 7 on the body I',,

(equality of friction forces)

gqW) n+n-o(W) -v=q(U) n on T,

(equality of total heat fluxes)

v.n=0onTl,,

Uioec =00n T, (or an equivalent kinetic condition for the Boltzmann case),
 Utoc = W on the interfacel’;.

Fig. 1 : The global geometry
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The calculation of U, and W satisfying the above boundary conditions is then
obtained by a standard time marching technique, which leads to the following
algorithm :

Initialization

1. Guess an initial distribution of the conservative variable W in the global
domain 2 ;

2. Advance in time this distribution by using the global Navier-Stokes solver
on N, time steps, with Dirichlet type boundary conditions on the body T, ;

3. Deduce from this result an initial distribution of the local variable Uj,. on
the interface I'; and in the local domain Qv ;

4. Advance in time this distribution by using the local solver on N; time steps,
with Dirichlet boundary conditions on I'; and T,,.

Iterations

5. From Uj,., compute the friction forces n-o(Uioc)- 7 and heat flux ¢(Ujpe) - n
on the body T, ;

6. Advance the global solution in time (V) steps) by using the global Navier-
Stokes solver, with the above viscous forces as boundary conditions on I, (§2.4);

7. From W, compute the value of Uj,. on the interface T’ ;

8. Using this new value as Dirichlet boundary conditions on T';, advance the
local solution in time (N; steps) and go back to step 5 until convergence is
reached.

A parallel version of this algorithm is also quite possible although it is generally
wiser to use parallel solvers within steps 6 and 8.

2.4. The global Navier-Stokes solver

The global domain 2 is discretized using node centered cells defined on an
unstructured grid. Then, at each time step n and for each cell ¢, we solve

Wl _
S Fo(W™) n,
/Ci At Z [SC;nBCj C( )

JEV()

+/ FD(W"+1)'ni+/ F(Wn+l)'ni= _/ F, -n;.
ac;-T 8C,;Nlo acC;nl',

In our numerical implementation, the fluxes F¢ and Fp are computed at time
step n+1 and linearized, with Fc computed by an Osher approximate Riemann
solver [1]. The resulting linear system is solved by block relaxation.

On the body T',, because of our special choice of boundary conditions, the flux
1s given by

0
n;-o(W"t).n,

Fo Ny = / ’
lac.nr, ac:nr, ni-0(Ulec) - 7i
Q(Uloc) Ny



&

where the aspect of a boundary cell C; is described in Fig.

Fig. 2 : A boundary cell

In other words, friction forces and heat flux are given explicitly by the local
solver and the mass flux is imposed to zero. Then, in order to have a well-
posed problem (at least in the incompressible case [4]), the normal stress (the
multiplier of the zero mass flux constraint) cannot be imposed and must be
obtained from the solution Wn*1!,

Remark : Imposing friction forces to the global solution instead of no slip
boundary conditions allows to have an accurate solution away from the bound-
ary layer even with a coarse mesh (§2.6 [5]).

3. Coupling conservative and nonconservative schemes
3.1. The local solver

In this case, the local solver takes the form

. let U° = (p,v,8) be computed at the previous call of the local solver ;

. let Ui = (p,v,6) on I'; be computed by interpolation from the values of the
global solution W on the interface ;

. for n = 0 to Ny, solve the local nonconservative Navier-Stokes equation

At
Uttt =U; on Ty,
(v"t1, 6"y =(0,8,) on T,.

Un+1—‘Un 7 1 7 .
/9 --—--—-U,-+/Q (T + D)(U™)- VU, = 0,V;
v \4

Here the nonconservative Navier-Stokes equations are discretized by mixed Fi-
nite Elements (P; for p and 6, P, on the subdivided P, grid for the velocity).
The test functions U ; correspond then to the shape functions of the correspond-
ing Finite Element spaces. The resulting nonlinear system is solved by a few
steps of a nonlinear GMRES solver with diagonal preconditioning.

In output, friction forces and heat flux are given by
o(Utoc) = p(6™H)((Vo™+! + Vit /2 — %divv"'“[d),

6

to



w

60n+]

7 = .
q(Uloe) = A on

Remark

1) The Dirichlet condition on I'; can be replaced by a Neumann type boundary
condition of the type

(T + D)U™') =g(W) on T,

Such a condition might lead to an easier local problem, since it does not impose
a fixed value of the density on an outflow boundary.

i1) The nonconservative approach simplifies the calculation of the viscous terms
and is well suited to flows at low Mach numbers. On the other hand, it cannot
treat hypersonic situations. There, the local solvers must also be conservative.

3.2. The numerical test

The test problem considers a two dimensional flow around an ellipse, with 0
angle of attack, M., = 0.85, Reynolds number = 100, and a wall temperature
Tw = 2.82T .

Four different numerical solutions have been computed.

1) The first one uses the global solver with no slip boundary conditions on a
"coarse” mesh having 4033 nodes and 7942 elements.

11) The second one uses the same solver with the same boundary conditions
but on a finer mesh having 16008 nodes and 31768 elements. This will be our
reference solution.

1i) The third one uses the local nonconservative solver to solve the problem
on the whole domain Q. Its velocity mesh is identical to the mesh used in (ii).

iv) The last one uses the coupling strategy of §2 ; the global solver uses the
coarse mesh of case (i), the local solver uses the restriction to Qy of the mesh
of case (iii) ("fine” grid for velocity, ”coarse” grid for density and temperature).

The reference numerical results are shown on Figure 3 (Mach contours), 4 (skin

friction coefficient Cy on the body), 5 (heat flux coefficient S, = ??F?%)’ 6
(local mesh) and 7 (velocity field in the wake). We observe small vortices in the

wake, which can only be detected by a fine mesh, and large viscous effects.

Compared to this reference calculation, the coarse mesh calculation of case (i)
gives the same Mach contours, but the maximum Cj is now 0.35 (instead of
0.40) and the maximum Sy, is 0.084 (instead of 0.062).

As for the global nonconservative calculation (iii) and the coupled calculation
(iv), they are both perfect for the Mach contours and for Cy (less than 3%
error), but overshoot the maximum value for S, (0.085).

This indicates that the temperature grid (which is the coarse grid of (i)) is too
coarse. If we now decrease the size of the computational domain to less than
twenty times the length of the body, the global nonconservative calculation is
very rapidly polluted, which is not the case for the coupled problem.

A last output of the coupled approach is the value of the tangential velocity
computed on the body by the global solver (Fig. 8). This value is very small

7



which means that the global mesh is reliable. When the mesh gets too coarse,
the Cy are correctly predicted by a coupled approach and not by a global one
with Dirichlet boundary conditions. In other words, the coupled approach gives
both an error estimate and a protection against coarse meshes.

In summary, for sufficiently fine meshes, all three numerical approaches (global
conservative, global nonconservative and coupled) give good results. Compared
to the global nonconservative approach, the coupled approach is more robust
and can use much smaller computational domains. Compared to the global
conservative approach, the coupled method requires fine grids in much smaller
regions and allows a large flexibility in the definition of boundary conditions.
This flexibility will even be larger in the Boltzmann case of §4.
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3.3. Convergence properties

As described in [5], numerical tests run for a linear advection diffusion problem
show that the coupling algorithm is linearly convergent when At is below a limit
value which increases with the Reynolds number. A one dimensional analysis
shows that this condition is necessary, an asymptotic analysis done for At and
h small ({4])) shows that such a condition is sufficient.

There were no convergence problems in the numerical tests of §3.2. For cases
(i) and (ii), using local time steps, we reach a residual value of 107!? after 1650
iterations in case (i) and 6270 iterations in case (ii), the residual being given by

pg = B = PN/ A o2
l(e? = p°)/Atolfo 2

For the global nonconservative calculation of (iii), we reach a residual value of
0.4 1077 after 900 iterations with

5}
re = 15 loa/mes(9).

For the coupled approach, run with N; = 450 and N, = 50 in the initialization
process, and with N; = N; = 1 in the iterations, we reach a residual value of
1073 after 50 iterations.

4. The Boltzmann/Navier-Stokes coupling
4.1. The local solver

In this case, the local solver is a Monte Carlo method developed at the Uni-
versity of Kaiserslautern, and corresponds to the following algorithm :
- Define an initial particle distribution (§4.2) ;
- Loop on time. For each time step :
generate particles at the interface I'; (§4.3),
advance the particles by free transport : x:"“ =zl + vl At,
erase the particles which have left the computational domain through T';,
treat the particles which have collided with the body (§4.4),
regroup particles together in small cells,
6. in each cell, make the different particles collide by coupling them randomly

and randomly picking the corresponding collision parameters ({3]).

A

In output, the average values p,u,T and the wall fluxes are obtained by aver-
aging on all cell particles j and on several (N =~ 100) consecutive time steps:

1
p=N~VolCellzn:zj:mj

u—P‘N-VolCell;m]v]’
30 1 1, 1,
PR = »-N -Vol Cell ;5’”’”1 5V

15



4.2. Constructing a particle distribution

In order to minimize storage requirements, the particle distribution 1s not
stored between two calls of the Boltzmann solver. We just store the average
values p, u and T for each cell . Then, at each Boltzmann step, we construct the
initial particle distribution on cell ¢ by randomly distributing pi%'—fl/- particles
on the cell 7, distributing velocities with the Maxwell probability law

= ¢'—623 e — Uy 2 t ).
M(v) = CrpyTese(~(o ~ w)'/2RT)

4.3. Generating particles on the interface

In our coupling strategy, the values of the local solution on the interface T';
must be obtained from the values of the global Navier-Stokes solution W on
this interface. For Boltzmann, this is simply achieved by defining a layer of
cells around the local domain 2y (Fig. 9). Then we define the average values
p,u and T in these cells by interpolating the values of the global solution W at
the cell center. Finally, from p,u and T, we construct a particle distribution on
these cells as done in §4.2, and proceed with the other steps of the local solver.

This particle construction is done at each time step.

AN EERE
“'“ n
: E\CELLS
- | <
L nvr——-
EERIEERERREE

L.

Fig. 9 : Interface between Boltzmann and Navier-Stokes

4.4. Wall boundary conditions

In kinetic theory, the interaction of gas molecules with the body surface is
modelled by a boundary condition on the distribution f(z,v,t). Between all
possible models, the most popular is the so-called accomodation model in which
every particle which collides with the wall is reemitted with a random velocity
whose distribution obeys a Maxwell law at wall temperature Ty . At the numer-
ical level, for each particle colliding with the wall, we pick four random numbers
a; in the intervall (0, 1) and define its output velocity in an accomodation model

by
vy = v/ —Twlogay cos2llay,
v, =/ —Twlog az(cos2lla; e, + sin2lla;e,).

Here v,, is the velocity normal to the wall, e, and e, are two orthonormal vectors
tangent to the wall and v, is the particle tangential velocity.

16



4.5. Computing fluxes at the wall

These fluxes are computed from their kinetic definition. Under the notation
n = unit normal vector, exterior to the flow field,

I' = portion of body surface where fluxes are computed,

dS = area of T,

dt = considered time interval,

J = set of particles colliding with I" during time interval dt,

Fig. 10

the quantity o - ndSdt is equal to the sum of all impulses received by particles
which collide with I" during the time interval dt, that is

o -ndSdt = Zm,-(vj - v ).
1eJ
Similarly, the total flux ¢-ndSdt is the energy given by the particles to the wall
during collision, that is

g ndSdt = = Y gma((vf P = oy ).
ieJ
4.6. Numerical test

On the same ellipse as before, we compute a rarefied flow corresponding to
M, = 5 and Reynolds number = 300.
More precisely, we have

T = 194°,

Tw = 1000°,

Mean Free path = 0.1977m,
Ellipse length = 7m.

This case 1s cofnputed by four different physical models. For each case, we
present the Mach contours (Fig. 11) and the friction coefficient (Fig. 12).

17



Case 1 : Navier-Stokes with no slip boundary conditions (v = 1.414)

The mesh contains 2247 nodes and 4374 elements. The numerical solution is
rather easy to compute, but in the rear part of the body the density is low and
the friction coefficient high, which is not very physical.

Case 2 : Navier-Stokes with slip boundary conditions (y = 1.414)
The boundary conditions on the body are here ([6])

u-n=0,
A% A%
n-—ug——u-rz—ApuHr.

These boundary conditions which are popular in rarefied flows computations,
are very difficult to handle ; even with a mesh of 5544 nodes and 10888 elements,
we could not avoid a singularity of the friction coefficient in the rear part of
the body (Fig. 12.2, with po, = 107%kg/m3 and 4 = 7.92). Actually, the
above boundary conditions which are derived for a rarefied boundary layer are
completely unjustified in this flow situation.

Case 3 : Boltzmann with accomodation(y = 1.2)

The mesh here contains 5985 cells with 25 particles per cell. The collision
kernel corresponds to the hard spheres model.

Case 4 : Coupled model (local Boltzmann model with v = 1.2, global
Navier-Stokes model with y =1.414)

This first coupled model is inconsistent from the physical point of view (+
is different in Navier-Stokes and in Boltzmann) but it was run for qualitative
purposes. There were 4 coupling iterations with N; = N, = 100. At this
stage, the interface values have reached their asymptotic limit, and the coupling
algorithm can be safely stopped. In the initialization process, the global solver
was used for 300 iterations (CFL = 5) with no slip boundary conditions.

The corresponding results are compatible with those of a Boltzmann simula-
tion. A rarefied region appears in the wake (Fig. 11.4, 11.5) and the friction
coefficients are smoothly decreasing in the rear part of the body (Fig. 12.4).
The same behavior can be observed on the Stanton number. As for the tan-
gential velocity on the body as predicted by the coupled global Navier-Stokes
solver, it is non zero but smaller than the one predicted by the slip model of
case 2.

4.7. Conclusion

The preceding test is based on a coupling strategy which on one hand bypasses
the problem of getting adequate boundary conditions for rarefied flows Navier-
Stokes solutions and on the other hand reduces the computational domain of
the Boltzmann simulation. This test :

1) proves the feasibility of the coupling approach,

i1) leads to a reasonable solution,

18



iii) illustrates the weakness of the Navier-Stokes approach in such situations.

This test must be completed by a more systematic analysis of rarefied flows
and by using more sophisticated kinetic models for collisions and boundary
conditions.
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