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Proofs in Parameterized Specifications
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CRIN-CNRS & INRIA-Lorraine
BP 239
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France
e-mail: hkirchner@loria.crin.fr

Abstract

Theorem proving in parameterized specifications has strong connections with inductive
theorem proving. An equational theorem holds in the generic theory of the parameterized
specification if and only if it holds in the so-called generic algebra. Provided persistency,
for any specification morphism, the translated equality holds in the initial algebra of the
instantiated specification. Using a notion of generic ground reducibility, a persistency proof
can be reduced to a proof of a protected enrichment. Effective tools for these proofs are
studied in this paper.
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Preuves dans les spécifications paramétrées

Hélene Kirchner
CRIN-CNRS & INRIA-Lorraine
BP 239
54506 Vandceuvre-les-Nancy Cedex
France
e-mail: hkirchner@loria.crin.fr

Abstract

La preuve de théorémes dans les spécifications paramétrées a de fortes relations avec les
preuves par récurrence dans une algebre initiale. Un théoréeme égalitaire est valide dans la
théorie générique de la spécification paramétrée si et seulement si 1l est valide dans une algébre
dite “générique”. En supposant la propriété de persistence, un tel théoréme est valide dans
P’algébre initiale de toute spécification instanciée, modulo le morphisme de spécification. En
utilisant une notion de réductibilité close générique, une preuve de persistence se raméne a
une preuve de protection d’enrichissement. Des outils effectifs sont développés pour ce type
de preuves.



1 Introduction

Parameterization is a generic way for building families of specifications and for reusing specifi-
cations. An important concern is to also make use of parameterization at the proof level and to
develop a generic proof method. As argued in {7], this approach has several advantages: First,
it allows performing proofs in a structured way that reflects the program structure. So generic
proofs are performed for parameterized equational specifications. Second, a generic proof for a
parameterized specification must be given only once and can be reused for each instantiation of
the parameter.

Rather than promoting completely new ideas on the subject of parameterization, this paper
is aimed to clarify some points, to gather different ideas and combine several results presented
in (2,7, 8,9, 15, 17, 24]. More precisely, the goals here are the following ones:

e to emphasize the connection between (protected) enrichment and (persistent) parameter-
ized specifications.

e to show that a persistency proof can be reduced to a proof of a protected enrichment, using
an adequate notion of generic ground reducibility.

e to precise the use of persistency for theorem proving: an equational theorem holds in the
generic theory of the parameterized specification if and only if it is an inductive theorem in
a particular initial algebra, called the generic algebra. Provided persistency, such a theorem
is generic: for any specification morphism m, the translated equality using m holds in the
initial algebra of the instantiated specification.

e to provide effective tools to prove that a parameterized specification is persistent, to prove
generic theorems and to prove generic ground reducibility.

Sections 2 and 3 recall the necessary definitions and results about enrichment and parameter-
ization. Section 4 defines the central notion of generic ground reducibility. Section 5 is devoted to
provide tools for proving persistency, while Section 6 is concerned with generic theorem proving.

2 Enrichments

All notations are compatible with [14]. Given a many-sorted signature ¥, the set of terms built
on ¥ and a denumerable set of sorted variables X is denoted by 7(X£ U X'). V(t) denotes the set
of variables occurring in the term t.

Definition 1 A specification, denoted SP = (X, F) is given by a signature ¥, composed of a
set of sort symbols S and a set of function symbols F with rank declarations, and a set E of
universally quantified equalities (VX,t = t') where V(t) U V(') C X. (The guantification may be
omitted when X = V(1) U V(t')).

A specification SP = (I, F) actually describes a class of algebras, namely the class of -
algebras satisfying the equalities E, denoted ALG(SP). ALG(SP) with SP-homomorphisms is
a category also denoted by ALG(S P).

Componentwise inclusion of specifications corresponds to enrichments.

Definition 2 An enrichment of « specification SP = (X, E) is a specification SP' = (¥, E’)
such that LC X' and EC FE'.
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S P is often referred to as the primitive or basic specification, while S P’ is called the enriched
specification.
A forgetful functor is associated to an enrichment.

Definition 3 Assume that SP C SP'. Then the forgetful functor V from ALG(SP’) to ALG(SP)
s defined as follows:

o VA" € ALG(SP'), A = V(A’) is the SP-algebra such that Vs € L,A, = A} and Vf €
E,fa=fa-

o Yh' SP'-morphism, h = V(h') is the S P-homomorphism such that hy = k), for any s € L.

Let ——g denote the replacement of equals by equals on 7(X U X), which is correct and
complete for deduction in ALG(SP):

t —spt iff VAe ALG(SP), A= (VX,t=1).

Enrichments are classified according to their effect on the initial algebra of the enriched
specification. Mainly, enrichments can produce junks, that is new terms that are not equivalent
to an already existing term, or confusions, that is new equivalences between terms originally
distincts.

Definition 4 Let SP = (X,E) C SP' = (¥, E') be an enrichment.

The enrichment is consistent if for any sort s € X, any ground terms t and t' of sort s in
T(E),t gt ift gt

The enrichment is sufficiently complete if for any sort s € &, any ground term t' of sort s in
T ('), there exists a term t of sort s in T(Z) such that t ——p: t'.

An enrichment which is both consistent and sufficiently complete is said protected.

In the case where the theories are presented by ground convergent rewrite systems (i.e.
confluent and terminating on ground terms), a proof by consistency method has been developped
by [2] to prove theorems in initial algebras. The method is based on the notion of ground
reducibility. Given a ground convergent rewrite system R, a term t is ground reducible with R if
all its ground instances are R-reducible. An equality (VX,¢ = t') is ground reducible with R if for
any ground substitution ¢ such that a(t) # o(t'), either o(t) or o(t’) is R-reducible. The property
of ground reducibility is decidable for finite rewrite systems [17, 25]. Algorithms for deciding
ground reducibility in the case of left-linear rules have been given, for instance in [15, 17, 4, 20, 22].
The general case is considered in [6, 5, 18]. Ground reducibility for a class rewrite system R/E
is undecidable when F is a set of associative and commutative axioms [17] but is decidable when
R is left-linear [16]. The sufficient completeness is in general undecidable [17] but in some cases,
it is equivalent to ground reducibility.

The goal of this paper is to extend these proofs techniques to parameterized specifications.

3 Parameterization

3.1 Parameterized specifications

Definition 5 A parameterized specification PSP is a pair (SP,SP’) of specifications where
SP = (L, F) is called the formal parameter, SP' = SP + (X" E") is called the target specifica-
tion, and (X", E") is called the body of the parameterized specification.

Terms built on the signature ¥ and « denumerable set Xgsp of parameter variables, i.e.
variables of sort s € &, are called parameter terms.



Example 1 Let us aziomatize the list structure on any kind of elements. Classically “nil” is
the empty list and “cons” the constructor for lists. Concatenation of lists is denoted by the
function “append”. In order to define a product operation on lists that computes the product of
its elements, it is needed to constrain the elements to be in ¢ monoid with an identity element.
Then the formal parameter SP is the following specification MONOID, in which equalities have
been oriented into rewrite rules:

sort FElem
id : — Flem

7 : FElem,Elem +—  FElem
Ve : Elem, n(e,id) — e
Ve: Elem, (id,e) — e
Vey,ez,e3: Elem, w(w(e1,e2),e3) —  n(e1,m(ez,€3)).

Let us consider the following parameterized specification with the formal parameter MONOID
and the body:

sort List

cons : Elem, List +—  List

nil: +—  List
append : List, List +—  List
prod: List +—  Elem
Vi: List, append(nil,l) — 1
Ve : Elem,!,l' : List, append(cons(e,l),l') —  cons(e,append(l,l))
Vi: List, prod(nil) — id
Ve : Elem,l: List, prod(cons(e,l)) — w(e,prod(l)).

3.2 Semantics

Semantics for parameterized specifications have been widely studied, for instance in the many-
sorted case in [8, 9, 24] and in the order-sorted case in [26, 12, 11]. The case of Horn clauses
parameterized specifications is considered for example in [10, 21].

To give a semantics to a parameterized specification consists in associating to SP the class
ALG(S P) with its § P-homomorphisms, to S P’ the class ALG(S P') with its S P’-homomorphisms
and to PSP a functor from the category ALG(SP) to ALG(SP').

Let V be the forgetful functor associated to the enrichment SP C SP’. From a given 5 P-
algebra A € ALG(SP), a SP'-algebra denoted 75p/(.A) can be explicitely built, in the following
way: let

Const(A) = {a:—s|a€ A;,s €L}
Eqns(A) = {f(a1,...,an) = fa(ay,...,as) | Va; € A,Vf € X}.
e SP'(A) = (S'U Const(A), E'U Eqns(A)).

Tsp:(A) = Va(Tspia)), Wwhere V4 is the forgetful functor from the category of the SP'(A)-
algebras to the category of the S P’-algebras.

Tspi(A) is the free construction on A w.r.t. V. The concepts of free construction and free
functor are precisely defined for instance in [8].



Theorem 1 [§] Let V be the forgetful functor from ALG(SP’') to ALG(SP). For any A €
ALG(SP), let F(A) be defined as Tsp:(A). Then F extends to a free functor from ALG(SP) to
ALG(SP') called the free functor w.r.t. V.

Definition 6 F, the free functor w.r.t. V, is the semantics of the parameterized specification
PSP.

Note that a first kind of genericity is obtained with the free functor: from a class ALG(SP)
of SP-algebras, the free functor F generates the class of algebras

F(ALG(SP)) = {F(A)| A€ ALG(SP) }.

A second kind of genericity obtained from a parameterized specification, is to generate specifi-
cations and, for this purpose, the notion of parameter passing is necessary.

3.3 Parameter passing

Parameter passing is intended to formalize the instantiation of the formal parameter specification
S P into an actual specification SPy.

Definition 7 A signature morphism m from X to X, is a function m : £ — X, such that:
Vf:sty.Sn— s € XZ,m(f): m(s1),...,m(sn) =~ m(s) € ;.

Given a signature morphism m from ¥ to £; and a X-axiom e = (t = t'), the translated
aziom denoted m*(e) = (m*(t) = m*(t')) is inductively defined by

m*(z : 8) = z : m(s) and m*(f(1,...,t0)) = m(f)(m*(t1), ..., m*(tn)).

Definition 8 A specification morphism m from SP = (3, E) to SPy = (£4, E1) is a signature
morphism from L to Ly such that for any aziom e € E, the translated aziom m*(e) is valid in
the initial S P;-algebra.

A forgetful functor is associated to a specification morphism m.

Definition 9 Assume that m is a specification morphism from SP = (X, E) to SP, = (1, Eh).
Then the forgetful functor V,, from ALG(SP,) to ALG(SP) is defined as follows:

o VA’ € ALG(SP), A = Vp,(A’) is the SP-algebra such that Vs € L,A; = Als) and
Vi€ X, fa=m(f)a.

o Vh' SPy-morphism, h = V(h') is the SP-homomorphism such that hy = h:n(s) for any
sE L.

Given a specification morphism from the formal parameter specification to the actual param-
eter specification, an instantiated specification can be built.

Definition 10 Given a parameterized specification PSP = (SP,SP’) and a specification mor-
phism m from SP to SP), a parameter passing is given by:

o The specification morphism m' defined by
Vs’ € ¥',m/(s’) = if ' € S then m(s') else s
Vi isl,nsh— s el m(f)= if ffeX
then m(f’) : m(s}),...,m(s}) — m(s’)
else f' : m/(s)),...,m/(sl,) — m/(s).



e The instantiated specification SPj = SP, + (m/(¥' - X),m™(E' - F)).
e The specification morphisms p: SP — SP’ and p; : SP; — SP| which are inclusions.

Notation: Vp, Vv, V, and V,, denote the forgetful functors (8] respectively associated to
specification morphisms m, m’ and inclusions p, p;.

Paramater passing is usually represented by a parameter passing diagram.

sp -2 sp ALG(SP) L. ALG(SP)
Red

m | | m Vi 1 1 Vi

sp 2 SP ALG(SP) & ALG(SP)

The unicity of m’ and p; comes from the fact that a parameter passing diagram is a pushout
in the category of specifications with their morphisms. This property also implies that the
composition of two such diagrams is again a parameter passing diagram and this composition is
associative.

Example 2 Let us consider the parameterized specification of Example 1 and the actual param-
eter NAT:

sort Nat
0: — Nat
s:Nat - Nat
+:Nat,Nat — Nat
Vn:Nat, n+0 — n
Va,m: Nat, n+s(m) — s(n+m).

Let m be the specification morphism defined by:
m(Elem) = Nat,m(id) = 0, m(r) = +.
Instantiation of MONOID by NAT needs to prove that the equalities

Vn:Nat,n+0 = n
VYn:Nat, 0+ n n
Vni,na,n3: Nat, ((ny +n2) + n3 = ny + (n2 + n3)).

hold in the initial algebra of NAT.
The instantiated specification is:

sort Nat

sort List
0: — Nat
s:Nat — Nat
+:Nat,Nat +— Nat
cons: Nat,List + List
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of

nil: +—  List

append : List,List +  List

prod : List +— Nat
Von:Nat,n+0 — =n

Va,m: Nat, n+s(m) — s(n+m)
Vi: List, append(nil,l) — I
Vn : Nat,l,l': List, append(cons(n,l),l') —  cons(n,append(l,l'))
Vi: List, prod(nil) — 0
Vn: Nat,l: List, prod(cons(n,l)) — n+ prod(l)).

The question is now: is the syntactic construction of SP| compatible with the semantics
respectively chosen for PSP, SP; and SP{? Here the semantics given to specifications S P, and
S Py are the initial algebras of these specifications denoted respectively by Zsp, and 7:3-};1/.1 The
answer is yes, provided correctness.

Definition 11 The parameter passing is correct for a parameterized specification PSP and a
spectfication morphism m from SP to SP, if

1. V,,,(TSP{) = Tsp,, property called protection of actual parameter,
2. Vm/(7:gp]/) = F o Vm(Tsp,) property called compatibility of parameter passing.

The first property expresses that SPj is a protected enrichment of SP;. The second property
expresses the fact that the semantics F of PSP agrees with the semantics of the instantiated
specification SPy.

This definition of correctness is relative to one specification morphism. In order to get a
notion of correctness that holds for any specification morphism, a stronger property on functors
is needed.

3.4 Persistency

The correctness of parameter passing for every specification morphism requires that the functor
F be persistent. Intuitively, persistency means that for any SP-algebra A € ALG(SP), A is
protected in F(A).

Definition 12 [8] Given a parameterized specification PSP and the forgetful functor V, :
ALG(SP')y — ALG(SP), the free functor ¥ : ALG(SP) — ALG(SP') is said persistent if
Vy,oF = I, where T is the identity functor on ALG(SP), up to a natural isomorphism.

The parameterized specification PSP is also said persistent.

Proposition 1 [8] Given a parameterized specification PSP with a persistent functor F :
ALG(SP)— ALG(SP’) and a specification morphism m from SP to SPy, there ezists a persis-
tent functor Fy : ALG(SPy) — ALG(SP]), called extension of F according to m. Moreover F,
s uniquely defined by

Vm: oF; = }'ovm and Vp] o JFq =Il

where Iy is the identity functor on ALG(S Py).

11t is implicitely assumed that SP; and SP; have no empty sorts



If ¥ is persistent, then for any specification morphism m, the functor Fy exists and is persis-
tent. This is exactly what is needed for correctness of parameter passing, for each specification
morphism.

Theorem 2 [8] Given a paramelerized specification PSP, the parameter passing is correct for
PSP and any specification morphism m iff PSP is persistent in ALG(SP).

Proof: With the same notations as before:

o If PSP is persistent, F is persistent and Fj is uniquely defined by V,, o 71 = I; and
VmioFy = FoVpy, according to Proposition 1. The two properties defining correctness
are just obtained by applying them to the initial object of ALG(SP;), namely Tsp,.

o Conversely, assume that parameter passing is correct and let us prove that VA €
ALG(SP),V,0F(A) = A. Let us choose the special morphism m 4 : SP — SP(A) =
SP + (0,Const(A), Eqns(A)). It can be proved that V,, ,(7sp(4)) = A and thus
Voo F(A) = Vy 0 F o Vi [ (Tspy) = Vp o Vit (Tspra)) = Vimy © Vou(Tspriay) =
Vi a(Tsp(a)) = A.

a

Example 3 A ezample of a non-persistent parameterized specification [8] is given by PSP =
(SP,SP') where SP = {{s},0,0} and SP' = {{s}, {e},0}.

Let NAT be the usual specification of natural numbers, NAT = {{Nat}, {0 :—~ Nat,succ :
Nat — Nat},0}, consider now the actual parameter SP, = NAT +{suce(succ(z)) = z}, and
the specification morphism m defined by m(s) = Nat.

Then the respective domains of sort Nat of Tsp,, F o Viu(7Zsp,), and Tsp{ are respectively
{0, suce(0)}, {0, suce(0),e} and {0, succ(0),e, succ(e)}. Neither the compatibility of parameter
passing nor the protection of actual parameter are satisfied.

3.5 Generic algebra

We now consider different questions: how to prove correctness of parameter passing, for any
specification morphism m? How to prove a generic assertion, that is, how to prove that for any
specification morphism m, the translated assertion (using m) is valid in the initial algebra of the
instantiated specification? Both questions have answers that need the introduction of a generic
algebra.

Let SP = (X, F) be a specification and & a denumerable set of variables whose sorts are in
¥. Let Tsp(X) be the initial term algebra associated to the specification (X U &', E). Tsp(X)
is a YL-algebra whose carrier is the quotient 7(X U X’)/E of the set of terms 7 (X U &’) by the
congruence ——g. Note that if X' is any set of variables with sorts in ¥, 7sp(X) is the free SP-
algebra generated by X'. Tsp(9) is the initial SP-algebra. The PSP-generic algebra is obtained
for a third choice of X:2

Definition 13 Let PSP = (SP,SP’) be a parameterized specification and Xsp a set of variables
of parameter sorts. The PSP-generic algebra is the ¥'-algebra Tsp:(Xsp), whose carrier T(X'U
Xsp)/E' is the quotient by «—— g+ of the set T(L' U Xsp) of PSP-generic terms.

2The word generic is currently used for free algebras [29] but less often in the context of parameterization [7].

-
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3.6 Generic theory of a parameterized specification

The set of theorems valid in the class of algebras F(ALG(SP)) associated to a parameterized
specification, defines the generic theory of the parameterized specification.

Definition 14 The generic theory of the parameterized specification PSP denoted Th(PSP) is
the set
{(VX,t=t')[VA e ALG(SP),F(A) |= (VX,t =t')}.

The generic theory is also called equational theory of PSP in [24]. Note that in the de-
generated case where SP is the empty specification, then Th(PSP) is the inductive theory of
SP.

Definition 15 Any substitution o : X — T(X'U Xsp), is called a PSP-generic substitution.

As a consequence of previous definitions, an equality (VX,t = t') holds in the PSP-generic algebra
Tsp/(Xsp), which is denoted by Tsp/(Xsp) |= (VX,t = t'), if for any PSP-generic substitution
o0:X — T(Z'U Xgp), o(t) «—g o).

Example 4 Let us consider again the parameterized specification of Ezample 1.

The term append(cons(e, nil),nil) with e a variable of sort Elem, is a PSP-generic term.

Substitutions (I — nil), (I — cons(e,nil)), (I — append(cons(e,nil),nil)) are PSP-generic
substitutions.

The equality (Ve : Elem,l : List, append(cons(e,nil),l) = cons(e,l)) holds in the PSP-
generic algebra, just because it holds in the whole class of S P’'-algebras.

The next theorem states that the generic theory is exactly the set of theorems valid in the
PSP-generic algebra.

Theorem 3 [24] Let PSP = (SP,SP') be a parameterized specification, Xsp a set of variables
of parameter sorts and Tgp/(Xsp) the PSP-generic algebra.

Tsp(Xsp) |= (VX,t = £')iff (VX,t = t') € Th(PSP).

Proof: (Sketch) If (VX,t = t') € Th(PSP), then it holds in F(7sp(Xgsp)) that is isomorphic
to %PI(XSP).

Conversely, assume that Tsp:/(Xgsp) |= (VX,t = t'). To prove that the equality holds
in F(A) for any .A, let us prove that it holds in 7gpi(.A) which is isomorphic to F(A).
Any assignment ¢ : X — Tgp/(A) can be decomposed into p : X — Tgp(Xsp) and
a : Tsp(Xsp) — Tsp(A). Then from p(t) = u(t'), it is easily deduced that o(t) =

a(u()) = a(u(t)) = o('). D

The following result explains in which sense a theorem in Th(PS P) is generic: validity of an
equality in the PSP-generic algebra means validity of the translated equality in any instantiation
of the parameterized specification, provided that the parameterized specification is persistent. A
similar result is given in [7].

Theorem 4 Let PSP = (SP,SP') be a persistent parameterized specification and Xsp a set of
variables of parameter sorts. Then the two following properties are equivalent:

1. Tsp(Xsp) = (VX t = 1)



2. for any specification morphism m, Tsp: |= (Ym™(X), m™(1) = m™(1")).

Proof: If Tsp(Xsp) |= (VX,t = t'), then the equality holds in F(A) for any A, for instance in

FoV,,(Tsp,) for any specification morphism m. Assuming persistency, the compatibility of
parameter passing for m yields F o Vin(7sp,) = Vir(Tspy). Then Vi (Zspr) |= (VX 1 = 1),
so Tsp; |= (Ym/*(X),m"™(t) = m"™(t')).
Conversely, for any A € ALG(SP), there exists a specification morphism m 4 and a speci-
fication SP(A) such that A = Vi, (Tsp(ay). Since Tspi(ay |= (YmZ(X), m'3(t) = m/3(t))
implies leA(’]zsp/(A))) I= (VX,t = i’), then F o VmA(TSP(A)) |= (VX,t = t’) and f(.A) }=
(VX,t =1t'). By Theorem 3, Tsp/(Xsp) |= (VX,t=1¢'). D

Actually only the compatibility of parameter passing is used in this proof. But this property
is equivalent to persistency, as shown in [23].
The next theorem relates the notion of persistency with proof theoretical properties.

Theorem 5 [9] Let PSP = (SP,SP') be a parameterized specification and Xsp a set of vari-
ables of parameter sorts. PSP is persistent iff the following two properties are satisfied:

1. PSP = (SP,SP') is generic sufficiently complete, i.e.: Vt € T(X'U Xsp), t of parameter
sort, 3tg € T(X U Xsp) such that t —— g to.

2. PSP = (SP,SP') is generic consistent, i.e.: Vt,t’ € T(X U Xgp) of parameter sorts,
t—pt ifft ——gt.

This definition expresses in other words that the enrichment (2 U Xsp, E) C (£'U Xsp, E')
is protected.

In order to go further and design effective tools for parameterized proofs, we now focus on
equational theories described by rewrite systems.

4 Generic ground reducibility

In order to check persistency of a parameterized specification and validity in the PSP-generic
algebra, the notion of PSP-generic ground reducibility is needed.

Let PSP = (SP,SP’) be a parameterized specification with SP = (£, R)and SP' = (¥, R’)
where R and R’ are rewrite systems. Let Xsp be an infinite set of variables of parameter sorts.

Definition 16 Given a rewrite system R’, terminating on 7(X'UXsp), atermt € T(Z'UX) is
PSP-generic ground reducible with R' if for any PSP-generic substitution o0 : X — T(Z'U Xsp),
o(t) is reducible using R'.

An equality (VX,t = t') is PSP-generic ground reducible with R’ if for any PSP-generic
substitution o : X — T(X'U Xsp), such that o(t) # o(t'), either a(t) or o(t') is reducible using
R'.

Algorithms for checking ground reducibility can be extended to check PSP-generic ground
reducibility. Here, the test for ground reducibility in the case of left-linear rules given in [15]
is generalized to a test for generic ground reducibility. The goal is to exhibit a finite set of
substitutions S such that a term is generic ground reducible iff all its instances by substitutions
in S are reducible. In the case of left-linear rules in R’, the idea to construct S is that left-hand
sides of rules have a finite depth which bounds the number of substitutions to be tested. Some
preliminary definitions are needed [15].

10
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The length of a term ¢ is the maximal size of positions w in D(t). Let d = depth(R’) be the
maximal depth of left-hand sides of rules in R'. The top of a term ¢ at depth ¢ is a term defined
by:
top(t,i) = t if depth(t) < i
top(f(t1,--ytn),0) = f(z1,...,2n) where z; arc new variables
top(f(tlv ""tn)7 7') = f(top(tl,z - 1)) (i) top(t‘mi - 1))
for any symbol f € F.

Given a set of rewrite rules R’ of depth d, let

S(R') = { top(to,d) | to is an R’-irreducible PSP-generic term }

be called the PSP-generic test set. For practical reasons, variables in terms of S(R’) are assumed
distinct, which is always possible by renaming them: V¢, € S(R'), V(t) n V(') = 8. The set
S(R') is computed as the limit of a stationary sequence of sets S; defined as follows:

Si = {top(to,d) | to is an R’-irreducible PSP-generic term such that depth(to) < i}.
Then S(R') = Sk as soon as Sy = Sy for some k.

Theorem 6 A term t is PSP-generic ground reducible by a left-linear rewrite system R' iff all
its instances

{o(t)| 0 : V(1) = S(R')},
obtained by substituting variables of t by terms in S(R’), are reducible by R'.

Proof: The proof is similar to the proof in [16].

e Assume that all instances of t obtained by substituting variables of ¢t by terms in
S(R'), are reducible by R’. For any PSP-generic substitution o’, if ¢’ is not R'-
normalized, then ¢'(t) is R’-reducible. Otherwise, let us define for any variable z of
t, o(z) = top(o'(z),d). Then o € S(R') and o(t) is R'-reducible by hypothesis. Since
o' is an instance of o, 0'(t) is also R'-reducible.

e Assume now that t is PSP-generic ground reducible. Given o € S(R’), let us define
for any variable z; of t, t; = o(«;). Then there exists t; an R’-irreducible instance of
t; such that {; = top(t},d). Finally let us define ¢’ such that o'(z;) = t!. Since ¢ is
PSP-generic ground reducible, ¢’(t) is R’-reducible by a rewrite rule [ — r, at some
non-variable position w in t because ¢’ is normalized. But for any position v in [, the
top symbols of [, o(t),., and 0’(t),,., are the same, because of the definition of d
and the fact that t; = top(tl,d). Now let W be the set of variable occurrences in {
and for any variable y at occurrence v € W define o”(y) = o(t)|,,. Note that o’ is
well-defined because y has only one occurrence in I. So o(t)), = 0”(l) and so o(t) is
R'-reducible.

(]

Example 5 Consider the parameterized specification of Example 1. In order to check the PSP-
generic ground reducibility of prod(append(l,l')), the following generic test set needs to be con-
sidered:

{nil, cons(eg, nil), cons(e;, cons(eq, nil))}.

where eq, €1, €2 are new variables of sort Elem in Xsp. For each deduced substitution «, a(t) is
reducible using R'.
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5 Proof of persistency

5.1 Proof of generic sufficient completeness

We now extend the proof of sufficient completeness for convergent rewrite systems of Kapur,
Narendran and Zhang in [17]. Their result states the equivalence between sufficient completeness
and a check for ground reducibility, provided that terms built on the imported signature are
preserved.

Definition 17 Let PSP = (SP,SP’) be a parameterized specification such that SP = (X, R)
and SP' = (¥, R'). R’ preserves parameters if V(I — r) € R', whenever | has a parameter sort,
r has a parameter sort, and whenever | is a parameler term, 7 is a parameter term.

Proposition 2 Let PSP = ($P,SP’) be a parameterized specification such that SP = (X, R) C
SP' = (¥, R"), Xsp is a denumerable set of variables of parameter sorts, and R’ is a convergent
rewrite system on 7 (X' U Xgp) preserving parameters.

Then the following propositions are equivalent:

1. Vf € &/ — %, whose range is a sort s € B, f(zi1,...,2,) ts PSP-generic ground reducible
with R/,

2. Vt' € T(S'U Xsp) of sort s € £, 3t € T(EU Xsp) such that t < p ¢,

Proof: The proof is an extension of [17].

e Let us first prove that (1) implies (2).

Consider a term t' € T(X'U Xgp) of sort s € ¥ and its R’-irreducible form t”. Either
t” € T(XU Xgsp) and then t = t", or t” ¢ T(2 U Xsp). In this case, t” contains
a subterm f(uy,...,u,), with u;,..,u, € T(X' U Xsp), f € £ — T with a co-arity
s’ € . (Otherwise, all subterms of t” would be of sort s” € ¥/ — I, including t” itself.
This is impossible because the term t of sort s € ¥ cannot be rewritten to t” of sort
s € % - %, if ¥Y(I > r)€ R, whenever | has a parameter sort, 7 has a parameter
sort.) The subterm u = f(uy,...,u,) is indeed a PSP-generic instance of f(z1,..,2z5),
so is reducible for R’, which contradicts the hypothesis that t” is R’-irreducible.

e Let us now prove that (2) implies (1).
If f(z1,..,Zn) is not PSP-generic ground reducible for R’, there exists a PSP-generic
substitution o such that t' = f(o(z,),..,0(z,)) is irreducible for R’. Assume now
that 3t € T(Z U Xsp) of sort s € L, such that t « g/ t'. Since R’ is convergent
on 7(Z U Xgp), this implies that t —spg t'. Which is impossible if R’ preserves
parameters.

0

Note that the property of preserving parameters is very simple to achieve in most cases. It is
satisfied for instance when every rule in R’ — R contains in its left-hand side at least a function
symbol of £/ — ¥. In a structured programming methodology and especially in parameterized
specifications, this hypothesis does not appear as a restriction.

5.2 Proof of generic consistency

In the case where the basic specification is given with a ground convergent rewrite systems, the
completion process appears as an interesting tool to both prove consistency of an enrichment
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and produce simultaneously a ground convergent rewrite system for the enriched specification.
Given an enrichment SP = (2, R) C SP' = (¥, E’) with R a ground convergent rewrite system
on 7(X). The general idea is to complete £’ into a ground convergent system R’ on 7(X’) and
to check that whenever a rewrite rule, whose left and right-hand sides both belong to 7(X), is
added, then this rule is an inductive consequence of R.

We design a similar consistency proof procedure in the slightly more general framework of
a parameterized specification PSP with SP = (X,R) C SP’' = (¥/, E’) with R a convergent
rewrite system on 7 (£ U Xgp). (This can be checked by completion). PSP is generic consistent
if whenever an equality, whose left and right-hand sides both belong to 7(Z U Xsp), is added,
then this is a theorem valid in ALG(SP), that is t «——pg t’. In order to detect inconsistencies,
we need the following definition:

Definition 18 Let us consider a parameterized specification PSP with SP = (X,R) C SP' =
(X', E") with R a convergent rewrite system. A set of equalities C is provably inconsistent with
Th(SP) if it contains an equality (VX,t = t') such that t and t' are in T(X U Xsp) and are not
<~ p-equivalent.

If SP is itself a parameterized specification, say SP = (S Py, SP;), then Th(SP) is its generic
theory and the previous definition must be refined by replacing «— p-equivalence by validity in
the S Py-generic algebra.

In the completion process described below, it is convenient to split the set of equalities £/— R
into two parts: one, called C, which contains only parameter equalities (i.e. built on terms of
7(Z U Xsp)), and the other, called P, that contains non-parameter ones. OCP(P U R, P)
denote the set of ordered critical pairs [1, 3] obtained by superposition of P U R on P. There
is no need to superpose rules in R with themselves. There is also no need to try superpositions
of P on R because by construction, terms involved in P contain at least one function symbol
in ¥’ — X. CP(R,C) as usual denote the set of critical pairs obtained by superposition of R on
C and conversely. Note that whenever an equality contains only parameter terms and can be
superposed with R, then the equality is dropped in C and such superpositions are taken into
account in CP(R,C).

Let P be a set of equalities (quantified pairs of terms), C a set of conjectures (parameter
equalities), R the underlying rewrite system on parameter terms, terminating and confluent on
T(X U Xgp), and > a reduction ordering that contains R and can be extended to a reduction
ordering on 7(X'UXsp) total on E’-equivalence classes. The generic consistency proof procedure
is expressed by the following set GC of inference rules, in which R is implicit:

1. Deduce
P

Polp=qCc (Pa)€OCP(PURP)

2. Deflation
Pu{p=gq},C

PCuip=q¢q if p and g parameter terms

3. Delete
Pu{p=rp},C

b

4. Collapse

Pulp=4q},C . —r
PU {{p’ =(<II}},CT if (p —fp> P &p 3 or (p—rup> p' & q>p)

13



IC s

5. Deduce conjecture
P,C .
PCUp=71 if (p,q) € CP(R,C)

6. Delete conjecture

Mp%ll} if (p = q) € Th(SP)

7. Simplify
PCu{p=gq} . g, + ’

)

8. Compose

P,CU{p:q} ; ’ g=d 1

9. Generic consistency Disproof

P CU(p=g¢q . . . . .
-DFP%W) if (p = q) provably inconsistent with Th(SP)

In these inference rules, J denotes the strict encompassment ordering defined by t 17 ¢’ if
ty, = a(t'), for some position w of ¢t and some substitution o, with w # € or o # Id.

Note that this set of inference rules is more general than the one for unfailing completion [1],
obtained as a subset when C = 0, and the one for proof by consistency [1], obtained for P = 0.
The Deflation inference rule is used first to split the set of equalities E/ — F added in the
enrichment, into P and C such that C contains only parameter equalities and Py contains all
other equalities.

1

Lemma 1 If (P,C) F (P',C"), then the congruences —— pucur and —— piyciug coincide on
T(El U Xsp).

Proof: by looking at the different inference rules. O

The considered set of proofs are proofs on PSP-generic terms using equalities in PUC U R.
The goal is to transform such a proof t «— pycur t' into a proof of the form

t — " < t
—RUP> —RuUP>

or to find a provable inconsistency with Th(SP).
The proof reduction relation that reflects the inference rule system GC, is now defined.

1. Deduce: t/ <—§,=>duR t =51 =t Pt

2. Deflation: t «—5 7t =t 5 ¢

~4)

3. Delete: t —% 7t/ => A where A is the empty proof.
4. Collapse: t «—E"9t/ =t "’IP_;TUR " ‘_,z;)'=q #

5. Deduce conjecture: t' /3" ¢ «——%:d "=t Tt

6. Delete conjecture: t «— 29t/ =t ——p t'

14



bl

~%

bl

7. Simplify: ¢ <——>pc=q =1 ¢ + Rt ;é’:q "
8. Compose: t «——P 91/ => ¢ (_,s(zfd " pC'=q "
9. Peak without overlap: ' s t —5T 17 =t/ 5T 4y s 1"

10. Peak with variable overlap: ¢ ‘_ﬁﬁ» t -5 1" = t! Tp> by <—gup> 1"

Lemma 2 If > is a reduction ordering that can be extended to a reduction ordering > on T(X'U
Xsp) total on E’'-equivalence classes, then the proof reduction relation is noetherian.

Proof: Let us define the complexity measure of elementary proof steps by:

(s —5 1)

(8,9,t,2) if s>t
(t,d,s8,2) if t>s
(s,9,t,1) if s>t
(t,d,s,1) if t>s

(s,g,t,O)

where s,t € T(2' U Xsp). Let > U D denote the union of the reduction ordering > and
the strict subterm ordering . Complexities of elementary proof steps are compared using
the lexicographic combination, denoted >,. of > U, 3, > UD and the standard ordering
on natural numbers. The complexity of a non-elementary proof is the multiset of the
complexities of elementary proof steps that it contains. Complexities of non-elementary
proofs are compared using the multiset extension >, of >... For any proof reduction rule
L = R defining the proof reduction relation, ¢(L) >, ¢(R). O

c(s <—>-‘l’,=d t)
e(s —I4 1)
(s L 1)
(s — 57%)

Theorem 7 Let us consider a parameterized specification PSP with SP = (X, F) C SP' =
(X', E') with B a convergent rewrite system on T(X U Xsp) presenting [.

Let > be a reduction ordering that contains R and can be extended to a reduction ordering > on
T(X'U Xgp), total on E’-equivalence classes, and such that no parameter term is greater thun a
non-parameter one.

Let (Py,Co) = (E',0) F (P1,C1) F .... be a derivation using GC, P. = U;so Pi, Cu = Uiso Ciy
Poo = Ui»oMNy»: Pir Coo = UisoN;»:i Cj. Assume that OCP(Po U R, Poo) U CP(R,Co) is a
subset of P, UC,.

o If Co is empty, (Pso U R) ts Church-Rosser with respect to > on T(E' U Xsp) and the
parameterized specification is generic consistent.

o If a provable inconsistency with Th(SP) has been detected, the parameterized specification
15 not generic consistent.

Proof: e Assume that C, is empty. Let us prove by induction on == that for any ¢ > 0,
for any proof t < ——pyuc,ur t’ where t,¢ € 7(Z' U Xsp), there exists a proof

t—; t” * t’
rRuPz ' TTRuPg “

Since C, is empty, this means that any C;-equality step has been replaced by R-
equality steps. So if the proof ¢t «— p.uc,ur ! is not already of the desired form, then
either it contains a peak of R U P, or a non-persisting equality in P. In both cases,
the proof is reducible by = into t é;vP]UCJUR t’ and the induction hypothesis gives
the result.



Given two terms, ¢ and t’ of 7(ZU X sp) of parameter sorts, such that ¢ <~ p uc,ur U,
there exists a proof

* " o* 7
t—nupzt “—hRupy t-

But since t and ' are parameter terms and greater then any other term occurring in
the proof, all these terms must be parameter terms. So no equality in P, can apply
since P,, contains non-parameter terms. So we get t g t'.

e If a provable inconsistency with Th(SP) has been detected, this mecans that there
exist g,d € T(X2U Xsp) such that g «——¢, d, for some k, but do not satisfy g «— g d.
So g and d are <« p,,c,ur-equivalent but not «— g-equivalent, which proves that
the parameterized specification is not generic consistent.

O

Example 6 The parameterized specification of Example 1 is persistent.

The first step is to prove that the enrichment (£ U Xgp, R) C (X'U Xsp, R') is generic
consistent. For that, the consistency proof procedure is applied. Since there is no critical pair,
the enrichment is obviously consistent.

Second, in order to prove that the enrichment (¥ U Xsp,R) C (£'U Xgsp, R') is generic
sufficiently complete, we check that R' preserves parameters.

Then we have to check that prod(l) is PSP-generic ground reducible with R'. The instantia-
tions to be checked are:

(I — mnil)
(I — cons(eg,nil))

(I — cons(er,cons(eq,l)))

where eg, e1,€2 € Xsp and | is a variable of sort List. For these three instantiations o, the term
a(prod(l)) is clearly reducible.

6 Proof of an equational theorem in the theory of a parame-
terized specification

In the context of proving and disproving theorems in a parameterized specification, we need a
slightly different notion of provable inconsistency, that is directly inspired by the one used in [2].
We assume in this section that PSP is a parameterized specification defined by the formal
parameter SP = (X, R) and SP’' = (¥/, R'), where R and R’ are rewrite systems.

Definition 19 Let us consider a parameterized specification PSP with SP = (¥,R) C SP' =
(X', R'), where R is a terminating rewrite system and > a reduction ordering that contains R'. A
set of equalities C is provably inconsistent with Th(PSP) if it contains an equality (VX,t = t')
which satisfies either t > t' and t is not PSP-generic ground reducible, or (VX,t = t') is not
PSP-generic ground reducible.

Replacing the notion of provable inconsistency by the notion of provable inconsistency with
Th(PSP) allows applying the proof by consistency method to the proof of theorems in Th(PSP).

Let C be a set of conjectures, R’ the underlying rewrite system of the parameterized speci-
fication, terminating and confluent on 7(¥’ U Xgp), and > a reduction ordering that contains
R’. The generic proof procedure is expressed by the following set GZ of inference rules, that is a
subset of GC, obtained with P = .

16
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1. Deduce conjecture

5@%57} if (p,q) € CP(R',C)

2. Delete conjecture
Culr=a if(p=q)eTh(PSP)

3. Simplify
Cu{p=4q}

: ! + /
culy=qr fp>p &pe—pp

4. Compose
Cu{p=4q}

: ’ g=d d

5. Generic consistency disproof

%%3%%2 if (p = q) provably inconsistent with Th(PSP)

Theorem 8 Let PSP = (SP,SP’) be a parameterized specification and Xsp a set of variables of
parameter sorts. Let R’ be a terminating and confluent rewrite system on T (X'U X sp) presenting
E’, Cqy be the set of PSP-generic conjectures to be proved, and > be a reduction ordering that
contains R'. Let Co F Cy | ... be a dertvation using GI such that CP(R!,Cu) is a subset of C,.
If no provable inconsistency with Th(PS P) has been detected, then Cy is included in Th(PSP).

Proof: It is a consequence of the proof by consistency method in Tgp:(Xsp) (1,2]. O

Example 7 In the parameterized specification of Example 1, let us prove that the PSP-generic
conjecture
VI, 2 List, prod(append(l,l")) = =(prod(l),prod(l’))

18 valid.

This conjecture is PSP-generic ground reductble. By choosing a precedence such that prod >
7, the left-hand side is bigger than the right-hand side. Superpositions on the bigger term are
enough. So two superpositions have to be computed:
- With the rule Vi : List, append(nil,l) — I, we get

prod(l') = w(prod(nil), prod(l')).

The term w(prod(nil), prod(l’)) reduces to prod(l’) and the conjecture becomes a trivial equality.
- With the rule Ve : Elem,l,l' : List, append(cons(e,l),l") — cons(e, append(l,l’)), we get

prod(cons(e, append(ly,l2))) = m(prod(cons(e,l1)), prod(ls)).

After reduction on both sides, we get

7(e, prod(append(ly,12))) = w(e, 7(prod(ly), prod(l2)))

that can be simplified using the initial conjecture.
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7 Conclusion

Proofs in parameterized specifications have been experimented in several systems like CEC [10]
or Reveur4 {28]. To some extent, this paper may be understood as a clarification of the concepts
underlying these provers.

Now several research directions can be outlined for improving this work.

e Persistency is a very strong property that sometimes one may want to drop. So a first ques-
tion that arises is the following: which results remain true if persistency is not assumed? Ac-
tually persistency is assumed in Theorem 4, and only the compatibility of parameter passing
is used in its proof. Theorem 4 could be weakened as follows: if Tgp/(Xsp) |= (VX,t = t'),
then for any specification morphism m satisfying the compatibility of parameter passing,
Tspy | (Ym™(X),m"™(t) = m™(t')). However the problem of checking the compatibility
of parameter passing, even for a specific specification morphism, is not solved. Moreover
assuming compatibility of parameter passing for every specification morphism has been
proved equivalent to persistency in [23].

o This work focussed on equational parameterized specifications and has to be extended
to conditional specifications: mainly, this can be done along the lines of Navarro and
Orejas [21], but an adequate notion of persistency needs the introduction of so-called LOG-
algebras, that have an initial boolean domain, together with a property of persistency with
respect to booleans. Note that Theorem 5 has been proved by Ganzinger [9] in the case
where the considered class of algebras is the class ALG(SP) of all algebras satisfying S P,
and by Orejas and Navarro [21] in the case where the class of algebras is restricted to
LOG-algebras.

e We have only considered here the techniques of proofs by consistency. Everone agrees
now that they are sometimes inefficient and more direct inductive proof methods have
been developed, for instance by U.Reddy [27] in the equational case, or by E.Kounalis and
M.Rusinowitch [19] in the Horn clause case. Extending these methods for proving theorems
in parameterized specifications does not seem too difficult, and would lead to interesting
applications.
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on this version. My thanks also to the anonymous referees for their constructive remarks.
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