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Abstract: We describe the various approaches to tree-transformations, and
their behaviour with respect to a few criteria: stability under composition,
inverse, iteration, rationality of their domains and images, finite or infinite
branching, restriction to the case of words.

Résumd: On décrit diverses approches au probleme des transformations d'arbres et
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A SURVEY OF
TREE-TRANSDUCTIONS

I. INTRODUCTION AND NOTATIONS. RATIONAL FORESTS

Since the beginning (around 1965, cf. Thatcher & Wright [1965]) the study of sets
of trees, or tree-languages, has followed roughly the same route as the theory of
word-languages. The same classification has been established, and the following
families of trees have been defined : regular or rational (see Gecseg & Steinby [1984]),
algebraic (program schemes, cf. Nivat [1973]) recursive, and recursively enumerable
(standard definitions). And the following strict hierarchy has been established:

regular c algebraic c recursive c recursively enumerable

Many results carry out from sets of words to sets of trees. In particular, the richest
class, the one having the most characterizations: the regular or rational languages,
can also be defined for trees. To fix ideas, trees will be identified with terms built
over an alphabet F of ‘function symbols’, considered as a terminal alphabet. The
languages T(F) = T of trees or terms over F and T* of sequences of trees over F
are defined (mutually) recursively by the following equations:

T = FT* t = av or afv)
T* {e} + TT* v o=t ... 8

n Or (t,...,¢,)

I

where the cartesian product of sets is denoted by concatenation, as is customary
in language theory. Note that sequences of trees may be empty (e), but trees may
not. The alphabet F is often graded by an arity «:F-N, and the trees are subject
to the restriction that for all subtree v=av, ...v, the arity of a equals n: this is a

purely syntactic restriction which can be expressed equationally if needed. In this

case, one defines a F-algebra as a set D together with a function fr,:D"-D where
n is the arity of f for all fin F. A F-morphism p:D-D’ between two F-algebras
is a mapping satisfying p(fpld,,...,d))=fp{p(d,), ... ,p{d,)), and F-morphisms
make a category in which T(F) itself with functions fl¢,, ... ¢t )=f;...t,, is an
initial object.
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Frequently, one wants to single out some occurrence of a subtree s into a tree ¢.
For this purpose, we write ¢t=c(s) where c(x) is a term containing x (of arity o)
only once, called a context: the context of s in t. And ¢ is got from c(x) by
replacing x by s. We shall also assume that the reader is aware of the representation
of terms by trees considered as oriented graphs with nodes labelled by F, and
use freely the graph-theoretic terminology, like root, node, leaf, depth, etc.

The equivalence, true with words, between right-linear grammars, finite
automata, finite index congruences and rational expressions still holds, with the
following definitions:

Definition. 1°) A tree-grammar is a finite set of productions of the form At
where A belongs to a finite set N of non-terminals of arity o, and teT(FuN).
2°) A descending automaton is a finite set of transitions of the form g A Gy++qn
where g belongs to a finite set Q of states.
3°) An ascending automaton is a finite set of transitions of the form ¢,...q, -fq
where g belongs to a finite set Q of states.
4°) A congruence is an equivalence relation over T(F) such that for all feF
s; = t; for i=1,...,n > fls,,...,5,) = fie,,....t,) with n=a(f)
5°) The rational operations over the subsets of T(F) are the following:
L+M = LuM
L- M {s(e,, ...,tP); slx,, ...,xp)eT(F—[a}) rsla,...,a)eLat,, ...t eM}
L** = U L

nzo L'g =7 'gL (n times)

1°) One step of derivation according to a tree-grammar G is the relation
c(A)>gclt) where At is a production, and G is omitted if no confusion results.
A derivation is a sequence of such steps. The language L(G,A) generated by the
grammar G starting from the axiom A is defined as for words: L(G,A) =
{te T(F); A -%*t}.

2°) A run of a descending automaton on a tree ¢ is a labelling of the nodes of
¢t by states, in a way compatible with the transitions: if a node labelled by ¢ has
function symbol f, and if its successors are labelled by ¢,,...,q, then gf» gy 9n
must be a transition. The tree ¢ is accepted by the automaton if it admits a run
starting at some given initial state.

3°) A run of an ascending automaton on tis defined similarly, except that
Jrv-Gn £ g must be a transition at each node. The tree ¢ is accepted if the state
at the root belongs to some given set of states: the final states. Note that there is
no difference between an ascending run and a descending run, nor really between
the ascending and the descending transitions. At each node with function symbol
f of arity n, with state label ¢ and state labels ¢, ...q, for the successors, the tuple
9fq: - - - 4, € QFQ* must belong to the transition relation. The difference is in the
acceptance condition. The words ascending and descending refer to the drawings
of the graphs representing the trees: The tradition has evolved to draw the root
at the top and the leaves at the bottom.

4°) If s =t is a congruence, the factor set T(F)/= is ‘naturally’ a F-algebra
for general algebraic reasons. The index of the congruence is the cardinality of the
factor set.



These few definitions (!) provided, the next result is welcome (see Gecseg &
Steinby [1984]).

Theorem. For a set L of trees, the following conditions are equivalent :

') L = L(G,A) for some tree-grammar G and axiom A.

2°) L is the set of trees accepted by some descending automaton.

3°) L is the set of trees accepted by some ascending automaton.

4°) L e~ (L)) for some F-morphism u:T(F)-D where D is finite.

5°) L és got by applying a finite number of rational operations to a finite number
of finite subsets of T(F).

The sets of trees satisfying the equivalent conditions of the proposition are called
rational forests. Therefore, everything goes as smoothly as with words, with a
small exception: Ascending tree automata have equivalent deterministic counterparts,
but deterministic descending automata are strictly weaker than general non deter-
ministic descending automata. More precisely {fla,a), flb,b)} is a rational forest,
but no deterministic descending automaton can accept it, since the state labelling
the left leaf must recognize @ and b, and likewise for the state labelling the right
leaf. Therefore, the automaton should also accept fla,b) and f1b,a), which are not
in the set.

One remark is in order here: the counterpart of concatenation has been chosen.
Its role is played by tree substitution (see the definition above, point 5°). Therefore,
the iteration of concatenation, the ‘star’ operation is played by iterated substitution.
Another point of view has been adopted by a few authors (for instance Steinby
[1983]). For instance, following Steinby, we may consider the concatenation as a
binary operator; therefore its generalization is the prefixing of two — or more —
trees by a function symbol. Likewise, the generalization of L*, which is also the
sub-monoid generated by L, is in this setting the sub-algebra <L> generated by L.
Rational subsets in this sense have some good properties, for instance they are
preserved by boolean operations, but are much more restricted than in the definition
above.

II. TREE TRANSDUCTIONS

Regarding tree transformations, results do not flow so easily. Several definitions
are candidate for the label ‘tree transductions’, with irrelated properties. People will
keep in mind how gracefully behave rational (word) transductions. These admit
several equivalent definitions: by grammars of relations with right linear productions,
by finite automata with output, by pairs of morphisms of monoids, and others.

Example 1: The relation R={(afb",b"a?); n,p,g>0} is rational:
R=(a,e)*(b,b)*(e,a)*. It can be defined by this grammar:

A - (a,e)A B - (5,b)B C - (g,a)C
A~ B B - C C - (e,e)

i



Or it can be generated by this automaton, where state C is final:

a/so e/¢ b/b Os/e ' £/a m

Or it can be defined by this pair of morphisms (the bimorphism), applied to the
rational language x*p*z*, which represents the relation actually, while the
morphisms represent the first and second projection:

alx) = a Blx) = ¢
aly) = b Bly) = b
alz) = € Blz) = a

All these means have been tried in the case of trees, and tested against several

touchstones:

— Do these transformations contain the identity? This is a minimal requirement.

— Are they preserved by composition? To make a monoid.

— Are they preserved by inverse? To make a group.

— Are they locally finite (given s only a finite number of s—~t)?

— What are the images of rational forests? of algebraic forests?

— Can they be decomposed into a succession of ‘simple’ transformations, like
relabelling, morphisms, inverse morphisms, etc.?

— When restricted to words, do they coincide with rational transductions?

— Is the accessibility relation s -* ¢ decidable? It is decidable in the case of words.

Preserved by composition, and including the identity, the tree homomorphisms
have been known since the beginning. They are not only locally finite, but deter-
ministic: one and only one image for a tree; and the image set need not be rational:

Example 2: Define plax)=b(u(x),u(x)), plc)=c. The image of T({a,c})=a*c is
the set of perfect binary trees, which is not even algebraic.

The point of view of automata has been investigated first (cf. J. Engelfriet
[1975]) and been developped enough to be included in a book (cf. Gecseg & Steinby
[1984]). It is developed in the following section. Section IV is devoted to the
approach using two morphisms (cf. Dauchet [1977], Arnold & Dauchet [1982]).
Section V describes the transformations generated by tree rewriting systems which
do not contain variables: ground tree transducers. Section VI looks at the relations
generated by grammars.

III. TRANSDUCTIONS USING AUTOMATA

The descending transducer looks like a descending automaton with output:
Definition. A descending transducer is a finite set Q of states of arity one together
with a finite set of transitions of the form: gAxy, X ) = tg X o(1)s - 59X a(p))s

where ¢ contains no variable other than explicitly written and o is a mapping

[I,P]_’[])n]~



To be fair, let us define immediately the ascending transducer, which are exactly
a finite automaton plus an output:

Definition. An ascending transducer is a finite set Q of states of arity one together
with a finite set of transitions of the form: f(qlxl,...,qnxn)—’qt(xc(,),...,xa(P))
where t contains no variable other than explicitly written, and o is a mapping

[1,p]-[1,n].

If states are considered as relations, the transitions can be seen as a definition of
these relations in terms of each other. The variables x; represent the subtrees
hanging under the node f. If o is injective in all transitions, no subtree is duplicated,
and the transducer is called linear. If ¢ is surjective in all transitions, no subtree
is erased, and the transducer is called non erasing.

Here, the distinction between ascending and descending is more relevant. More
precisely, following J. Engelfriet [1975], ascending automatic transducers can
perform actions AC and AE below:

(AC) Copy, duplicate, an output tree.

(AE) Erase, delete, an input tree (after processing it).

Descending automata can instead perform actions DC and DE:

(DC) Copy an input tree, then translate copies independently.

(DE) Erase, delete, an input tree (even before looking at it).

Operations (AC) and (DC) prevent the image to be rational: tree-morphisms are
particular cases of transducers. Indeed they are deterministic, total transducers with
a single state.

Propoaition. A tree-morphism can be realized by a descending transducer, or an
ascending transducer. Both have only one state and are deterministic: there is at
most one right-band side corresponding to a given left-hand side and a given

function symbol.

Proof: The definition of a morphism has the format of a descending transducer:
If w is a morphism, it satisfies for all function symbol f:

plfAxg, ooo,xn)) = tlplx), .. ,ulx,)]

where the square brackets indicate that ¢t may contain several occurrences, or none,
of each variable x;, but no other variable.
Corresponding descending transition: p(Ax,, ...,x, ) =tlp(x,), ... plx,)].
Corresponding ascending transition: flplx,,...,x,)-pltlx,,...,x,]).
See the proof in Gecseg & Steinby [1984].

Now, we showed in example z a morphism having for image the set of all
perfect binary trees, which is not rational, and not even algebraic.

The main results concerning these transducers are gathered in the following
proposition, using the following notations: A for ascending, D for descending, L



for linear, N for non-deleting, H for homomorphic (see the proposition above),
and F™ indicates the class of n-fold composition of transducers of class F.

Theorem. The following inclusion relations (represented from left to right) are
strict, and circled families are closed by composition

LD

The strict inclusions D"c A™*' and A"cD™*' are deduced from the equalities

Dﬂ+l

An-f-l

A =1A-H = LD-H
D = H-LD ¢ H-LA

Example 3: Consider the following transducer with Q={q,p,s,¢}

gblx,u) - blblix,pu),su) ib(x,y) — blix,iy)
pbly,z) - iy ic - ¢ (ND-A)
sbly,z) - iz

The state ¢ produces the identity, states p and s yield respectively the first and
second argument of b and state ¢ is chosen as the initial state. The reader can
check that the tree transformation produced by this transducer is the left rotation
of balanced trees. It cannot be realized by an ascending automaton. It is not
linear, but it is non-deleting: it belongs to ND-A.

Example 4: Consider the following transducer with Q = {¢} and F = {b,a,c} of
arities respectively z,1,0:

blgx,qy) ~ galx)
c - gc (LA-D)

This transducer is almost homomorphic: it has a unique state, is linear, deterministic,
but not total. It copies the left branch of a binary tree containing only b’s, and
replaces everywhere b by a. This cannot be accomplished by a descending transducer,
because deleting the right branch in a descending transducer allows the right
subtree to be any tree — including trees containing ’s. This cannot be checked
before inspection. It is an example of property (AE) compared with property (DE).
This transducer is in LA-D.

All these transduction have locally finite images. On the other hand, if erasing
is allowed, the converse image of a tree may be an infinite tree language. Therefore,
it is not surprising that none of the classes considered so far are preserved by



taking the inverse. Restricted to words, all yield ordinary rational transductions,
but not all transductions. No class is preserved by iteration. Their behaviour with
respect to rational forests is described in the following proposition where we say
that a class preserves rational forests when all transducers in the class give of a
rational forest a rational image.

Proposition. 1°) The domain of any transducer is a rational forest.
2°) Neither H nor D nor A preserve rational forests.
3°) LA preserves rational forests, hence LD also preserves rational forests.

Proof: 1°) We noticed that an ascending transducer is really a finite automaton
with output. Suppressing the output yields che fact that its domain is a rational
forest.

2°) Example 2 shows a homomorphism, and the image of T({a,c}) is the set of
perfect binary trees, which is not rational, ncr even algebraic.

3°) The range of a linear ascending transducer is rational: build the following
grammar

q ~ t(qc(x)"“3qc(p)) e C & ﬂq,x‘,...,qﬂxn) - qt(xc(,),...,xc(P))

It can be checked with no pain that a tree is in the range of the transducer if
and only if it is generated by the associated grammar. The result now comes
from the fact that linear ascending transducer are preserved by composition,

QED.

IV. BIMORPHISMS

Originally, the two morphisms used for representing a relation R are nothing else
than the two projections of this relation (see section I):

x-y & x=n(r) a y=plr) for some element r=(x,p)eR.

In the case of monoids, morphisms, which preserve the rational languages,
should certainly be particular cases of rational transductions. The intersection
with a rational set is also rational. Finally, word transductions are preserved by
taking the inverse. Since the composition of two word transductions is again a
transduction, an inverse morphism, followed by an intersection with a rational
set, followed by a direct morphism still is a transduction. Nivat [1968] proved
that every transduction can be decomposed in this way: The class of rational
transductions is the least class containing the morphisms and the identity idg
with rational domain (this is to account for the intersection with a rational set
R), and closed by composition.

In the case of trees, this point of view has been investigated by Dauchet
[1977]. Here, arbitrary morphisms do not preserve the rationality, due to possible
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duplication of branches (cf. example 1). The least condition to be satisfied is the
linearity :

p(flxy, ..o,x,)) = tlpx,, .px,] = (V) It[pxl,...,pxn]lxi <1 (L)

That is, right-hand sides never contain two occurrences of the same variable. It
turns out that this condition is not enough to ensure stability under inversion and
composition.

Example 5: consider the following morphism.

eflx,p,2)) = blblox,py),¢2z)
oblx,y)) = blox,¢y)
palx)) = alepx)

oc = ¢

And consider the identity restricted to the following rational forests.

K = Ax,p,9)* " blpy), alz)*2, ¢ and K' = blx,p)x Ax,9,9)* -, alz)**-, ¢
Then the composition of the two bimorphisms (idge@)e(¢ ~'eidg’) cannot be
expressed by any bimorphism, because of the constant delay between the depth of

the arguments of f and the depth of the arguments of their images (in the figure,
corresponding arguments have the same numbers 1,2,...).

P
b - b

/T\ VAN AN
N /’\/ N
S /\\

6 5 4

6/4 3
N\ N\,
VAN

In the framework of trees, some other properties need be added: morphisms
will be non erasing and strict. Recall that a morphism is non erasing when
w(fix,,...,x,) contains all the variables x,,...,x,: no subtree can be deleted.

Definition. A morphism p is strict when u(flx,,...,x,)) is not reduced to a
variable, for all feF.
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Denoting by LNSB the class of all linear, non erasing, strict bimorphisms, a rather
unsatisfactory result can be obtained (Arnold & Dauchet [1982]).

Proposition. The class LNSB is not preserved by composition. The class LNSB? is
preserved by composition. More precisely, we bave the following inclusions :
LNSB ¢ LNSB® = LNSB" for n>2.

Proof: It can be found in Arnold & Dauchet [1982] and is neither short nor simple.

Notice however that the product of two monoids still is a monoid, while the
direct product of two term algebras is not a term algebra. This might account for
the awkward results using trees. Arnold & Dauchet investigated the case of direct
products of term algebras, following in fact a trend initiated by Pair & Quéré
[1968] who considered words on trees, with an extra operation: prefixing a root
to a word of trees. Arnold & Dauchet also consider p-tuples of trees containing
variables only in {x;,...,x,}: set TP =T(Fulx,,...,x,})P. Considered as words on
T(F), they inherit a version of the product of concatenation uv denoted here uxv
with an explicit variable renaming for v: if ueTF, then all variables x; in v become
variables x;, . in uxv. But instead of prefixing by a root, they are considered as
morphisms T(F)? =T(F)? and inherit the composition of functions. Endowed with
these two operations, the set qu is an algebraic structure called a ‘magmoid’ and
now, relations between two magmoids TP and TP are included in the magmoid
qu:qp The morphisms of magmoids are mappmgs that respect the algebraic structure.

Definition. A morphism of magmoids is a mapping compatible with the product and

the composition and satisfying p(fx,,...,x,))=(t,,...,tp)e T for some fixed k>o.

Ordinary tree morphisms correspond to total deterministic descending transducers
having only one state. Allowing several states bring in the morphisms of magmoids.

Proposition. Define the following correspondence between k-morphisms and total
deterministic descending transducers : qifix,, ...,x.) = tlgz()*ots)s - - 9 pyXalp)]

if and only if pre ¢flx,, o x ) =tlx (o) ket - ’x(a(p)—t)lt+t(p)]
Then this correspondence is bijective and satisfies g;t =* u; = ot = (u,,...,uz).

Proof: by induction on ¢.
In this case again, we shall restrict to morphisms linear non erasing, ‘regulated’

(or ‘strict with delay’) and ‘separated with delay’. These last two properties are
extensions respectively of strict and separated morphisms. Strictness for magmoids
means strictness at all components. Separation is related to magmoids only:
restricted to linear morphisms, it means that the morphism would remain linear
even if the variables occurring in different components had not been renamed.
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Definition. A morphism p is strict when it satisfies for all function symbol f:
plfloe, oo, x =0t ,.00,t0) = (Vi) t; ¢X (no ¢; is a variable).
A morphism is separated when it satisfies for all function symbol f:
Ry, oo, x, ) =(¢,...,t1) = no variable x; has been renamed twice, in ti
and t; for j+k.

Morphisms satisfy the same property with delay p if the same relations hold not
for elementary tree of the form flx,,...,x,) but for all trees of depth p in which
all variables are at depth exactly p. And they hold ‘with delay if they hold with
some delay p.

Theorem. The class of bimorphisms linear non erasing, strict with delay and
separated with delay contains the identity and is preserved by composition and inverse.

These morphisms are more general than the linear ascending transducer. For instance,
the transformation of example 3, which cannot be generated by an ascending
transducer is defined by the following bimorphism.

Example 6: Consider the morphisms (linear non erasing, strict):

efix,,x,,x;) = blblox,,¢x,),0x,) $flx,,x,,x,) = b(d)x,,b((bxz,(px;))
eblx,,x,) = blox,ox,) $blx,,x,) = blgx,,dx,)
pc = ¢ g =c

Then the left rotation realized in example 3 is given by (¢,K,p) where K is the
forest {fls;,5,,55) 5 51,5,,5,€ T({b,c})}. This transformation is not in A, a fortiori not
in LA.

Somewhat curiously, more general results hold for binary trees.

Proposition. If no function symbol in F bas an arity more than 2, then the class
of linear bimorphisms contains the identity und is preserved by composition and

tnverse.

Proof: It can be found in Arnold & Dauchet [1982] but their proof is older. This
result is quoted in Takahashi [1977] who proved it independently, using a trick
which has been generalized since (see Dauchet & Tison [1990]1): When two trees
have the same shape, viz. when both are binary, they can be superposed to give

. a unique binary tree labelled with the product of the alphabets augmented by a

symbol w meaning ‘not defined’ (Takahashi uses A). For an instance of this trick,
see below where the two tree on the left are projections of the unique tree on the right.

(b,
/ \
(b,c) (c,b)

b f
b/\c c'/ \b
d/ \a | a/\c

(a,0) (a,0) (w,a) (w,c)
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V. GROUND TRANSDUCERS

There is, after all, a simple way to define tree transformations: term rewriting
systems. Given a term rewriting system, i.c. a finite set R of pairs g-d with
g,de T(FuX), the relation generated by this system using contexts and substitutions
is defined in the usual way:

st if  s=clga) A t=cldo) A (g-d)eR

This is an extension of semi-Thue systems in the case of words: The semi-Thue
systems are finite sets of couples of words g~d and the relation generated is the
set of all couples of the form ugv—udv, for arbitrary words « and v and couple
g~d in the system. Unfortunately, it is well-known that about everything concerning
the transitive closure of this relation is undecidable, since semi-Thue systems can
represent the computations of a Turing machine. The same undecidability results
clearly hold also for term rewriting systems.

Let us modify the generation of the relation. Suppose, for instance, that we
forbid the contexts and allow only substitutions o:

st if s=go A t=do A (g~d)eR

In the case of words, this may reduces more or less to the definition of Post
rewriting systems: A Post rewriting system is a finite set of pairs g-d of words
g,de(AuX)™* containing letters and variables. The generated relation is the set of all
pairs go—do for all substitutions o of variables by words. Unfortunately, it is
well-known that these systems can simulate a Turing machine, and again almost
everything concerning the transitive closure still is undecidable.

Actually the analogy here points to something that we discussed in section II:
what is the analogue of word concatenation in the case of trees? Using Steinby’s
definition again, we define the family Rat of rational sets in T(F)xT(F) as follows:

(1) Any finite subset of T(F)xT(F) is rational.

(2) R,R’eRat = RuR’ eRat.

(3) Ry, ..., RoeRat a feF = {fls;, ..o 5,0, flt, .0 0t,)s Vi (st )eR;}eRat,

(4) ReRat aclx,,...,x, )eT(Fulx,,...,x,}) = lcls;, ..., 5,),cle,, ... ,t,) 5 Vi (s;,¢;.)eR} e Rat.

. Then Steinby proves the following proposition.

Proposition. The family Rat in T(FuX)xT(FuX) is closed by composition and
inverse and contains the graph of any morphism T(FuX)-T{(FuX).

Proof: in Steinby [1983].
The family Rat is also preserved by intersection. This property is interesting
in itself, but is not satisfied by ordinary transductions on words. Also the trans-
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ductions thus defined have locally finite image: This notion of rationality does not
extend really the corresponding notion on words.

In fact, in section II, we assumed that concatenation was to be replaced by
substitution. In this setting, another modification of the way a system generates a
relation is to forbid substitutions:

s=t if  s=clg) A t=cld) A (g~d)eR
This amounts to forbidding variables in the system: all terms g and d are

‘ground’ terms, and we have a ground term rewriting system. Supposing that
letters are unary symbols, words are represented by filiform trees. What we get

“in this case is the notion of suflix rewriting: the relation {(ug,ud); ueA* A (g-d)eR}.

This notion has been studied first by Biichi [1964) who proved the rationality of
the language of all words accessible from a given axiom, and by Caucal [1988]
who constructs a rational transduction R such that «Rv < u-*y. The transductions
thus constructed are not general, since they are preserved by inverse, composition,
but also iteration (star composition): They are the concatenations AR, where A is
the identity of A™ and R is a recognizable subset of A*xA*. In the case of trees,
Dauchet & Tison [1985] prove a similar result, They define ground tree transducers
by considering trees in which leaves may be labelled also by states, considered as
constant function symbols.

Definition. Given an ascending tree automaton with state set Q, consider the
transition ¢, ...qnf»q as a grouncl rewriting rule Aqir -390 —9 and let s—¢ be the
generated relation over T(FuQ). A ground tree transducer is the relation

{{s,) 5 (Ju) s a_* u At af" u} for two given ascending tree automata Q and Q.

The procedure described in this definition is reminiscent of the AR decomposition
of the transduction representing sufix rewritings: the ascending automaton Q
recognizes some subtree of s, stopping short before completing the recognition,
hence leaving some prefix « untouched. Then Q considered as a descending
automaton recognizes the remaining suffixes of ¢ that are not in «. Actually Q and
Q' may be united into QuQ’ modulo state renaming and a few e-transitions, so
that a unique automaton is good enough. These ground tree transducers have several
qualities :

Theorem. 1°) The ground tree transducer contain the identity and are closed by
composition, inverse and iteration. They give of a rational forest a rational image.
2°) A ground tree transducer can be associated with any ground term rewriting
spstem R in such a way that s ~t for R if and only if s~ t for the transducer.

Proof: There are several proofs of these results. For the most up to date, cf.
Dauchet & Tison [1990], where they use the tree-superposition technique described
above.
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These ground tree transducers share with ordinary word transductions another
pleasant property: accessibility is decidable (sce Deruyver & Gilleron [1989]). Since
ground tree transducers are preserved by iteration, this result comes from the fact
that the ground tree transducers generate decidable relations. Only drawback:
reduced to filiform trees, i.e. to words, they correspond to the recognizable trans-
ductions, of the form AR, and not to all rational transductions.

VI. GRAMMARS OF RELATIONS

There is still another way to define tree transductions: by a grammar generating
the relation, in the same vein as for words (see example 1). This has been tried
with concatenation replaced by prefixing a function symbol to two or more trees.
It has not been tried using tree substitution instead. Let us define recursively
rélations as follows. : ' ’

Example ;7: Let I(x,y) be defined over T({b,a,c}), with «(d)=2, a(a)=1 and «(c)=o,
by ' -
I = (b(x,p),b(u,v)) where I{x,u)ally,) or (ax,ap) where I(x,p) or (c0c)

Then 1 clearly is the identity on T({b,a,c}). The definition above may be written
slightly more concisely:
I = (b(x,),b(,)), L, Ipv + (ax,ap), Ixp + (c,c)

The binary relations have been written as binary hyperarcs: Ixy instead of I(x,p),
to tell them at first sight from function symbols.

This example ‘suggests that this sort of recursive definition should characterize
‘rational’ relations. Unfortunately, these binary relations contain the identity and
are preserved by inverse, but not by composition.

Example §: Example 5 can be redefined in this way:

R = (flx,y,2),b(b{u,v),w)), Row,Iyv,Izw + (blx,y),b(u,v)), Low, Iyv
S = (blx,p),blu,v)), R'ux,Ipv
R’ =(flx,y,2),b(b{w,v),w)), R'xu,Ipv,Izw + I

This can be drawn as below (see next page).

It can be proved that the composition R.S cannot be defined recursively using only
.binary relations. The idea of the proof is to notice that the second projection of R
contains an even number of b’s until the end, when a za+1°° symbol b is added;
similarly, the first projection of R’ contains an even number of b, but the first
projection of S starts with a b. Therefore, S is always one b late, or early. The
composition can be defined using a ternary relation:

_RsS = (fixy,2),b(u,v)), Txyu,Izv | |
T = (fix,y,2), %, fu,o,w)), Toyu,Izv,Ix'w + (blx,p),z,Au,v,w)), Ixu, Iyv, [zw



I3

Xy 2z b w
AVA g NS
u v I I
R
I
= b b
x/ \y u/ \v
NS
R’ I

As soon as n-ary relations are allowed (n>2), interesting problems arise. The
composition of two such relations need no longer have a rational range, nor even
an algebraic one.

Example 9: Consider the alphabet F={a,b,c,e} with arities 1, 1, 1 and o, and
relations ReT(F)xT(F)? and AcT(F)*xT(F) defined below:

I

(au,a*x,a%y,a*z), Ruxyz + (g,¢€,¢,€)

R

A = (a*x,ap,az,au), Axyzu + B
B = (ax,a’p,az,bu), Bxyzu + C
C

= {ax,ap,a®z,cu), Cxpzu  + (g,€,¢,€)
Then it can be checked that the composition R.A is the relation {(a”, a"™b"¢"); n >0}
where € has not been written, to emphazise the analogy with words. Actually the
example could have been written entirely in the framework of words. The image
ReA(a*) is the language {a"b"c"; n >0} which is not even algebraic!

If the recursive definitions are viewed as grammars, then the rewriting of
several occurrences is synchronized. This synchronization is described by the hyperarcs
like Ixp or Ruxpz, the last one, for instance, meaning that the productions at
occurrences %, x, y and z must be synchronized and chosen among the productions
of R. Understandably, too much synchronization forbids the generated language to
be rational. Grazon & Raoult [1990] have designed a condition of ‘desynchronization
with delay’ similar to the ‘separation with delay’ of Arnold & Dauchet [1982],
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which ensures that the generated language is rational in the usual sense. In this
case, all the stability results of rational tree languages carry over to relations. But
a condition ensuring the stability under composition remains yet to be found.

CONCLUSION

The simplicity of rational word transductions seems lost among the trees, but the
analogy between words and trees is probably misleading. Tree relations should
rather be compared with relations between tuples of words: Rc(A*)*x(A*)*, a topic
on which results are not plenty. The reader also is bound to get lost in the jungle
of tree transformations. In almost all directions, non trivial results have been
obtained. The most general definition so far seems to be through bimorphisms
(cf. Arnold & Dauchet [1932]) and linear ascending transducers (cf. Engelfriet [19751),
which are incomparable in strength. Grammars of relations seem promising, but
no condition has been found yet to ensure the stability under composition. Another
recent tentative defines a transduction by a formula in second order monadic logic
(cf. Courcelle [1990]). These transductions contain the identity and are preserved
by composition and inverse. But they have a locally finite image. There may still
be discussions as to what constitutes the exact analogue of word transductions in
the case of trees.

v
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