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A theorem about the asymptotic behaviour of
stationary functions of some inf-convolution
equations

Philippe Jacquet
March 8, 1991

Abstract. Let f(z) and g(z) be two positive real valued functions defined
on the positive real numbers z, such that f(0) = g(0) = 0. Let h(z) be
another positive real valued function, we note f x h the function which
gives to z > 0 the value of the lower bound of function h(y) + f(z — y)
for y € [0,z]. We suppose that h(z) is a stationary function of the (f,g)-
convolution, namely h(z) = fxh(z)+g(z) for all z > 0. We show that under
very general conditions, the asymptotic behavior of h(z) when z — oo, only
depends on the asymptotic behavior of f(z) and g(z). We precisely describe
this behavior when f(z) and g(z) are asymptotically polynomial.

Un théoreme sur le comportement asymptotique
des fonctions stationnaires de quelques équations en
inf-convolution

Résumé. Soient f(z) et g(z) deux fonctions a valeurs positives définies
pour z réels positifs telles que f(0) = ¢g(0) = 0. Soit h(z) une autre fonction
a valeurs positive, on note f«h la fonction qui & z > 0 associe la valeur de la
borne inférieure de la fonction h{y) + f(z — y) quand y € [0, z]. On suppose
que h(z) est une fonction stationnaire de la (f, g)-convolution, c’est & dire
h(z) = fxh(z)+ g(z) pour tout z > 0. Nous montrons sous des hypothéses
trés générales que le comportement asymptotique de h(z) quand = — oo ne
dépend que des comportements asymptotiques de f(z) et g(z). On précise
ce comportement quand f(z) et g(z) sont asymptotiquement polynomiales.



1 INTRODUCTION
.Let f(z) and g(z) be positive real valued functions defined on the positive
recal numbers . We assume f(0) = g(0) = 0. We suppose that functions
f(z) and g(z) are locally bounded. A function is locally bounded if it is
bounded on every compact. Note that upper semicontinuity implies local
boundness. We define the sequence of positive real valued functions h,(z)
as

ha(z) = __min {'ff(zo + (o +-~+m‘-)} ‘ (1)
1=1

z1+-+Tn=cx

It is equivalent to define h,(z) using iterated inf-convolutions, namely
hny1(z) = yg}g;]{hn(y) + flz - y)} +9(2), (2)

with ho(z) = f(z) + g(z). If h(z) is a positive real valued function we
note by f x h(z) the function minco-){ha(y) + f(z — y)}. This kind of
convolution is called inf-convolution. The specific operation which maps
function h to function fxh+g will be called the (f, g)-convolution of function
h. Therefore the sequence h, is the result of iterated (f,g)-convolutions
over initial function hg. Formulation (2) reveals that our problem finds
numerous applications in dynamic programming. But the formulation (1)
refers to the statement of the problem arising in the asymptotic evaluation
of the tail distribution of waiting times in LaPalice queueings. There are
also applications in task scheduling problems.

Our purpose is to determine the asymptotic behavior of the limiting
function hA(z) = lim,_,c hn(z). Note that the sequence h,(z) is decreasing
with respect to subscript n and h(z) > g(z).

Theorem 1 If f(z) ~ Az* and g(z) ~ Bz? when z — +o0o0 with @ > 1 and
B > 0, we have the asymptotic equivalence h(z) ~ Cz” when z — oo with
vy=B8+1-pF/aand C = (ﬂ:l’”_"(B(O’T-ll)(a—l)/a_

Notethat 3 < ¥ < aand vy > 1. The theorem is in fact a kind of consequence
of the following more general theorem.

Theorem 2 Let f(z), g(z), f'(z) and ¢g'(z) be four locally bounded positive
functions with value zero at z = 0. Let h'(z) (respectively h”(z)) be station-
ary function of the (f,g)-convolution (respectively the (f’,g’)-convolution),
namely h(z) = fxh(z) + g(z). We assume f(z) and g(z) both tending to
infinity when ¢ — oco. If f(z) ~ f'(z) and ¢'(z) ~ g(z) when z — oo, then
k' (z) ~ h"(z), when z — oo.



2 PROOF OF THE THEOREMS

In order to prove the main theoremn we will refer to some simple lemmas. As
a notational convention we set f' > [ when f'(x) and f"(x) are functions
as meaning Vee: f'(a) > ["(). The following one is obvious.

Lemma 4 Let f'(x) and ["(x), ¢'(x) and ¢"(z), hi{(z) and hi(z) be positioe
Junctions defined on the positive real numbers, let us consider the sequenee
I () (respectively h(x)) defined with the iterated ([, ¢')-convolulion with
inilial function hl\(x) (respectively with the (7, ¢")-convolulions with initial
Junction hj(x)). If 1> [", or ¢" > ¢", or by > b, then bl > 1Y for all
mleger n > .

It is obvious that funclions h, () are locally bounded, therefore function
h() is upper semicontinuous as a limit of a decreasing sequence of locally
bounded functions. Since L(x) and f(x) are not continuous function h(y) +
S = y) does not necessary reaches its minimum when y varies in [0, z].
Therefore we need the following tool.

Let B'(e) be an arbitrarily chosen positive real valued function. Since
function W(x) is a priori a general function A'(y) + f(z - y) does not. neces-
sarily reach its minimum on [0,x]. Let € be a real strictly positive number,
we nole d(x,e) one of the value of y which approaches the minimum of
h(y)+ S —y) closer than : h(d(x,e))+ f(z —d(z,€)) < fxh(x)+e. The
strangeness of this definition comes from the fact that we do not force the
choice of d{z,e) among certainly numerous possibilities. Strictly speaking
we maybe have to refer Lo the axiom of choice in order to have proper defi-
nition. But it is unuseful for the restrictive application of our analysis. For
convenience of notation we define d*(z,€) = d(d""(z,€),e27") for for all
integer n greater than 1, we set d%(z,¢) = z.

Lemma 3 Function h(x) is a stationary function of the ( f, g)-convolulion:

h(z)= [ *xh(z)+g(x), (3)

Proof. This lemma seems obvious, but in fact it is not, since we only know
that convergence h,(x) — h(z) s simple. Since h,(z) is a decreasing se-
quence we have fxh < fxh,. Therefore forall 2 > 0 fal(z)+g(z) < Iy ()
and, at the limit

S xh(z)+ g(z) < h(z) . (1)

Let function d(x, <) defined for function h(z). We have

[ xh(x) > h(d(z,€))+ f(z —d(z,€))—¢ .



Therefore since obviously h,(d(z,€))+ f(z—d(z,¢)) > min{h,(y)+f(z-y)},
[ *h(2) + 9(2) > hng1(z) — € + h(d(z,6)) — ha(d(z,€)) ,
and at the limit, since lim h,(d(z,¢)) = h(d(z,¢)),
fxh(z)+g(z)> h(z)—¢, (5)
Since € can be made as small as possible, this last inequality, together with

(4), completes the proof of the lemma. [

Lemma 5 FEvery function h'(z) stationary function of the ( f, g)-convolution
satisfies f+ g > h' > g.

Corollary 6 Every function h'(z) which is stationary function of the (f,q)-
convolution is locally bounded

Lemma 7 Let h'(z) be a stationary function of the (f, g)-convolution. Let
D > 0 and z > 0 the number of integers n such that d*(z,e) > D 1is less
than (h'(z) + €) max,>p{g(z)~'}.

Proof. The sequence :1"(1:,6) obviously decreases, since d(z,¢) < 2. Using
identity (3), we reach inequality

h(z) + & 2 h(d(z,¢)) + f(z - d(z,¢)) + 9(2) (6)

that can be iterated again from right hand side, where expression A(d(z,¢))
can be found. Therefore, for each integer n we have

A(e)+ (1= 2)e 2 h(d"(z,€))+ Y. J(d(2,6) - ¢ (z,)) + g(d(a,))
1=1

(7)

From the above inequality it is clear that 3, g(d'(z,¢)) < A'(z) + ¢. (]

Lemma 8 Let h/(z) be a stationary function of the (f, g)-convolution, we
have h > K.

Proof. Applying lemma 3 with hg(z) = A/(z) we have through lemma 5
ho > hg. Therefore, for all integer n, h, > h,. Since h], = b’ because h'(z)
is stationary function, we get for all n, h, > A’ and at the limit A > h’. ®»

Lemma 9 Let D > 0 such that miny>p{g(y)} > 0. Let h'(z) be a stationary
function of the (f, g)-convolution, therefore h(z) — h(z) is bounded.



o

Proof. Let h(z) = h'(z) + 6(z) with §(z) > 0, by lemma 8. Function §(z) is
locally bounded by corollary 6. Let us consider mapping d(z,¢) defined for
h'(z). Since h(z) is a stationary function we have

h'(z) + é(z) = yrenl(i)r'lx]{h'(y) +6(y)+ flz —y)} +9(z) . (8)
Therefore

K (z) +8(z) < h'(d(z,¢€)) + 8(d(z,€)) + f(z — d(z,€)) + 9(2) . (9)

Using the definition of d(z,¢) and the fact that h’(z) is a stationary function
of the (f, g)-convolution we finally get

8(z) < 6(d(z,e))+ €. (10)

Iterating (10) using the d"(z,¢)’s we obtain é(z) < 6(d™(z,€))+ (1 - 2"")e.
Since g(z) — oo when z — oo let D > 0 such that miny>p{g(y)} > 0. By
lemma 7, sequence d"(z,¢) gets below threshold D in a finite number of
steps and therefore for all z: 6(z) < maxy,<p{6(y)} + ¢. n

Corollary 10 Let g(z) — oo when z — oo, all stationary functions of the
(f, g)-convolution are equivalent when x — oo.

Lemma 11 Let f(z) and g(z) be continuous at x = 0. Furthermore, let g(z)
be an increasing function with ¢ = 0 as only root (solution of the equation
g(z) = 0). h(z) is the only stationary function of the ( f, g)-convolution such
that h(0) = 0.

Proof. By lemma 7, the sequence d"(z,¢) obviously converges to zero.
Therefore iterating (10) we obtain §(z) < §(d™(z,£))+(1~2"")e. Since §(z)
is continuous at = 0 (because both function h’(z) and h(z) are betwecn
g(x) and f(z) + g(z)), we have lim, 6(d"(z,¢)) = 0 and we terminate the
proof of the lemma because € can be made as small as possible. |
Now we are ready to prove the following main theorem.

Lemma 12 Let g(z) — oo when £ — oo. Let g'(z) be a function following
the same statement than g(z) with additional ¢'(z) ~ g(z) when z — co.
Let h(z) and h'(z) be functions being respectively stationary functions of
the (f, g)-convolution and of the (f,g')-convolution. We have h'(z) ~ h(z)
when z — oo.

Proof. If g(z) — oo then h(z) — oo. It does not hurt the generality of
the proposition to suppose ¢’ > g¢. Indeed, if it is not the case, we can
define functions g(z) = sup{g(z),¢'(z)} and g(z) = inf{g(z),g'(z)}. We

5



have j > g,¢' > § and §(z) ~ j(z) when z — oco. Let h(z) and h(z) be
rosp('ctwcly the stationary function of the (f,g) and (f, §)-convolutions, by
lemma 3 k >,h,h' > h and if we prove h(z) ~ h(z) when z — oo, then we
will prove h(z) ~ h'(z).

Let ¢'(z) = g(z) + r(z) with 7(z) > 0, therefore A’ > h and let h'(z) =
h(z) + 6(z) with 8(z) > 0. We will refer to mappings d(z,¢) and d"*(z,¢),
with arbitrary € > 0, as defined as for function h(z) in the (f, g)-convolution.
We have

M=) +6(z) = yé‘iéf‘x]{h(y) +8(y) + f(z - 9)} + 9(z) + r(z) . (11)

Since d(z,¢) € [0, z] we readily have
h(z) + 6(z) < h(d(z,¢€)) + &(d(z,€)) + f(z - d(z,€)) + g9(z) + r(z) . (12)

Using the definition of d(z,€) and the fact that h(z) is stationary function
of the (f, g)-convolution, we get

6(z) < b(d(z,e))+r(z)+¢. (13)

Therefore for all integer n > 1 we have

1=n—

1
§(a) < (1-2Me +6(d(z )+ Y. r(di(z,€)) . (14)
1=0

Let D be a real number such that Vo > D: r(z)/g(z) < ¢ and such that
miny>p{g(y)} > 0 that is a direct consequence of g(z) ~ ¢'(z) and g(z) —
oo when z — oo. Since h(z) and h'(z) are locally bounded, there exists

A > 0 such that sup,<p{h'(z)} < A. For all z > D let N(z) be the first
integer n such that d*(z,e) < D. We have in every case, when @ > D

=N(x)-1

)< A+ Z r(d'(z,€)) + ¢, (15)

i=0
that we can rewrite and extend to
i=N(z)-1 ) ) .
§(z)<A+e+e Y. g(d(z,e)) + f(d'F (z,€) — d'(z,€)) . (16)
1=0
Using equation (7) we know that

i=n

D J(di(z,e) - dN(z,€)) + 9(d'(z,€)) < h(z) - h(d(z,€)) +¢ -

1=1



-}

Therefore for all z > D
§(z)<eh(z)+ A+e+¢? (17)

which proves that h'(z) ~ h(z) since € can be made as small as possible and
h(z) — oo when z — oo. n
The following theorem finds similar proof.

Lemma 13 Let f(z) — oo and g(z) — oo when x — oo. Let f'(z) be a
function following the same statement than f(z) with additional condition
f(z) ~ f(z) when = — oo. Let h(z) and h'(z) be function be respectively
stationary functions of the (f, g)-convolution and of the ( f’, g)-convolution.
We have h'(z) ~ h(z) when z — .

Proof. We follow the same proof as for lemma 12, except that we now set
f'(z) = f(z)+s(z) with s(z) > 0. We obtain companion inequality of (13):

6(z) < §(d(z,¢)) + s(z — d(z,¢)) + ¢, (18)
and we obtain
1=n-~1
é(z) Se+(d%(z,e))+ Y s(di(z,e) - d'F(z,¢)). (19)
1=0

Let E such that Yz > E: s(z)/f(z) < € and let Q be max.<g{f'(z)}. Let
D be such that Yz > D: g(z) > Q™! and let N(z) and A having the same
formal definitions as in the proof of lemma 12. For z > D we now have
companion inequality of (14):

N(z)-1
fz)y<Atet+ Y s (d*(x,e)_d‘“(z,e)) . (20)

i=0

The term d*(z,€) — d*+!(z,¢) is either greater or smaller than E. Let I(z)
be the set of integer i smaller than N(z) such that d*(z,¢) — d*!(z,¢) < E.
Let J(z) be the complementary set of integers i smaller than N(z) such that
d'(z,¢) — d'*!(z,e) > E. We can split summation in inequation (20) and
obtain

N(z)-1
> s(d@me-dt@e)= Y + 3 . (21)
1=0 i€l(x) i€J(z)



It is clear that

Z s (di(z,e) - d'“(:t,s)) <
1€J(z)
i=N(z)-1 ‘ . .
e Y. 9(d(z,e))+ f(dH (z,6) - di(z,¢)) .

=0

Using arguement as in proof of lemma 12 we get

> s (di(z,e) - &+ (a,6)) < eh(a) + 2. (22)
i€J(z)

About the second part of the split summation it is also clear that

> s (di(z,e) - d*(z,6)) < N(2)R .

i€l(x)

Calling to lemma 7 and the exact definition of D, it appears that N(z) <
(h(z) + €)eQ2~!. Therefore we readily obtain

6(z) < A +¢e+2eh(z)+€?) . (23)

which allows us to conclude, since € can be made as small as possible. ]
In order to conclude about theorem 1 we have to enter a technical lemma.
The difficult point about these ( f, g)-convolution is that it is generally very
difficult to derive function h(z) from function f(z) and g(z). Conversely,
given function f(z) and h(z), it is very easy to derive function g(z) such
that function h(z) is stationary function of the (f, g)-convolution.
Indeed
9(z) = h(z) - [ h(z) . (24)

Lemma 14 Let f(z) = Az* and h(z) = Cz” such that a > v > 1, function
g(z) defined by (24) satisfies g(z) ~ BxP, such that 3 >0 andy =B+ 1 —
B/a and C = Y2 (ple-ly(a-1)/a,

Proof. Since the proof is technically classic and far from the techniques
developed in this section, we defer it to appendix.

3 ONE ECCENTRIC CASE



One eccentric case consists in considering f(z) as an improper function. We
say that function f(z) is an improper function when there exists D > 0
such that Vz > D: f(z) = +o0, and f(z) is finite for all z < D. We call
the real number D the edge of function f(z). We suppose f(0) = 0 and
additional conditions such as local boundness on right open interval [0, D{,
can be assumed in order to match conditions listed in the first paragraph of
the introduction. We consider function g(z) as a proper function. It is casy
to parallelize analysis of section 2. Without difficulty, lemmas, theorems
remain true up to lemma 12. One needs to be more careful about lemma 13.
First we have to consider one special class of improper functions, namely
the class of bounded improper functions. An improper function f(z) with
edge D is said to be bounded if f(z) is uniformly bounded on [0, D|. Little
reflection allow us to derive the following theorem.

Theorem 15 Let f(z) and f'(z) be two bounded improper functions with
the same edge. Let g(z) such that g(z — oo when z — oco. Let h(z) and
h'(z) be function be respectively stationary function of the (f, g)-convolution
and of the (f', g)-convolution. We have h'(z) ~ h(z) when z — oo.

In the same order of idea we have the companion lemma of lemma 14.

Lemma 16 Let f(z) =0 ifz < D and f(z) = 00 when ¢ > D. Let g(z)
be an increasing upper semicontinuous function (always with g(0) = 0). Let
h(z) be the stationary function of the (f, g)-convolution, we have

h(z) = g(z)+ g(z - D)+ ---+ g(z - nD), (25)

with n the greatest integer such that x — nD > 0.

Proof 1t is clear that h(z) = g(z) when z < D by lemma 5. It is also clear
that h(z) is an increasing upper semicontinuous function. Therefore h(z) is
right semicontinuous and

min {k(y) + J(z - 1)} = h(z = D). (26)
Therefore h(z) = g(z) + h(z — D). [

If we apply the previous lemma to g(z) = Bz the following corollary holds.

Corollary 17 Let f(z) be a bounded improper function with edge D, and

let g(z) such that g(z) ~ BzP, then h(z) ~ ﬁ+81 D:vﬁ“.

The next theorem comes very easily



Theorem 18 Let f(z) be simply improper function with edge D, and let
g() such that g(z) ~ BzP, therefore h(z) ~ zBypz’*'.
Proof. From lemma 16 it is clear that there exists function A/(z) ~ B/ DzP+!
such that h > h’. It suffices to take h'(z) as the stationary function of the
(f', g)-convolution with f'(z), a bounded improper function with edge D
such that f' < f. If we take f(z) as the improper function of edge D/(1+¢)
identical to f(z) when z < D/(1 + ¢), it is clear that f’(z) is a bounded
-improper function (because f(z) is locally bounded) which dominates f(z).
Let h”(z) be the stationary function of the (f’, g)-convolution, we have A" >

h and h"'(z) ~ (},If)gmﬁ“. ]

Reference

1 P. JACQUET “Tail distributions in LaPalice queuein S”, in prepara-
tion.
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L3

APPENDIX
Proof of lemma 14. Our purpose is to develop an asymptotic expansion of
#(z) = minyep 1 {Cy" + A(z — y)*}. We can rewrite

¢(r) = min {Cz"(1 —1)Y + Az} (27)
te(0,1]

The minimum is reached at to which satisfies the zero gradient condition,
namely

YCz (1 = t5)" = adzot* 1 . (28)
We have from this expression the following identity
C 1/(a-1)
= (Lo -w)) , (29)

and the obvious inequality

1/{a-1)
to < 13 = (%z’“") . (30)

From (29) we obtain

af{a-1)
$(r) = Cz"(1 - 1) + Az® (g—g—x"“"(l — to)") ,

therefore, using (30)
1C af(a-1)
#(z) > Cz"(1 - t5)" + Az® (Jz"_"(l - t(‘))") . (31)

Easy algebra, using elementary tools as (1 - a)* > 1 — ua when u > 0, leads
to the estimate

atl
L.A (ﬁ) o=t xg—%::i’) .

> Yo B B -
$(z) > Cxz 2~ Al (32)
An upper bound is given by
$(z) < C(1 - 15)” + Az®(5)" (33)

which gives the following estimate, arguing with (1 —a)* <1 — pa + (g —
1)a?/2,

2
#(z) < Cz" - Bz? + 3’;—10 ((Z—i—) SR = (34)
Inequalities (32) and (34) are sufficient to conclude that g(z) = h(z)—¢(z) ~
Bz® when z — . [
11
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