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RDL//C : Un Langage de Programmation
Paralléele pour SGBD Relationnels

Jean-Pierre Cheiney®, Gerald Kiernan™ , Christophe de Maindreville®"

Résumé : Ce rapport présente l'extension apportée & un compilateur de régles pour supporter le
parallélisme. Le langage de régles est appelé RDLJ[C. Il est basé sur une version étendue du calcul
relationnel de tuples. Le granule de parallélisme introduit est la régle de production. L'’utilisateur spécifie
dans un langage de contrile, le parallélisme qu’il désire apporter & son programme de régles. De son point
de vue, le parallélisme comsiste en la définition d'un ordre partiel sur I'exécution des régles. Le compilateur
traduit les programmes de régles en programmes C/SQL qui s’exécutent au dessus de SGBD relationnels.
Notre implémentation a été effectué au sein d'un réseau de stations SUN qui correspond & une architecture
shared nothing MIMD. Le programme C généré par le compilateur se connecte aux SGBD sur les
différentes stations SUN. Les performances initiales du systéme sont présentées. Elles montrent les
avantages et limitations d’'une telle approche. La contribution de cette recherche est de montrer comment le
parallélisme peut étre supporté au sein d'un programme de régles pour SGBD dans un environnement
distribué.

Mots clés : Regles de production, parallélisme, langage de contrile, compilateur, SGBD.

A Database Rule Language Compiler
Supporting Parallelism

Jean-Pierre Cheiney Gerald Kiernan, Christophe de Maindreville

Abstract : This paper presents an extension to a database rule language compiler to support parallelism. The
rule language is called RDL//C and is based on an extended version of tuple relational calculus. The grain of
parallelism introduced into RDL{/C is the production rule. The user is made aware of parallel processing by
having to specify in a sub-language of control which sets of rules are to run in parallel and in which order. From
the user view point, the parallelism is managed as a partial order over a set of rules. The compiler translates
rule programs into C based applications which run over the DBMS. Our implementation is over a set of
UNIX! workstations which corresponds to a MIMD shared-nothing architecture. Parallelism is achieved by
having the application connect to different DBMS servers residing on workstations on a local network. Initial
performance results are presented.  They show the advantages and limitations of parallel execution in this
architecture. The main contributions of the paper are (i) the definition of a sub-language of control to specify
a parallel execution of a rule program and (ii) to show how parallel extensions can be brought to a rule
language compiler using a standard distributed environment with a relational DBMS.

Key words : Production Rules, Parallelism, Language of Control, Compilation, RDBMS, Implementation.
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Abstract : This paper pr;senls an extension to a database rule language compiler to support parallelism. The
rule language is called RDL//C and is based on an extended version of tuple relational calculus. The grain of
parallelism introduced into RDL//C is the production rule. The user is made aware of parallel processing by
having to specify in ‘a sub-language of control which sets of rules are to run in parallel and in which order. From

‘the user view point, the parallelism is managed as a. partial order over a set of rules. The compiler translates

rule programs into C based applications which run. over the DBMS. . Our .implementation is over a set of
UNIX? workstations which corresponds to a MIMD shared-nqthing_ architecture. Parallelism is achieved by

' "having the application connect to differené DBMS servers residing on workstations on a local network. Initial
" performance results are presented.  They show the advantages and limitations of parallel éxecution in this
_architecture. The main contributions of the paper are (i) the definition of a sub-language of control to specify

a parallel execution of a rule program and (ii) to show how parallel extensions can be brought to a rule
language compiler using a standard distributed environment with a relational DBMS.

Key words : Production’ Rules, Parallelism, Language of Control, Compilation, RDBMS, fmplementaiion.

1. Introduction

Rule languages have long been recognized as candidates for parallel languages [Almasi89,
Ganguly90, Wolfson90]. Parallel evaluation of Datalog programs has been studied in [Ganguly90,
Wolfson90]. These papers introduce the notion of discriminating predicate which allows the
instanciations of rules to be partitioned among different processors. Both papers are concerned with

. the reduction of communication overhead and load balancing between the processors and discuss the

trade-off between non-redundancy and communication costs. One important result stated in
[Wolfson90} .is the undecidability of the décomposi'tion problem. The parallel evaluation of
Datalog-neg programs is discussed in [Wolfson90]. For such programs, in general, the processors have
to be synchronized at each stratum. This means that each processor has to wait until all the
processors have completed their c_om'putation before proceeding to the next stratum,

Ecole Nationale Supérieure des Télécommunications - 46 rue Barrault -75013 Paris - FRANCE and INRIA Sabre Project
Institut National de la Recherche en Informatique et Automatique - INRIA Sabre Project - Rocquencourt , 78153 Le
Chesnay Cedex - FRANCE.

t UNIXisa trademark of AT&T Bell Laboratories

e



Experiments with parallelism in production systems such as OPS5 [Brownston85] have been
presented in [Gupta89]. In such environments, it is up to the syétem to detect the pbssible sources of
parallclism in a rule program. It is also the system’s job to guarantee that the parallel exccution of
a rule program is equivalent to the sequential one. Different sources of parallelism have been
identified [Almasi89). The most obvious one is the production rule as the unit of parallelism.
Production rules which can run independently are detected and each group is assigned a processor.
Three other sources of parallelism are AND-parallelism, OR-parallelism, and Parallel pattern
matching. These last three sources of parallclism concern intra-rule parallelism. A single
production rule is decomposed into sub-parts which can run indcpendently. The first two types of
parallclism come from AND/OR graphs which represent the connection between the predicates and
rules which comprise a production system. In the case of Horn clauses, for example, the ANDs arc
the conjunction of expressions which form the body of a rule; and the ORs are rules with identical
hcads. Parallcl pattern matching is the implementation of a paraliel version of the inference
engine.

In [Almasi89], the authors report the claim that a production rule application which ié-_writtcn
with parallel processing in mind yields a higher degree of useful parallelism than one which is
written with a serial machine in mind. Moreover, the performance gained is proportional to the
number of rules in the system; and of course to the number of processing elements. Théy also claim
that the _uséful parallelism and the speed-up from the "rule-per-processdr-approach" is.yet to be
fully established. This indicates that while it is up to the system to detect and implement
parallelism, the user must know how the system achieves this parallelism in order to exploit it
fully. In [Srivastava89], two types of parallelism are proposed for database production systems.
These are user-visible and user-transparent categories. It is the user’s responsibility to divide a
task into non-interacting subtasks and it is the system's responsibility to execute cach element of a

subtask in parallel.

The approach presented in this paper supports parallelism at the rule level. The user is made
aware of parallel processing by having to specify which sets of rules are to run in parallel and in
which order. A control sub-language is used for this purpose. We propose that a parallel algorithm
is better than a sequential one on which a certain degree of parallelism might be automatically
extracted. We do not address in this paper the automatic detection of parallelism in rule programs.

This paper presents an extension to a rule language compiler to support parallelism. A prototype of
the RDL//C compiler is operational on a network of UNIX workstations [Unix84]. Sincc RDL/C
[Kiernan90b, Kiernan91] production rules are based on relational calculus, théy can be solved by a
relational DBMS without having to extract data during the inference cycle. The inference is driven
from the application (generated by the compiler) through a series of calls to the DBMS using an
SQL interface. The compiler manages parallelism in production rules by generating a program
which connects to several DBMS over a network of workstations. In this framework, each DBMS is a
parallel processing unit. The application communicates with each DBMS using standard UNIX
interprocess communication facilities called sockets. To run a set of rules in parallel, the application
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process forks (fork is a UNIX system call which creates a new process from a current process) a
number of times equal to the number of scts of rules which are to be run in parallel. The system
architecture is an MIMD share-nothing architecture. Intra-rule parallelism cannot be supported
without modification of the underlying DBMS, it is therefore not discussed in this paper.

The main contribution of the paper is to show how a parallel production system can be implemented
over a network of workstations. Initial performance results indicate the advantages of this
approach for high performance production rule systems. Section 2 presents an overview of the
production rule langﬁagé which is used throughout this paper. Production Compilation Networks
(PCN) {Maindreville88] as a model of parallelism are introduced in section 3. PCN are the
computational model for the RDL//C production rule system. Section 4 describes the syntactic
extensions that were brought to the serial version of the compiler to support parallelism. Section 5
concerns the architecture. The compiler and the run-time support are presented. Section 6 details the
implementation and section 7 gives performance results and discuss the advantages and limitations
of this approach.

2. Overview of the Language

RDL//C is derived from RDL1 [Maindreville88, Kiernan90a}, a production rule language which has
been integrated in the Sabrina RDBMS [Gardarin89]. The RDL//C language supports declarative
programming based on RDL1 and procedural programming based on C code. In this section, we present
an overview of the language through some examples. The syntax and semantics of RDL//C are given
in [Kiernan90b, Kiernan91]. '

2.1. Illustrative Example

Consider the base relation Parent having the schema Parent (asc integer, desc integer). The
following rule program computes the transitive closure of the Parent relation :

MOUR axestor ;

BASE

Parert. (asc irt, desc int);
DEDICED

Aeestar LIKE Parent;
RULES
rl is

IF Parent &)

THN + Arcestar (x) ;

2is’

IF Parent &) ard Arcestorfy) x.desc = y.ax)
TEN + Ancestar {asc = x.asc, desc = y.desc);
END MODULE

A parallel version of this program will be presented in section 7, when performance issues are
discussed.



- 2.2, The Kernel Language
2.2.1.  The Syntax

‘The rule part of an RDL//C program is composed of a set of if-then rules. The IF part of a rule is a
tuple relational calculus expression. Its syntax is very close to the syntax of a WHERE clause in the
SQL language. The THEN part of a rule is a set of actions that are insertions, deletions of tuples in
relations, procedural side-effects and variable assignments. A discussion of the latter two types of
actions are beyond the scope of this paper. However, they are described in [Kiemaﬁ90b]. The action
part is very close to the SELECT clause of an SQL statement.

Let Person and Worker, be two relations having the same schema (id integer, name char, age

integer).

The following expressions are valid Left-Hand-Sides (LHS) of rules :
Person(x) and Worker(y) (x.id = y.id)
Foreach x in Person (x.age + 1 > 20)
Person(x) (x.age > 20)

The Right-Hand Side (RHS) of a production rule supports two elementary actions, denoted "+" and
"-".  The update action."+" takes a set of facts and maps a database state into another state which
contains these facts. On the contrary, the action "-" takes a set of facts and deletes it from a rela-
tion. A multiple action consists in a sequence of actions.

The following expressions are valid RHS of rules :
+Person (x)
-Person(x) +Person(id = x.nurber, name = x.name, age = x.age + 1)
+Person (x) + Person(y) - Worker (x) '

Following is a set of valid rules :
If Person(x) then + Worker (x) ;
If Person(x) ( x.id = 4) then -~ Worker(x) ;
If Person(x) then + Person(x) -Person(id= x.id, name= x.name, age= x.age +1);

2.2.2. The Semantics

The semantics adopted for the RDL//C language is a set oriented one: When a condition is
evaluated against the database, it returns the set of instances which make the condition valid.
When an action is executed against the database, it is executed for all the values which appear as
arguments in the action. In the following, we present examples of rule execution.



Let us consider the following rules :

Firing the following rule causes. the insertion into the Worker relation of the contents of the Person

relation . : :
if Person(x) then + Worker(x) ;

Firing the following rule causes the deletion from the R1 relation of the contents of the Person

relation.
if pPerson(x) then - Rl1(x) ;

Firing the following rule leads to a null action. -
. if Person{x) then - Rl1{x) + RI(x) ;

Firing the following rule
if Person(x) and Rl(y) and x.attl = 10 and x.att2 = y.att2
then +Ql (attl = x.attl, att2 = y.attl) - Rl{y) :

causes the insertion into the Q1 relation the set of tuples :
I = {x.attl, y.att2/Person(x) and Rl'(y) and x.attl = 10 and x.att2 = y.att2 }

and the deletion from R1 the set
D = {x | Person(x) and Rl(y) and x.attl = 10 and x.att2 = y.att2)

2.3. Partial Ordering of Rules

The mixing of declarative reasoning and imperative control has been shown necessary for many
applications. A control language has been designed to specify an application mode over the rules. It
induces a partial ordering over the rules. Each expression of the sub-language is declared in the
module. The basic terms of control language are rule names. A general expression exp in the control
language is : : : '
block (exp) means that exp has to be fired until a fixpoint is reached.

seq (expl,exp2 ) means that expl is fired once and then exp2 is fired once.

If a rule name does not appeaf in the control part of the piogram, its firing is chosen at random by
the inference engine. If there is no CONTROL section, the rule interpreter applies a default
strategy. The priority of rules is according to the order of their appearance in the module.

Let us consider a rule program {r1, r2, r3, r4, 15}.

seq (r1, block (r2, r3, r4), r5) is a possible expression. It enforces a computation of the form : (r1)3
((r2)*(r3)*(r4)*)9(r5)2 using standard notation for context-free grammars. The notation () stands
for "fire up to saturation”, * is equal toNor 0 and a is equal to1or0.



3. The PCN Model of Parallelism

The PCN is used as an execution model for the RDL//C language. It provides the infercnce engine
with a graphical representation of a rule program. The PCN model has been introduced in
[Maindreville88]. The PCN model is a Petri Net based model and derived from Predicate Transition
Nets (PrTN). A formal definition of PrTN can be found in [Genrich86]. The structure of a PCN
represents the relationships between rules and relational predicates which occur in a rule program.
" We represent ecach rule by a transition and each relational predicate involved in the rule by a
place. The relational predicates that occur in the condition part of a rule are input places to the
transition representing the rule and the relational pfedicates that occur in the action part of the
rule arc the output places of the transition. The condition of a rule is represented in the transition's
condition. Figure 3.1 represents the PCN associated to the rule program which computes the
transitive closure of the Parent relation. The initializing rule is modelled by the transition T1. The
recursive rule is modelled by the transition T2. Place P corresponds to the Parent relation and Place
A corresponds to the Ancestor relation.

T2 | xdesc=y.asc

+ (x.asc, y.desc)

Figure 3.1: PCN for the Ancestor rules

A marking is a distribution of tokens over the places of a PCN. The token is a basic concept in the
PCN model, and represents a database tuple. Traditionally, a Petri Net bascd model proceeds by
firing transitions. A transition can be fired if it is enabled. A transition firing produces tokens
according to the labels of the output edges. For a given initial marking, a place P has a stable
marking iff none of its input transitions is enabled. A transition T is said to be stable for a given
initial marking iff all its output places have a stable marking. When the PCN reaches a stable
“marking, no transition can be enabled and the PCN evaluator procedure halts. This corresponds to a
fixpoint for the set of rules modelled by the net.

The control language defined in the previous section can be mapped onto a PCN [Maindreville88].
Rule names are then replaced by transition names. A sequence of the control language is called
annotation. A PCN and its annotation constitutes an annotated PCN.

The PCN model supports parallelism at the rule level as it is shown in the following example :
consider the PCN,




add

Figure 3.2: PCN

‘The firing of the transitions t2 and t3 is easxly parallelxzed since they do not share any post places

in the PCN structure. On the contrary, the transitions t4 and t5 are not easily parallelized since the

firing of t5 needs the contents of the place named f which is given by the firing of t4. Such a

restriction is due to the set oriented computation of each transition (rule). A dataﬂow execution
would have allowed the relaxation of this kind of limitation.

We now give syntactic restrictions over the PCN structure that allow the parallelization of a rule
program. The limitations are of two different kinds. The first one is due to the parallel granularity
we chose, i.e. 4the rule. The second one is for semantic considerations. As discussed in [Wolfson90], for

non deterministic languages such as Datalog-neg, the processors have to be synchronized at each

_stratum. As RDL//C is an extension of Datalog-neg, the same limitation applies : a non recursive

transition is fired iff its input places have reached a stable marking. As shown in [Maindreville88],
this induces a partial ordering on the rule program and, for instance, implements the notion of
stratification. This limitation synchronizes read/write operations between rules. That is, a rule is

_ not allowed to write data in a relation which is read by another rule in parallel (see rules t4 and t5

in the previous section).
These limitations are expressed over the PCN model as follows:

Let us consider {ti} a set of transitions, and Pre(ti) and Post(ti) the input and output places of ti.
Then tl and tk can be parallelized (noted by tl // tk ), iff:

o Post(tl) o Pre(tk) or Post(tk) o Pre(tl)

s Post(tl) # Post(tk) for each ], k



These two conditions allow only -iﬁdependent rules to be fired in parallel. They ensure that the
semantics of the rule program are preserved by the parallel processing. On the PCN displayed in
figure 3.2, only transitions (rules) t2, t4 and t3 can be run in parallel.

4. Extending the-" Language to Suppoft Parallelism

The RDL/C language has been extended to support inter rules parallelism. The parallelism is
specified in the language of control as an explicit partial ordering over the set of rules.

Before running a rule module in parallel, the user must know how many, and on which machines the
module is to run. This is given in the ON statement after the module declaration. The absence of
this statement indicates to the compiler that the module will not run in parallel. The following is

an example of the ON statement:
module ancestor;
on servA, servB;

This declaration states that the module can run in parallel on two servers called servA and servB,
The language extension used to specify parallelism among the rules is the PAR struchire, found in
the control string. PAR accepts up to N arguments (N = the number of servers in the ON statement),
Each argument is itself a control argﬁment. PAR cannot be nested. Semantic checks are done over the
arguments to ensure that the rules to be run in parallel are independent as defined in the previous
section. Consider the following example: ’

SEQ (r0, PAR (SEQ (rl, BLOCK (r2)), SEQ (rlB, BLOCK (r2B))), x3)

This control structure specifies two sets of rules to be run in parallel. The first set contains rules rl
and r2; the second set contains rules r1B and r2B. The control structure of the first set states that rule
rl fires once and that rule r2 fires up to saturation. Rules r1 and r2 will run on the server servA and
rules r1B and r2B will run on the server servB. When a set of rules has been fired according to the
control structure given in the control string, the process controlling it attempts to synchronize with
other processes running other sets in parallel. All rules in the PAR control structure must have fired
according to t,he'control string before the engine attempts to fire rule r3. As stated earlier, PAR
cannot be nested but can, however, appear more than once in the control string. Consider the

following control string.
SEQ (r0, PAR (rl, r2), r3, PAR (r4, r5), x6)

In the above example, the engine will attempt to fire rule r0, and then fire rules r1 and r2 in
parallel. When r1 and r2 are no longer firable, the engine will move on to rule r3 and then, attempt
to fire rules r4 and r5 in parallel before firing r6. The following control structure is equivalent to the

previous one.
SEQ (r0, PAR (BLOCK (rl), BLOCK (r2)), r3, PAR (BLOCK (r4), BLOCK (r5)), r6)

A rule which is run in parallel can also be run sequentially in the same module. This is the case for

rule r2 in the following example.
SEQ (r0, rl, PAR (r2, r3), r4, r2, r5)




-,

The inference engine will attempt to fire rules r2 and 13 in parallel. It will then attempt to fire rule
r4 before attempting to fire rule r2 again.

5. Architecture

5.1. Overview of the Compiler

The genéfai architecture of the RDL//C compiler is portrayed in Figure 5.1.

Run-time Library
_ . . RDL/C compiler ___>

DBMS

Figure 5.1 : Sketch of the RDL//C compilation environment.

The compiler accepts a source program and produces, as output, a C program which implements the
rule program. The C program contains code to implement each rule and includes the inference engine
which fires rules until a fixpoint is reached. The DBMS does not require any inferencing
capabilities to process the program. The extraction of the data from the DBMS to the application
is not required during the inference process. This is because rules are based on relational calculus and
can thus be solved by the DBMS.

The compiler generates an SQL connection statement for each server specified in the ON statement
in the module. The PAR structure is compiled from the control string in basically the same way as
are the other two structures SEQ and BLOCK. The run-time library which is linked with the C
program produced by the compiler manipulates parallelism. These procedures are the topic of the
next section.

5.2. Run-time Environment

The run-time environment is a set of workstations linked to one another through a network. Each
workstation has similar computational power. The application resides on one workstation while
each workstation is assigned one DBMS process. Each DBMS has its local database. Each relation
referenced in a module must be found in at least one site. This allows a horizontal and vertical
partitioning of relations in so long as each partition is a named relation existing on a site. The



DBMS is a standard relational DBMS. Although the one that we are using supports Abstract Data
Types [Gardarin89], this is not relevant for parallel processing. Parallelism is achieved by having
the application access each DBMS concurrently. '

5.2.1,  UNIX System Tools

This architecture is supported by the UNIX operating system. The key facilities used to support
parallelism are the process control facilities and network facilities. The UNIX fork statement
creates a duplicate process from a running process. Running concurrent processes communicate using
sockets and pipes. Sockets and pipes are similar structures used to support interprocess
communication. The Network File System (NFS) allows users on different machines to share files.

5.2.2. Schema of the Run-Time Environment

- |
ServerA | ServerB
> Appli-

Appli- Fork

cation cation

Parent j&— Child1l

Join I

is@ﬁ A

I DBMS DBMS
% NFS Mounts %
DatabaseA Common DatabaseB
Load/Dump
Area

Figure 5.2 : The Run-Time Environment.

5.2.3.  The Application and the DBMSs

An application requiring access to the database issues an SQL connect statement to establish a
connection to the DBMS. The application and the DBMS then communicate through sockets. The
application issues SQL commands to the DBMS and the DBMS returns its results after each
command. There is normally one such connection between an application and the DBMS. However,
to exploit the power of parallel. processing, the compiler generates an application which

10
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establishes a connection with DBMS residing on different machines. The applica‘tion can thus
communicate with each DBMS by using the communication link that is assigned to it.

5.2.4. The Parent Application and its Children

Although the application can access each DBMS independently, it cannot do so in parallel without
creating extra processes. To run a set of rules in parallel, the parent (or main) process creates a child
process for each set of rules which are to be run in parallel. This is achieved with the UNIX fork
system call. Each child is assigned a particular DBMS. All application processes reside on the same
machine regardless of the fact that they access DBMS which are on different machines. Before
creating a child, the parent dumps all the relations which are referenced in the set of rules
managed by the child. The child loads the relations before starting to process the rules. Running
parallel processes synchronize when they have finished running the set of rules they have been
assigned. Each child must return information on the rules that it fired; this communication is done
through pipes. One such pipe is created per child process. Relations which were created by a child
process must be made available to the parent. This is achieved by having the child dump thesc
relations on a common file system and the parent load them from this same file system. The
restrictions over the PCN avoid any collisions between relations being dumped. Two rules running in
parallel can not reference a same relation in the RHS. After having done this, the child process
exits. The parent process synchronizes with the child processes once it has finished running the set
of rules that were assigned to it. The parent synchronizes with each child, one after the other. Once
it has finished, the parent process can resume firing rules in sequence or in parallel.

6. Implementation

6.1. Processing a PAR in the Control String

The algorithm used to process PAR in the control string is the following one. It is given in pseudo C
language notation.

11



finctian pzocess(:mr;rolSt’_rirq (*d : cortrolrirg) ~> ule ;

begin

axtrolString *c2;

while (¢l © NULL) o

begin
adtch (cl->type) /* on the type of oontrol structure being processes */
case PAR:
/* process each par parareter */
M the first parameter is hardled by the parent */
/* each remaining paraveter is hadled by a child process */
@ = cl->parareted.ist;
@ = c2->next;
i=0;
vhile {2 © NJIL) b
begin
i
if {2 has ro pertirert rules) then
beggin
idhild[i] = 0;
2 = 2-net;
ed
else
hagin
drpielatias (¢2);
R (piges(il);
pid = fork 07
if {pid is the prert) then
begin
idhild[i] = pid:
2 = c2onot;
erd
ele begin
/* prepare the child */
srverld = i;
fp = fdbpen (pipe in write mode);
/* eliminate all other PAR paransters*/
2->rext = NJIL;
/% set. DBMS camumnication lirk */
/* for child ¥/
fr = fow = fdrw([serverId];
loxiRelatias () ;
d =c2
ad
ed
ad
pocessControlString (cl ->parareterlist);
ed
case RULE:
if (the rule pointed to by ¢l
ISIN the list of pertinert rules) then
reum (the rule pointed to by cl);
erd;
ad
d = cl->next;
ed

retumn (NULL) ; /* ro pertinent rule can be fard in this paramster list */

The control string is the support for parallelism in the language. The control string is mapped to an
in-memory data structure which is used by the inference engine. While processing the control string,
if the inference engine encounters a Par control structure, the engine tries to fork child processes to run
rules in parallel. To do this, it goes through the following steps. First, it determines, for a set of
rules, if there are pertinent rules in the set. If there are no pertinent rules, it marks the fact that no

2




child process has been created to run the rules. Otherwise, it scans the rules in a set to determine
which relations are manipulated by the rules. Each non-empty relation that has not been dumped is
unloaded into the common load/dump area. Then, a pipc is created to communicate between the
parent and the child and the fork system call is issued. The child sets a number of variables to
1denhfy and to commumcate with the DBMS on which it will run its set of rules. It attempts to load
vthe relations which have been dumped by the parent process. It will then run independently from
the parent until it has fired all the rules in its set. At this point, it will synchronize with the
parent. '

Version numbers are used to determine if a relation has been dumped. Each time a relation is
modified by the RHS of a rule, its version number is incremented. When scanning relations to unload
them into the common area, the version number is compared to the dump number of the relation. If it
is less, the relation is unloaded and the dump number is set to the version number. The unload is
realized by the SQL-like Copy command.

The child process scans all relations which are referenced in its set of relations and loads those
relations which are not empty and have not yet been loaded. Again, version numbers are used to
determine if the DBMS process associated to the child already has a relation in it memory. If the
version number of the child process is less than the parent's, the relation is loaded.

7. Performance Analysis

7.1. The Environment

The objective of this section is to measure the performances of the execution of a RDL//C program.
The Sabrina DBMS [Gardarin89] we used, implements all the standard features of commercial
relational DBMS. The system architecture is a network of Sun SPARK workstations, each one
having disk capabilities to store the database. This environment is somewhat different from bus-
based backend database processing. Particularly, workstations are not designed for stand-alone
processing (as dedicated database servers). Rather, they offer resource sharing to obtain load
balancing through a local area network. However, such an environment can provide a larger memory
space and faster computation in many cases. Moreover, a network of workstations constitutes a very
common environment which has the advantages of parallel processing but without the specialized
or dedicated hardware.

7.2. The Applicatilqrzlz

The application used to measure performance is based ona typlcal transntwe closure operation to
solve the ancestor problem. A sequential version of the rule module which calculates ancestors has
been given in Section 2. We give a parallel program for the same problem. Parallelization of
transitive closure has been Wide]y studied [Vélduriei88, Agrawal88, Cheiney90). Within proposed
algorithms, parallelism is included in the operator itself. In our approach, we express the

13



parallelism within the rule language by adding localization predicate to rules [Wolson90} and using
the PAR structure within the control string.

The relation Parent is dupliéatcd on n nodes. The processing task is divided into n parts: a first
station computes the ancestors of desc value whose (value MOD2) = 0 ; a second station computes the
ancestors of desc value whose (value MOD2) = 1; and so on, for n workstations. In the case of total
replication of the relation Parent, the ancestors problem can be partitioned among n workstations
without intcrmediate transfer. Only the building of the complete Ancestor relation implies

transfers.

We give the RDL//C program for two nodes :

MIDWER axxstor

€ TR S
(. . aod servB are two machines)

13-4
Port, (asce int, desc int) ;
DOFD ICED
" AcA TME Parent ;
A 17K Parent,

Acestor LIEE Parent ;

RULES
riA IS B IS
IF Parent &) (x.desc M0 2 = () IF Parent &) (x.desc M0 2 = 1)
TEN +AncA () ; THN +AandBb) ;
A IS B IS
IF Parent &) ArcA fy) (x.desc = y.asc) IF Parent () AncB {y) (x.desc = y.asc)
THN +Anh {asc = x.asxc, desc = y.desc) ; THN +AB (axc = x.asq, desc = y.desc) ;
3 IS

IF ArcA(xX) THEN +Ancestor(x) ;

4 IS

IFAncB {x) THEN +Ancestor ) ;
CONTROL

PR (SR (dA, BOX (r20), SR (rlB, BLOX (rZB))
END MODULE

We will compare the performances of the system varying the load and the number of processors
available. The load will vary according to the number of tuples in the Parent relation.
Measurements are done with different loads. These loads are generated as a tree of ancestors, which
has h levels (Figure 7.1). h is also the number of firings of the recursive rule (i.e. the depth of the
induced join loop in our implementation). There are no indexes on the relations. The number of tuples
vary in each set by having the number of descendants at each node vary by one. In the first set of
tuples each nbde has thfee descendants; in the second set, each node has four; and in the last set,
each node has seven Idescenlda_nts. With h=4, we obtain the five following loads: 363 tuples, 1364
tuples, 3905 tuples, 9330 tuples, 19607 tuples. The number of processors varies from one to five.
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Figure 7.1: Tuples generation tree

7.3. Performanc; Results

To obtain performance results, we use some system time routines provided by the UNIX System.
Eight time measurements are investigated, that are :

(1) Sql_conriection. The time measured includes starting up a DBMS process on each remote
station. This time is 4 priori proportional to the number of stations ;

(2) Validation of the schema of base relations at run-time ;

-3 Dum;;/ Léad/Wéit 'Using the NFS, passing relations consists in loading and dumping

' _ relations m flles runnmg parallel processes are synchronized by waiting for each one to

have flmshed runnmg the assigned set of rules. This time measures transfer and
synchromzahon tasks (i.e. the parallelism overhead) ;

(4) Left Hand Side (LHS) of rule processing. This time measures select/join processing time ;
(5) Sql_get_schema. The schema is obtained at run-time ;.
(6) Validation of-the schema of the deduced relations at the run-time ;

(7) Right Hand Side (RHS) of rule processing. This measures the computation time of the

union ;
16)) Sql_disconnecf measures the time to disconnect the applications from the DBMS.

The first results have shown that only three of these measurements are significant within the
overall time Dump/Load/Wait, LHS and RHS rule processing. The sum of the other five
components represents always less than 3% of the overall time (except for a few tuple -363 tuples-
and a single processor ‘where the overhead time -connection, deconnection, validation of schema-
reaches to 5%). For this reason, the main point of discussion will be the three main time-consuming
actions.

15



Z73.1. uential Ti

The first measurements are the times with a single workstation. The aim was to reveal the
behavior of the rule program and the relative amount of execution time spent in each part of the
program. Particularly, the time spent to evaluate the condition part of the rules (the LHS
processing corresponds to a selection and a join) and the time spent to process the action part (the
RHS processing corresponds to an union). Right and Left parts of rules compose the computation time.
An external time, obtained as the sum of the connections, disconnections, validations of schema, is
also calculated. Table 1 gives the measurements of the three main components of the elapsed time.

363 tuples 1364 tuples 3905 tuples 9330 tuples 19607 tuples
connection, disconnection and 3 7s 8s 108 12s
schema control
Left Hand Side processing 12s 339s 9238 2309s 4490s
(Select/Join)
Right Hand Side processing 41s 451s 1553s 4601s 9571s
(Union)

Table 1: Time spent in part for sequential processing

Table 1 shows the importance of union processing time. Moreover, these measurements make clear
that the external time is very limited and can be neglected when processing large sets of tuples
(from 5% of thé overall time for a load of 323 tuples to less than 1% for a load of 19,607 tuples). The
overhead time due to rule program connection and controls, is very small ; the computational power
is almost completely used to process the rules.

 7.3.2. Parallel Time

Neglecting the connection time, the components of the total time are the join computation, the union
computation and the parallelism overhead including the dumps, the loads and the waiting. We
measured the overall and the partial times for five sets of basic tuples : the first one (363 tuples)
produced 1641 ancestors, the second one (1,364 tuples) produced 6,372 ancestors, the third one (3,905
tuples) produced 18,555 ancestors, the fourth one (9,330) produced 44,790 ancestors and the fifth one
(19,607) produced 94,773 ancestors. The number of workstations ranged from one to five.

Figure 7.2 presents a summary of these results. The times spent within the union and the select/join

processing are represented by the grey areas. The black areas concern the time used to connect and

disconnect the application and the DBMS processes. They can be neglected for a large amount of

tuples. Last, the white areas summarize the overhead introduced by the parallelism, i.e. the time

spent loading and dumping relations and files, and synchronizing. These times are cumulated to
- illustrate the overall response time.
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Figure 7.2 : Evolution of overall and partial times in parallel processing
7.3.3. Discussion

Figure 7.2 shows the benefits and limitations of parallelism in our experiment. Two points have to
be discussed.

The first one concerns the application. The curves show that the join and the union processing times
are not divided by the number of processors. The partition of the processing does not divide the work
into the number of processor. The complete Parent relation has indeed to be read at each iteration on
each server. The corresponding amount of time increases with the number of processor. The benefit is
concentrated in the parallel generation of new tuples, without redundant production, which allows
the response time to decrease with an increase in the number of processors. For 4 processors or more,
the overhead of the multiple reads of Parent weighs over the benefit due to the division of the new
tuples generation. However, this experiment shows that the use of three nodes can divide the
response time by a factor of two. Note that the grain of parallelism (the rule) is determinant to
partition the computation task. To obtain a more precise parallelism, the programmer has to write
more rules (e.g. to specify a more sophisticated algorithm to solve the ancestor problem, including
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the partition of Parent). In our experiment, we have chosen a simple program, but other example
may yields better parallelism.

The second remark concerns the overhead induced by the parallelism. This overhead is represented
on Figure 7.2 by the white area. Our experiments show that its augmentation, as a function of the
number of processors, is limited. The parallelism is thus a good solution in our case. However, it is
necessary to note that the transfers in our program are reduced to computation of the final result. In
the case of more sophisticated algorithms, transfers are necessary during the ancestors generation ;
the overhead due to these transfers would increase, especially in our configuration (a network of
workstations) which is not an ideal hardware to reach high performances of parallelism.

Efficiency of the parallelism with a grain of a rule, is lafgely influenced by the user's choices in his
RDL//C program. There is a traditional tradeoff between a good partition of computation tasks and
a limitation of the transfers.

We have also tried to evaluate the influence of the number of tuples on the benefit provided by
using multiple workstations. Figure 7.3 draws the overall time as function of the number of basic
tuples. The maximum benefit is achieved for three or four stations for any number of tuples.

seconds
7000 ..
-

6000 }.
-=-1 processor

5000 4
-0-2 processors

4000 1L
~*-3 processors

3000 4
~0-4 processors

2000 4
-a-5 processors

1000 4

0k

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
number of basic tuples

Figure 7.3: Overall time as a function of the number of basic tuples

During the measurements, the database was duplicated on each station's disk. We have also
experimented the storage of all the databases on a single disk; because a large main memory was
available within each station, the results were rather identical.

8. Conclusion and Future Work

This paper presented a database rule language compiler which supports parallelism among rules.
The type of parallelism supported by the language is user-specified, as opposed to user-transparent
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parallelism. The user pértitions' his application into independent tasks, which are scheduled to run
in parallel. The compiler checks that the sets of rules to be run in parallel are independent and that
the number of sets does not exceed the number of servers available.

The run-time framework for the parallel exccution of database rule based applications is a set of
UNIX workstations connected on a network. While the application process resides on one
workstation, it drives DBMS processes which are on different workstations, each with its own
database. Parallelism is achieved by having the application process fork into N processes, each one
assigned a set of rules to be processed on one DBMS. Relations are transferred among the different
DBMS by dumping relations onto files and loading relations from files using a common file sub-
system managed by the network.

The main contribution of the paper are (i) the definition of a sub-language of control to specify a
parallel execution of a rule program and (ii) the support of parallelism without specialized
hardware and with standard relational technolbgy. A prototype of RDL//C is operational over a
set of UNIX workstations. Future works will study an autqmaﬁc generation of the control structure
which specifies the parallelism and the use of the RDL//C system to prototype parallel database

algorithms that have been developed.
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