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Data Structures Maxima
Maxima des structures de données

Guy Louchard* Claire Kenyontand René Schott!

Abstract

The purpose of this paper is to analyze the maxima properties (value and position) of some
data structures. OQur theorems concern the distribution of the random variables. Previously
known results usually dealt with the mean and sometimes the variance of these random vari-
ables. Many of our results rely on diffusion techniques. That is a very powerful tool, which has
already been used with some success in the analysis of algorithms.

Reésumé

Dans cet article nous étudions la taille maximale atteinte par certaines structures de données

: dynamiques au bout d'un temps assez long. Nous explicitons completement les distributions
limites des variables aléatoires et améliorons de ce fait notablement les résultats connus jusqu’a
présent qui concernaient la moyenne et parfois la variance de ces variables aléatoires. Les
techniques de base sont celles de la théorie des diffusions.
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Data Structures Maxima

G. Louchard? Claire Kenyonfand R. Schott?

‘Abstract

The purpose of this paper is to analyze the maxima properties (value and position) of some
data structures. Our theorems concern the distribution of the random variables. Previously
known results usually dealt with the mean and sometimes the variance of these random variables.
Many of our results rely on diffusion techniques. That is a very powerful tool, which has already
been used with some success in the analysis .of algorithms.

1 Introduction

This paper concerns the maximum size reached by a dynamic data structure over a long period
of time. The notion of “maximum” is basic to resource preallocation. The expected value of the
maximum size had already been studied in Kenyon-Mathieu and Vitter [28] with elementary methods.
Our goal here is two-fold:

1. Derive more precise asymptotic expressions for the expected maximum (with lower order
terms).

2. When possible, find the whole distribution of the maximum size.

Our proofs involve advanced analytic and probabilistic techniques; in particular, they use Laplace
transforms, complex analysis around singularities, diffusion processes and Brownian motions. They
rely on some results which are well-known in the world of probabilists. Our hope is to show that
diffusion techniques are a powerful tool for the average-case analysis of algorithms.

Given a dynamic data structure, whose size evolves through time with each new insertion or dele-
tion, the main requirement for formalizing the maximum-size problem in a mathematical framework

*Laboratoire d’Informatique Théorique, Université Libre de Bruxelles, CP 212, Boulevard du Triomphe, 1050
Bruxelles, Belgium v

TLIENS, URA CNRS 1327, ENS, 45 rue d’Ulm, 75230 Paris Cedex 05, France

YCRIN, INRIA-Lorraine, Université de Nancy 1, 54506- Vandoeuvre-lés-Nancy, France



is to define the distribution of the sequence of arrivals (insertions) and departures (deletions). The
models we consider come from three main sources.

1. Probabilistic model: that is the world of queueing theory, whose assumptions have been well
tested by time. We study the M/M/1, M/G/1, G/M/1, M/M/oo and G/G /oo queueing systems.
For example, in the M /M /oo model, the number of servers is infinite, so that a client newly arrived is
served right away: there is no waiting time. The interarrivals and the service times are all independent
and follow an exponential distribution.

2. Combinatorial models: Frangon introduced in the 70’s the concept of file histories, which are
beautiful combinatorial objects [14]. A file history is a labelled path, where each elementary step
of the path is of the type (z,y) — (z + 1,y +/ —1) or (z + 1,y). The z-axis represents time, and
the y-axis represents the size of the file. The relative weights of the paths depend on the type of file
history considered (stack, linear list, dictionary, symbol table, or priority file). However, we must
say that not many real-life situations correspond to the distribution of file histories.

3. Hashing with lazy deletion. In that non-Markovian data structure, introduced by Van Wyk
and Vitter [44], the data structure is a separate-chaining hash table, and the arrivals and lifetimes
follow a process of type 1 or 2 above, but the items are not removed from the table as soon as they
“die”: instead, we wait until there is a new insertion in a chain of the table before removing the
“dead” items from that chain. This enables to save on the access cost to the table.

The results are as follows. o

In the first part, we study the maximum size reached by a queue over [0...t] when ¢ is goes to
infinity, for the most classical types of queues.

When there is only one server processing the requests of the arriving customers, we find expressions
describing the distribution for an M/M/1, M/G/1 or G/M/1 process. The technique uses Laplace
transforms and developments in the neighborhood of a singularity.

When there is an infinite number of servers, there is no waiting time, and a client only stays in
the system as long as it takes for him to be served. This has been studied in [38], and, in [28], there
is an equivalent to the expected value of the maximum size in the M/M/oo case. In this paper,
through a different approach we get more precise expressions on the expectation. We also solve the
G/G[oo case. Our proof involves reducing the problem to an Ornstein-Uhlenbeck diffusion process.
whose properties are well-known (by probabilists).

In the second part, we study some specific kinds of dynamic data structures.

First, we look at combinatorial objects defined by [14] and by Knuth for modelling the evolution
of dictionaries, stacks, linear lists, priority files and symbol tables: file histories. The average value
of the maximum was evaluated in (28], who obtained an equivalent. Using sophisticated results on
Brownian Bridges [11], we show how to get a much more precise estimate of the maximum, with
several lower-order terms. As an example, we analyze priority queues in the standard model and
dictionaries in Knuth’s model.



Second, we study the maximum size of hashing with lazy deletion (a time-saving non-Markovian
variant of hash tables, introduced in [44]). In that paper, various models of distribution were sug-
gested. By repeated use of Daniels’ theorem [11], we get precise estimates of the average maximum
in all the models, with lower order terms (which are not obtainable by the methods of [28}).

Finally, we look at the limiting profiles of a file history, i.e. what fraction of time is spent by the
data structure at a given level l. Again we show that we can obtain the asymptotic distributions.

2 The maximum size of a single server queue

In this section, we study several classical queueing theory models, M/M /1, M/G/1 and G/M/1, to
find the evolution of the maximum size reached over a (long) period of time. The average value of
the maximum is already known, but for the purpose of resource preallocation, it is much more useful
to know at what level | the probability that the maximum size reaches [ becomes small: then it is
sufficient to reserve space [ to the data structure. In this section, we find the entire distribution of
the maximum size as t — 0o. The proofs of this section are based on a few ideas:
1. Instead of the maximum size, study the hitting time, i.e. the length of time before the data
structure first reaches size I. (It has the advantage of having a continuous distribution).
2. Take Laplace transforms to obtain closed (complicated) formulas for the transform of the hitting
time (with the help of Cohen [7}]).
3. Approximate the Laplace transform for levels | — oo. In all cases, we find that the Laplace
transform, as a function of s, is equivalent to 1/(1 — s/s*), where s* is the critical singularity of the
function. Thus the hitting time is asymptotically distributed as exponential random variable.
4. When (as in the M/G/1 and G/M/1 cases) s* does not appear in closed form but as the [*t
coefficient of an analytic function: approximate that function around its smallest singularity to get
an equivalent for s*.

Maz(t) will denote the maximum size reached over time interval {0...¢]: thus
Maz(t) = maxyep, Q(t'), where Q(t') is the queue length. Our problem is finding the distribution
of Maz(t). To solve this kind of problems, two approaches are usually available: either deal directly
with the hitting time distribution, or compute the extreme value distribution of the maximum on a
busy period: then we use renewal theory (with the busy cycle mean). However, as the queue length
is a discrete random variable, the latter approach cannot be used; we will see that actually, we do
not obtain a unique limit distribution for M(t) but rather a family of distributions depending on the
fractional part of C;log(t) + C2, where Cy, C; are some constants.

This situation is rather similar to other data structures used in computer science : see for instance
the number of registers in arithmetic expression evaluation (Flajolet and Prodinger [15], Louchard
[30]), the binary trie (Louchard [30], Flajolet and Steyaert [16]), the digital search tree (Louchard



[31]), approximate counting (Flajolet [17]). The extreme-value distribution, e=¢"" frequently appears
in this context. We will first analyze the M/M/1 queue, then the M/G/1 and G/M/1 queues. We
could not obtain the G/G/1 limit theorem.

2.1 The M/M/1 case

In this section, we study the simplest of all single-server queues: the M/M/1 queue. In this model,
the customers arrive in the system in such a way that the interarrival times are independent and
exponentially distributed, with mean 1/A. When a customer arrives, its request starts being processed
by the server right away if there are no other customers present. Otherwise the new customer
must wait in line. The service times (for successive requests) are assumed to be independent and
exponentially distributed with mean 1/p. Thus the average number of customers present in the
stationary case is p = A/u, which we will always assume is smaller than 1.

We want to know the evolution of the maximum size reached over a (long) period of time. The
average value of that maximum is already known, but for the purpose of resource preallocation, it is
much more useful to know at what level j the probability that the maximum size reaches j becomes
small: then it is sufficient to reserve space j for the structure. In the following theorem, we find the
entire distribution of the maximum size as t — oo.

Theorem 1 Lett and j go to infinity in such a way that t = ©(1/p%). Then we have:
Pr{Maz(t) < j} ~ e~ #(1-¢)

and: |
Pr{Maz(t) = j} ~ e P 1=2)" _ g=2?tA(1=0)*/p

Thus we see that the distribution of Maz(t) is closely related to ezp(—exp(—j)) when t is large. We
also observe that if f(u,j) = Pr{Maz(e*) < j}, then f is periodic in u, with period log(p~1), in the
sense that

f(u+log(p™),7) = f(u,j —1).

Proof:

From now on, we will assume that g = 1 (without loss of generality, since the general case can
be deduced through a simple change of time scale t — ut).

The maximum of the process over (0. ..t] is < j if and only if the size of the process first reaches
J+ 1 at a time > t. Thus we will study the distribution of 7;, the hitting time for size { (with
[ = j+1). This random variable has the advantage of having a continuous distribution. Let ¢;(s)
be the Laplace transform of Tj, ¢i(s) = E(e™*") with s > 0. There is an exact formula for ¢(s):

4



from [7], equation I1.2.47, we know that ¢(s) is the ratio of two Laplace transforms of transition
probabilities, and in [7], [.4.28, we find an explicit form for those Laplace transforms. Thus:

bi(s) = p'zh/(p(z1 — z2)) + p'zh(1 — pza)?
, [ (pler —22) + FF (L — pea)?
where z, is the smaller root of the equation
pX?—(1+p+s)X+1=0.
The asymptotic behaviour of 77 is related to the negative singularity s} of ¢;(s) with smallest
absolute value (in fact, s — 0 as [ — 00). Developing ¢:(s) when [ — oo, we obtain:

1
¢1(s)~1_ — when s < 57 and [ — oo,

s
with s} := —p!(1 — p)2. Taking the inverse Laplace transform, we get
Pr{T} > t} ~ e=#'(1-0)%
as | — oo and t = ©(1/p"). Thus
Pr{Maz(t) < j} = Pr{Tjpy >t} ~ e 7 0-0)
In the general case, where u # 1, the corresponding formula is:
Pr{Maz(t) < j} ~ e~ P(1-pYut,

which proves the first part of the theorem.

The second part is a direct consequence. O
We noted that the distribution of Max(t) is “periodic” in logt. The asymptotic moments of Maz(t)
are also periodic functions of logt. The asymptotic non-periodic term in the moments are given by
the first term in the Fourier expansion.

Theorem 2 The constant term E in the Fourier ezpansion, in 11(t) = log(A(1 — p)?t)/log(p™"), of
the moments of Max(t) is asymptotically given by
+oo

E{M(t)——wl(t)}"v/ Tie=?" dz

—00

The extreme-value distribution function e=¢™" is well known and has mean v and variance 72/6
(Johnson and Kotz [26] p.272). From this, we can for instance derive

E(Maz(t) ~ $i(t) + 5+ s



2.2 The G/M/1 case

In the G/M/1 case, as in the M/M/1 case, there is only one server, and the successive service
times are independent and have an exponential distribution of mean 1/y; the interarrival times are
still independent, of mean 1/}, but their distribution is now general. Let A(t) be the distribution
function: A(t) = Pr{interarrival time < t}. Let a(s) denote the Laplace transform of A(t):

afs) = /0 T e tdA(t).

Using an approach similar to the M/M/1 case, we can also describe the distribution of Maz(t), the
maximum queue size over {0...t].

Theorem 3 Let Z denote the smallest root of the equation z = a((1 — 2)p). Then we have as j and
t — oo with t = ©(1/%%): ,
Pr{Maa:(t) < J} ~ ei’t/\(l—z")B1’

with the constant B, defined by
By = /oo pse~(1=DmsdA(s) — 1,
0

As in the previous section, there is still a periodicity property and an expression for the first term
of the Fourier expansion of Maz(t).

We can check that Theorem 1 is just a special case of Theorem 3: if A(t) is an exponential
distribution, A(t) = 1 — e™*', then it is easy to see that a(s) = 1/(1 + s/}), hence # = A\/u = p and
B] =p— 1.

Proof:

We study the distribution of the hitting time 7; for size { before an arrival. Let ¢(s) denote its
Laplace transform. From [7], I1.3.36-39, we get an exact formula for ¢(s):

1
¢1(S) = 1 1-c(s) ] ’
- [(I—z)[z—-a(s+(1—z)#)] -1

where [f(2)]; denotes the coefficient of z! in the development of f(z). We now find a approximation

of ¢i(s) as | — oo:
1

1— =’

S2

¢i(s) ~



with
A

=

- .
@z)(z-a((l-sz] -1
But T} = 1;—1. Thus, as [ — oo, we have:

Pr{T} > t} ~ M=) c=a((1~li-s

So far, our proof follows the lines of the proof of Theorem 2.1. Now we need an equivalent of

[(1 —2)(z - 10f((l - 2)#))]1_2 '

To this end, we will approximate the bracketed quantity in the neighborhood of its smallest singu-
larity. From [7], 11.3.16, we find that z — a((1 — z)u) has a unique root, say Z, inside the unit circle.

We get
1 1

~

(1-2)(z-al(1-2)p) (1-£)Bi(Z-2)
as z — Z, with By = [;° exp(—(1 — 2)ut)utdA(t) — 1. Therefore

! o~
(1=-2)(z=a((1- z)p)) L, (I=2)Bj-v

and
Pe{Maa(t) < j} = Pr{Tyy 2 t} ~ MO8,

and the theorem is proved.

Remark 1

In [7], IIL.Th.7.5, is given an upper and lower bound for the distribution of M(n), the maximum
number of customers in n busy cycles. First of all, it is easily checked that the quantities 1 and
c1 used in that theorem are given here by ¢ = (1 — 2)y, ¢; = —B;. But, by [7] 11.3.49 we know
that the busy cycle mean length is given by £ := 1/[A(1 — £)]. From renewal theory, we know
that t/n(t) — £,t — oo (n(t) is the number of busy cycles in [0,¢]). If we could use the second
approach described in the beginning of this section, we could easily derive our theorem from Cohen’s
approach (with his formula on top of p.625). Our result would actually correspond to the lower hand
of [7),Th.7.5. Similarly, in the M/M/1 case, our theorem 2.1 corresponds to the lim inf given in
Anderson [3] (example on p.112).

Remark 2

-J



In Iglehart [24], for the G/G/1 queue, a (positive) quantity v is defined by E[e"*] = 1 where z :=
uq —up (U, := interarrival time, u := service time). It is easy to check that, here, a(v)/(1—~/1) = 1,
that -y = ¢ (see remark 1) = (1 — #)p. Then, the waiting times limit-distributions of Theorems 7.2
and 7.5 of [7] are immediate from Iglehart’s Theorem 2.

Remark 3

When p — 1 in some particular sense, limit distributions are available : see Serfozo [42] and [43] for
such results.

Remark 4

In a recent report, Sadowsky and Szpankowski [40] analyse the G/G/s case. (In our case s = 1).
They prove, under some regularity conditions, that the maximum number of customers on a busy
cycle has a geometric tail, with parameter a(vy) (v as given in remark 3). This off course only leads
to an upper and lower bound for the distribution of Maz(t).

2.3 The M/G/1 case

In the M/G/1 model, the interarrivals are independent and have an exponential distribution of mean
1/, the service times are independent but have a general distribution B(t) of mean 1/u.

In that case, the calculations are much more complicated. The proof goes along the same lines
as in the previous section, and makes use of Cohen’s results [7].

Let B(s) = J5° e7*'dB(t) be the Laplace transform of B(t).

Theorem 4 If so < 0, so being the abscissa of convergence of B(s), and if B(s) — oo, then let § be

s—+50

the root > 1, nearest to 1 of z = B((1 — 2)A). Then, for j — co:
Pr{Maz(t) < j} ~ e 7N1-)*(3-1)/B:

if t = ©(57), with
00 N
By=1 —/ e~ (=DM ALIB(1).
0

Theorem 2 is still applicable if we replace log p by —log 7.

Proof: The departure times now lead to an imbedded Markov chain, where the states correspond
to the number of customers just after a departure. Once again, we consider the Laplace transform
@;(s) of the hitting time into state j. From [7] 11.4.35, we have:

s4+(1—2

wi(s) = ()7 (1= (1 + 5 —y(s) [(1+s/x—2) ﬁ?(ﬁﬁ—_yx)ﬁ‘h |

[ B(s+(1-2)A ]j




L]

where y(s) is the root of z = B(s + (1 — 2)A) with smallest absolute value. From [7] 11.4.40, we find
an approximate value of y(s): y(s) =1 — sy t o(s). The rest of the proof consists in expanding
the formula giving ¢;(s) in the neighborhood of s = 0 and as j — oco. After various asymptotic
analyses, we get

pi(s) ~ 1/[L —s/s3], s 83500

where s% := A(1 — p)%(§ — 1)/[#’ Bz]. The theorem follows from there.

3 The infinite-server queue maximum problem

In the models where there is an infinite number of servers, a customer arriving always finds a server
ready to process its requests. For example, that can model a dynamic data structure, with items
being inserted in the structure (i.e. customers arriving), staying in for a certain length of time (i.e.
service time) and finally being deleted and removed (i.e. exiting the system after service). We will
assume that the interarrivals are independent, as well as the service times, and that their distribution
is known.

3.1 The M/M/ co model

In the M/M /oo model, the arrivals follow a Poisson distribution of parameter )\, and the service
times have an exponential distribution of average 1/u. Here again, we are interested in the maximum
number of clients in the system during [0...T], where T — oo: that would tell us whether a real
system (in which the number of servers is not really infinite) has a high risk of becoming one day
overloaded.

There are already known results about the average value of the maximum (28]. Here, we derive
much more precise results concerning the exact distribution of the maximum, and lower order terms
on the expectation. :

We will assume that A, g and T all go to infinity in such a way that A\/u — oo (i.e. the average
number of items present in the data structure is large) and pT" — oo (i.e. we look at the dynamic
structure during a time interval long enough so that a lot of changes occur). Our results are valid
in the range In(AT) = o(A/p) only, but that covers most realistic applications; the other cases are
presently under study.

Up to doing a time-scale change, we can assume that instead of looking at the maximum of a
(A, u)-process over [0...T], we are looking at the maximum of a (AT, uT)-process over [0...1]. Thus,
if we define \' = AT and p' = uT, and if Q(x,.)(t") denotes the number of customers in the system



at time t/, we want the distribution of

z'e[o 1]Q(’\"“')( ).
We will do another time-scale change, so as to get within the frame of a useful theorem by Iglehart
[21]. Let t = p't’. Then A" = M /y’ = n, and " = 1. Then we know from Iglehart [21] that

_Q(_"»l)_\ﬁ_t_nl__n = 0U(t),

as n goes to infinity and ¢ is large!. OU(t) denotes the Ornstein-Uhlenbeck process (which describes
the Brownian motion of a harmonically bound particle), and has infinitesimal mean —1, infinitesimal
variance 2 and covariance e~(t=*) for ¢ > s. From the error term in Iglehart [23] and Feller [13)
(XVL.7) we see that the convergence is correct as far as [OU(t)]® = o(\/n).

Let ¢’ = 1/h(n) — oo. We want to study

Q(nl)( )-

ze[o l/h(n

Since
Qn1)(t) ~ n 4+ /n0OU(1),

(t large, n going to infinity), we want to investigate

Qmy)(t) ~n++v/n max OU(t).

ze[o l/h n)] t€[0,1/h(n)]

We will now use a powerfull theorem by Berman [4]. Let m; = Maz¢po..4OU(s). Then from (4]
we can prove that

Pr{u(t)(m; — u(t)) <v}~e™"
as t goes to infinity, where u(t) satisfies

2te—'zl.'2/2

~ 1.
V2

U

After some algebra, we obtain

Inlnt —Inn 1
t) ~v2Int .
WVt = T R

1Here => denotes the weak convergence of random functions in the space of all right-continuous functions having
left limits and endowed with the Skorohod metric (see Billingsley [6])
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Thus

Pr{m; <z} ~ gmeT ),
The distribution ezp(—exp(—v)) has mean v, the Euler constant. Thus we get the distribution of
m; and hence of our M/M /oo process.

Theorem 5 Let Q(» () denote the size at time t of an M/M/oco process with parameters A and p.
If In(At) = o(A/p), let In(At) = %g(%) with g(n) — 0. If g(n) = o(n=2/3), then we have

n

ar 3)) ~ i i n InIn(ut) y—lnx/2 o 1
PiMazsce-oQenls) K ¥ \/;[ Hhalut) + 2ﬁln(ut) ¥ \/21n(ut) ¥ ( ln(ﬂt))]

The theorem can also be derived using Keilson’s result [27] or Jaeschke’s approach [25], but
Berman’s approach is the only one which generalizes to the G/G /oo case. Other cases are the object
of work in progress. For instance, if g(n) = én=2/3, it appears that we must add (2£)%/2/6 to ~.

3.2 The G/M/ oo model

In this case the interarrivals are independent but have a general distribution of mean 1/A. Let o2 be
the variance of the interarrival times. Iglehart’s weak convergence theorem generalizes [22], so that

\/E(Qﬂ(t) - n) large
\/n(l ey = OU(t), t large.

As before we obtain:

Theorem 6 If A, y,t — oo in such a way that ut — oo,p — oo, and log(At) = o(p), then, if
g(n) = o(n=??),
A 1+02 [A

E ~Z
(%%XQA,;;(S)) p+ >\

Inln(pt)  vy—Inn/2 1
2In(put) + + + .
() 2/2In(ut)  \/2In(ut) ( ln(m)]

11



3.3 The G/G/ oo case

In this even more general case, the interarrivals follow a general distribution of mean 1/ and variance
o?, and the service times are also independent of general distribution B(t) = Pr{service time< ¢}. We
now use another generalization of Iglehart {23] (the limiting process is a non-Markovian stationary
Gaussian process) and results of Berman [4] (16.9). After some algebra, we deduce the following
result

Theorem 7 Assume that B(t) has a continuous density, and that A, u,t satisfy the same conditions
as in the G/M[oo case above. Let

o]

Cr=1+ (0% — 1)/ (1 — B(t))%dt.

0

Then

A A
E(max @auls) ~ 5 +1/Cas

" Inln(pt) ~y—Inw/2 o 1
At ot o) ( )} |

1+ 0? Cp3

20, ),/21n(ut)'

+ log(

4 List structures maxima

In this section, we leave the world of queueing theory models to enter that of combinatorial models
for dynamic data structures. More specifically, we are interested in file histories as invented by
Francon and developped by Flajolet, Francon and Vuillemin. The size of a dynamic data structure
increases by 1 with each insertion and decreases by 1 with each deletion. The successive sizes,
as a function of time, form a path on the plane, which starts at level 0 (the data structure is
initially empty) and normally returns to 0 after a sequence of n operations (insertions, deletions, or
queries). A probability distribution is defined by weighing the paths according to the data structure
under study. File histories have been studied by Frangon, Flajolet, Puech, Vuillemin and Viennot in
particular, and they have discovered beautiful links with orthogonal polynomials, continued fractions
and various combinatorial objects. In [32] [33], Louchard, Schott and Randrianarimanana have
developed a complete probabilistic analysis of these structures. In [28], the average value of the
height of the path (maximum size) was given for some kinds of file histories. In this section, once
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again we look at the distribution of the maximum size. Assume that the operations happen at times
1,2,...,n. Our technique is based on the observation that the process can be decomposed into two
simple components: let S(t) denote the size of the data structure at time ¢t (1 < ¢t < n). Then
S(t) = § + Z(t), where §, the average size of the structure at time ¢, is a fairly simple curve (for
instance a concave parabola in our first subsection), and Z(¢) is a (small) Gaussian process.

4.1 Daniels’ fundamental result

All the results in the rest of the paper are based on a general theorem by Daniels [11]. We want
information about Mazp. 1Y (t), where Y is a certain random process. Assume that Y(t) can be
written as
Y(¢) = 2(t) + 2(d),

where %(t) is a certain deterministic curve and Z(t) is a random Gaussian process, of covariance
C(s,t). Note that Z(t) is not random. Let M be the maximum of Y (¢) for ¢ € [0...1], and ¢* be the
first time at which the maximum M is reached. At that time, Z(¢*) = M — Z(t*), and that is the
first time that Z reaches that value. Thus we can look for the hitting time of Z(t) to the absorbing
boundary M — %(t). Near that crossing point, Z(t) locally behaves like a Brownian motion (or a
variant of it, such as a Brownian bridge) Durbin [12]. It is also known that the hitting time and
place densities for a B.B. can be deduced from the hitting time density for a B.M. (see for instance
Louchard [33] for a constant boundary and Csaki et al [9] for a general proof).

Suppose that we are looking at the maximum size of a data structure over time interval {0...1]
when some parameter n goes to infinity (for instance, n might be the number of operations). We
will assume that Z(t) satisfies

(1) = Vis(),

where (%) is independent of n (that assumption will be true for all the applications in this paper).
‘Moreover, assume that z(t) has a unique maximum, reached at time , with z(Z) = 0 (up to doing a
translation we can always assume that).

Daniels has matched the local behaviour of C(s,t) with the Brownian bridge covariance near
{11}. From [11] and Daniels and Skyrme [10], we can deduce information about the maximum M
and the time t* when it is reached
Notations
Let A and B be the constants defined by

A=[0,Cly + [[0CH and B = (—2"(2) .
Let

G — sx_ 0
SOl mesll By v L

_ 2-1/3 /ioo ds
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where A; is the classical Airy function, and let A be the universal constant defined by
A= /oo [€*°/%G(z) — maz(z,0)]dz ~ 0.99615.

Let
u= n1/3A'_1/3B"2(t‘ —1).

Theorem 8 With the above assumptions and notations, if [8;C(s,t)}; < 0 and [8,C(s,t)]; > 0, then
we have:
1. M is asymptotically Gaussian with mean and variance

E(M) = ABn-Y6A%3 4 O(n-1/3).
o} (M) = C@E1T)+On-113).

2. The conditional mazimum M|t* is asymptotically Gaussian with mean and variance

{E(Mlt‘) = n71/64- l/319[301?,((-—“)l+|a,c]|C"" ]+ O(r™1/3).
o} (M|t) = C(i,1)+O(n'F).

3. The joined density of M and t* is given by

2 2 Jo0(3 M
(M, 1) = —ee e ™M /20(H0) {G 1)G(=t) + n~VeBAT R
(M:2) V27 C(1,1) Be=1) C(%,1)

[8:CLG ()G (—1) + |[BCIG(—1)G' ()] + O(n™1/2)} .
4. u has density 2G(u)G(—u)[1 + O(n=1/3)].

Proof:
A direct new proof is given in the Appendix.

4.2 File histories

A file history represents the evolution of the size of a dynamic data structure by a path of length
n =number of operations performed (insertions, queries or deletions), going from level 0 to level 0.
In [28], the average value of the height of the path (=maximum size) was given for some kinds of
data structures, but only a rough equivalent was found.

Here we study the example of priority file histories [18]. Other structures such as linear lists or
dictionaries could be analyzed with similar techniques.

14



A priority list is by definition a data structure on which no queries are performed: only insertions
and deletions occur, and moreover, deletions happen only for the minimum. Thus, when a new item
- is inserted in a priority list of size k, there are (k 4+ 1) intervals defined by the elements already
present, and to which the.new item may belong, but when an item is deleted, there is only one
possible choice. This is reflected in the weights of the paths, see [18].

Assume that there are 2n operations performed during the history, n insertions and n deletions.
Let Y(t) be the size of the data structure after the |nt|* operations (0 < ¢t < 2). ;From Louchard
[32], we know that
Y(t) - int(2-1)

N

where X (t) is a Markovian Gaussian process with mean 0 and covariance

Vit = X(t) when n — oo,

s2(2 — t)?

C(s,t) = 1

when s < t.

The error term can be deduced for the various expansion in [32] Sec.4. It appears that the relative
error in the density is 0(71;) (non uniform in X'). Thus, in this case, using the notations of Daniels’

theorem, we have z(t) = t(2—t)/2—1/2, with maximum at = 1 and 2”(f) = —1 Since the covariance
here is such a simple function, we can easily apply the theorem, and we find:

Theorem 9 IfY;(t) denotes the size of a random priority file history of length 2n at time |nt], then
we have:

E(Maz,Y,(t)) = g + Anl3 4 O(nl19),

and more generally

Maz Y, (t) = g + /R M+ 0(n"/)

is reached at time t*, with M and t* given by Daniels’ theorem. We can prove that the error therm
in the weak convergence to X(t) is negligible with the error in MazY .

Actually, this is not the first example of applications of diffusion processes to computer science.
Other structures have been analyzed using brownian excursions or brownian meandering; see [30] for
height in planar trees and stack structures maxima.

4.3 List structures in Knuth’s model of file histories

This statistical model has been introduced by Knuth [29] and Francon [19]. We refer to [20], [36] for
a detailed presentation and the analysis of dynamic algorithms in this model. As an example, we
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will analyse the dictionary. Let us just remember that if the size of this data structure is &, then
the number of possibilities is equal to k for a deletion or a successful query, but that the number
of possibilities for the i-th insertion or unsuccessful query is equal to . The application of Daniels’
theorem is much more technical. From Louchard, Schott and Randrianarimanana [33] Theorem 9, it
appears that the size Y of the dictionary satisfies

Y([nt]) — nz(t)
Vn
where z(t) := [\/—%_ (2cos(8/3) — 1)/2]1/2, with 6 := arccos[2t(2 — t) — 1].
X(+) is a Gaussian Markovian process with mean 0 and covariance
CX(s,t) =~(s)v(2 — 1), s<t

with v(s) := [3 + 2/(s)}[2'(s) — 1]/8. We have 2'({) = 0 and = 1.
Z(+) is a Gaussian non-Markovian process, given by

2
Z(t) = / U(t,u)y/s(z/(w)) dBM(u)
where BM(+) is a classical Brownian Motion and s(z') := (1 — 2"?)/8.

[0 e 2
’Y(t)[l%f)u—) — /(2 — u)BE) B2 otherwise

2s(2!

= X(t)+2Z(t), 0<t<2

p(t,u

The covariance of Z can be written as
2
CZ(s,t) = / b(s, w)(t, u)s[z'(w)])du

At ¢t =1, we derive

: [v(m ) B Z@

z(u) 2s(z) 4
We have been unable to obtain an explicit expression for this quantity. A numerical evaluation gives
CZ(1,1) = .013992.... After a detailed analysis, it appears that ¢Z; = [0sCZ(s,t))11 = ¢Z, = 0.
Let us now turn to the properties of X(-). We check that v(1) = —3/8, CX(1,1) = 9/64. From [33],
Theorem 7, we have z(1) = 3/8,2"(1) = —2/3. It is now easy to deduce

[0,C); = 1/4, [8,C); = —1/4, A=1/2, B =(2/3)"/3, C(1,7) = 0.154617...
This finally leads to

CZ(1,1) = 272(1)/

o
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Theorem 10 5
Maz := max Y ([nt]) ~ gt t Vn M +0(n'/®)

and the mazimum is reached at time t*, where M and t* are given by Daniels’ theorem.

5 Limiting profiles of list structures

In the last section, we analyzed the distribution of the maximum of file histories. We can also get
information on the limiting profile, i.e. on how much time is spent at each level k (k fixed, n going
to infinity). Our investigations are based on the assumption that the size Y'({nt]) of the list at time
nt (with 0 < t < 2) satisfies a weak convergence property:

Y(|nt]) — ny(t
(Int]) y()=>X(t),
VL

where y is a symmetric function around 1 and X is a Gaussian process with mean 0 and known
covariance C. In all applications to either classical or Knuth-type file histories, that assumption is
true.

Let k, the level under study, be fixed, and 7 be the time such that y(7) = k/n, with 7 < 1.

If we consider the time u where Y first hits level k, the density of u is given by

g(u)du = Pr{min{u’,Y([nv']) = k} € du}

= Pefmin{u, X() = VA(E ~ y(u))} € du},

and so
1

7

Thus we examine the behaviour of Y near . Locally y can be approximated by a straight line, so
that, y'(f) denoting the slope of y at 7, we have

g(u)du ~ Pr{min{v/, X(u') = vn(f — «)y'(¥)} € du}.

But it is known that locally X behaves like a Brownian Motion {12]. Using classical results on the
crossing time of a Brownian Motion and a straight line Cox and Miller [8] (p.221) and an asymptotic

analysis, we find that the density of 7 := %_;Q 1s just

u—t=0(

y’(Z)_ (v @y /206D 4y
V271 C(3,7)
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where C is the covariance of X. Thus u is a Gaussian variable centered at %.

We now study the total time spent at level k. Let p(u),¢q(u),r(u) be the probabilities that the
next move on the list is an insertion, deletion and query respectively, if we start at Y'([nu]) at time
u. The random walk describing the evolution of the data structure is transient, so that between the
time when the size of the structure first hits k, and the time when it last leaves level k, we may
consider that p(u),q(u) and r(u) are locally constant and equal to the probabilities p,q and r of
insertion, deletion and query at level k.

If the first step leaving level k is a deletion, we are sure of coming back to level k (since t < 1).
If it is an insertion, then the probability of ever returning to level & is ¢/p.

If we look at the whole file history after hitting level &, the history spends [ steps at level &, 2
steps inserting from k to k + 1, d steps deleting from k to k — 1, plus various other operations at
other levels. Thus, if F(2,w,v) is the joined generating function

F(z,w,v) =Y Pr{l,s, d}2'wv?,
idl

we have when n — oo:

F(z,w,v) = qva+pw[§zF +(1- 12))] +rzF,

which leads to

_ (p—quw
Fz,w,v) = l1—qz(v+w)—rz

,From that we can derive the distribution F(z,1,1) of the time spent at level k, and similarly of the
number of insertions and of deletions from level k. All turn out to be geometric random variables.

5.1 Example: classical priority queues

For priority queues, we have for the average size at ¢:
1
(1) = 3t(2 — 1),

and the covariance of X is given by C(s,t) = s%(2 — t)?/4. Thus? =1 — /1 —2k/n, and ¥'({) =
\/1 —2k/n. Adapting now the proof of Lemma 13 in [33], we can prove that

p=1-

B el

-



Then we find that

5.2 Example: dictionaries in Knuth’s model

1/2
y(t) = [\[(2 cos(8/3) — 1)/2:]

with 6 = arccos[2t(2 — t) — 1]. Also y' := \F— 2(2)1/2(k[n)1/2. From [33], we obtain

3

Similarly we find:

1
il 27 +§")
—(1 )

1
¢ = 7(1-29+3")

3
"

\,
1

Finally this gives

E(l) = = and E(i) = E(d) =

e

6 Hashing with lazy deletion

Hashing with lazy deletion was introduced in [44] as a data structure suitable for example for line-
sweep algorithms on a set of segments of the plane. When a new item arrives, (i.e. the line reaches
the extremity of a new segment), it is inserted in a random bucket of a separate hash table, along
with the z-coordinate of its right extremity. When an item “dies”, i.e. the line goes past the right
extremity of the segment, it is not removed from the data structure right away, but only at the time
of a later insertion within the same bucket. This method presents the advantage of minimizing the
number of accesses to the hash table, at the cost of some extra space used. In [44], several models
of distribution are suggested to analyze the extra space: two non-stationary models (which are quite
similar to one another, so that we will only study the first one, knowing that the same approach

works. also for the othermodel) and one stationary model.
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6.1 The first non-stationary model

In the first non-stationary model, there are n segments in [0...1] drawn independently from the
following distribution: segment s = [min(z,y), Maz(z,y)], where z and y are uniform independent
r.v.’s in [0...1]. Thus the arrival time density is 2n(1 — u)du and the lifetime 2, conditional on u, has
density ndz/(1 — u). To remove the conditionality, it is convenient to change the time scale. Let the
new time ¢ be given by 1 —u = e~?%. It is easy to see that the arrival times now have density 2e~2!dt,
and the service times have unconditional density e~'dt.

. Two parameters are of interest here: Need(t), the number of items alive at time ¢ (which have
to be present in the data structure), and Use(t), the number of items which are actually present in
the table at time t. Thus Waste(t) = Use(t) — Need(t) counts the items which are dead but not yet
deleted at time t.

6.1.1 Study of Maz,Need(t).

We note that Need(t) depends on n but not on H. Our calculations are asymptotic, when n, the
total number of items, goes to infinity. From Louchard [35], Theorem 1, we find that as n grows.
Need(t) converges to a Gaussian process:

Need(t) — nzneed(t)
ND

where zneeq(s), the probability that a given item is alive at time ¢, is defined by

= Q(t),

t .
ZNeed(t) = /0 2e™ e (¥ dy = 2¢7H(1 — 7).

Q(t) is a Gaussian process with mean 0 and covariance
C(s,t) =2¢"H1—e*) —4de ' (1 —eHe™ (1 —e™?)

if s <t. It is easy to check that zyeed(t) is maximized at T = In2, where its value is 1/2. Thus we
can rewrite the convergence as

1
Need(t) ~ VAL +Q(t) + VA(aneeel®) — 2]
and, applying Daniels’ theorem, we obtain after some algebra:
Theorem 11 n

Maz,;Need(t) ~ 3 + /M + O(n'/5),

where M is characterized by the theorem in section 3.1, with A =1, B =1, C(1,1) = 1/4, [0,C]; =
1/2 and [0,C]; = —1/2.
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6.1.2 Study of Maz,Use(t).

Use(t) does depend heavily on the number of buckets. The larger H is compared to n, the more
discrepancy there is between Maz;Need(t) and Maz,Use(t). We assume that the number H of
buckets also goes to infinity, and there are two cases: either H = rn, with r fixed, or H = a(n)n,
with a(n) — 0.
We must now study M = Maz.Use(t). Let Waste(k) be the time during which customer k was
dead but not yet deleted. The distribution of Waste(k) is known:
e—2t . e—2y n-1
Pr{Waste, >t —y} = [1 — —————}

H
If H = rn, we use the proof technique presented in [35] to get a weak convergence of

Use(t) — nz(t)
Vn

to some process Q(t), where nz(t) is the average number of items in use at time t: z(t) is the
probability that a fized item is in Use at time . The item is alive at time ¢ if it arrived at u < ¢ and
lived for more than t — u; it is dead but not deleted at time ¢ if it arrived at time u, died at time
y < t, and was in waste for longer than t — y. Thus, approximating Waste,, we get

= Q(t)

t t ¢
Z(t) = / 26‘2“6_(t—")du + / Ze—Qudu/ 6—(y_u)8_(6_2!’—3_2')/"([:(/'
0 Q "

‘The limit process Q(¢) has mean 0, and we must calculate its covariance.
Let ni(s) be the random variable which is 1 if customer 7 is in use at time s, and 0 otherwise.
Then the number Use(s) of customers in use at time s satisfies

Use(s) = Z ni(s).

1<i<n

Thus the covariance is given by

Cov(Use(s)Use(t) = 3 Elm(s)m(t) + 23 E(ni(s)n; (1)) — n2(s)=(t)

1<i<n 1<J

for s <t. The first part of the sum can be expressed easily as a sum of integrals. The second term
depends on whether ¢ and j are in the same bucket or not (which events have probabilities 1/H and
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1 —1/H). After carefully developing in 1/n, we obtain
Cov(Use(s)Use(t)) =n|
2e7t(1 — e~°) + / T0e gy /u Cemlim -
+ 77( )2(t) + n(t)z(s) + n(s)n(?)
+ / 2e~2dy / 2e~2dy / (=) g / ! ¢~0-0) gy e~ Aleslolutd/r
- / 26'2“du/ e~ W=¥) g=(e7 =) r gy /Ot 2e” 2 dy /: e~ W=¥) g=(e7¥—eT)/r gy,
— ()] + 0(),

with: z(t) given as above, 7(s) defined by

—2s

s s —2r __
3) =/ 26_2udu/ e_(x—”)e'(e_““e_z’)/f ¢ € dz,
0 u r

and A([zs] U [yt]) is the measure of the union of intervals [zs] and [yt] in the distribution A(z) =
1 —e %=,

To apply Daniels’ theorem, we must find  such that z(f) = 0. From [44], it is known that  only
exists if r < 0.84.

If r < 0.84, we can apply Daniels’ theorem.

If r > 0.84, then z(t) is an increasing function, and we know from Iglehart (24] that Maxz,<;Use(s)
is asymptotically distributed as Use(t). Letting ¢ go to infinity gives an equivalent of the Maximum.

Finally we have:

Theorem 12 Assume that H = rn.
1. Ifr > 0.84, then

MazUse(t) ~ Cn + v/n\/C(1 - C) + C'X,

where X = N(0,1) is the classical Gaussian random variable, C is defined to be
2 [ e (1 — e ®)e ¢ Idx, and C' (which can be evaluated numerically) is given by:

C’—2n(00)( ) + n*(c0)
+ / 2e~ 2 dy / 2e~2dy / e~ (==¥ gz /°° e~ (5=) gy g~ All=s1lye))/

- [2/0 51— e=%)e " dy ] .
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2. Ifr < 0.84, then
Maz,Use(t) ~ n[Ze'?(l — 6—2) + 7]+ VM + O(n‘l/e),
where t is the solution of
T -
2/ e™*(1 — e %)e T T dg =,
0

and M is given by Daniels’ theorem, with B = [4e~3(1 — 2¢7?)/r]"1/3, and C(%,7), [0,C); and [9,C);

can be written in terms of complicated multiple integrals.

In the case where H = a(n)n, with a(n) — 0, the arrival times in a bucket behave, in first
approximation, like a Poisson process. Our goal here is again to apply Daniels’ theorem. At each step
of the calculation, we write the quantities as power series in ¢, so that we can neglect high powers of
a, and the expressions remain simple enough. Apart from some technical complications, the approach
is the same as for the case where H = rn. Our calculations are accurate if a(n) = o(1/\/n). If a(n)
decreased more slowly than that, it would still be possible to get some results, but that would require
writing the power series more accurately.

Theorem 13 Let H = a(n)n, with a(n) = o(1/y/n). Then we have
Maz,Use(t) ~ n(% + a —4a? + 0(a®)) + v/nM + O(n~1/5),
where M, given by Daniels’ theorem, is asymptotically Gaussian, with mean
E(M) = 0.99615n=1/62%/3 4 O(n=1/3).

We have A =2+ O(a) and B=1+ O(a),

1
g H2a+ O(a?)

[0;Cl; = 1 + O(a)
[0:.C); = —1 + O(e).

C(@, 1)
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6.2 The second non-stationary model

Van Wyk and Vitter suggested another non-stationary model, in which arrivals and deaths are not
symmetric. Here again n segments in [0...1] are drawn independently from a given distribution:
segment [z...y] is constructed by drawing z uniformly in [0...1}], and then drawing y uniformly in
[z...1]. Up to a change of scale, we can assume that the densities of the arrival and service times
are e 'dt. From then on, the proof mirrors that of the previous subsection; the only difference in the
calculations is that the arrival times have density e~*dt instead of 2e~%!dt, so that there is no critical
value like 0.84: there is always a point at which z(t) is maximized.

Theorem 14 ‘ n
MazNeed(t) ~ — + /aM + O(n'/®),
where M is characterized by Daniels’ theorem, with A = 2/e, B = (1/e)~'/3, C(%,T) = (1 — 1/e)/e,
[BSC]; = 1/6 and [8gC];= —1/6.
Theorem 15 If H = a(n)n, with a(n) = o(1/y/n), then we have:

MazUse(t) ~ n(l + a4+ 0(a?)) + vVaM + O(n'/®),
[

where M is characterized by Daniels’ theorem, with A = 4/e + O(a), B = (1/¢)7'/* + O(a),
- 1 1 2
CEY=_(1-)+all+)+ O(a?),

[0:Cl; = 2/e + O(a), and [0,C); = ~2/e + O(a).

7 Conclusion

Diffusion techniques allowed us to derive several new results on data structures maxima. Many
problems remain open, and are the object of work in progress. Let us mention the symbol table,
(the probabilistic properties of which are unknown), the G/G/1 detailed maximum properties, the
G/G[oo case, with In(At) = Q(2). Let us remark that, in a recent report [2], Aldous, Hofri and
Szpankowsky have analysed Hashing with lazy deletion in the stationary case and proved open con-
jectures introduced in [37] and [44].
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A A direct computation of Daniels’ formula

Daniel’s results are based on the following hitting time density for a B.M. X(t).
Let w(t) = m + /n f(t), with f(t,) = f'(t,) = 0. Daniels has obtained the density (see Daniels and
Skyrme [10]):

w!t!!z
e 2t

Vot

g(t)dt = Pr[min(t’ : X(t') = w(¥')) € dt] = p(t)dt (1)

where
u(t) = n72(28) B F {n! P28 — 1)} (1 4+ 0(n71/%)
with F' given by (25), 8 := f"(¥)/2 and ? is such that #'(f) = h(?)/1.
(1) We will firstly extract all dominant terms from (1). As in [10], set

z = n!?(2B)*3(t, — t) = 0(1)

They have computed
f~t, = ~1/2 T (=23
n 128 + 0(n™47)

SO
_ 13 12y,

ot @BYF T T2

Expanding G{z) as given in Sec.4.1, we obtain

4 0(n"%/3)

1 o0 e—/\kr/21/3

Gle) = A0

22/3 P

where ) are the zeros of A;(z). A detailed expansion of (1) now leads to
B (2ﬂ)1/3 —m? 3
g(t) = N EIVE exp +

2, & 6
% exp [2:,% (x + ?J(Tg—)%?s')]
b A

(1+0(n"V/3) (2)

k=0

(it) Such a simple formula as (2) should be explained in direct hitting time density for B.M. . This
will be done with a technique introduced by Salminen [41]. Let us first remark that, to derive
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(2), it is enough to limit ourselves to a second-order boundary (error is within O(n=1/?)). So
we can simply use

w(t) = m + VRB(E — 1)’
with £ = w(0) = m + B+/nt%. Our hitting problem can now be transformed into

g(t)dt = Prz[min(t' : X(¢') = h(¥')) € di]

with h(t) = —\/n B(t — t,)* + /n Bt? such that h(0) = 0.
This also gives h'(t) = —2/n B(t — t,); B’ = —=26/n.
By Salminen [41] (2.6) and (3.9), we now obtain

g(t) = 2 (%) 7 exp [h'(O):E - %/ot[h'(s)]zds]
A; [M+ 2(Bf" )1/3z]

0,0
Z e,\k(zﬁ%)l/%
A'(Ax)

k=0

But A'(0) = 2/n f8t, and

5 [Wods = — [ 2np2(s ~ t,)ds

t—t)° 8] 2 2npuS
—9n 32 (—0 T} e A i)
”ﬂ[ 3 +3] 6

By Abramowitz and Stegun [1] (10.4.59) we know that, for large z,
1 /2 -1/a ¢ 1
Ai(z) ~ 57 e e (1+ O(E))

with ¢ := 22%/2,
From (3), we must use _
2 = A + 223n3EA32 | 9213 g\ 31 /6

so that

1 3 m _+3 m2 +3 /\k
t3 8 B tin | 2 TBBRRRE

3 m/\k 1
MY Ve n7/6} («1 * °(m)>
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Also, we deduce
Ak
M(20%0) 5t = Me(26%0)' o1, — 2
R'(0)z = 2B+/nt,z = 2B8\/nmt, + 2np%3

Identification of (3) with (2) is now routine.
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