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Abstract

A multiresolution method for the resolution of distributed parameter estima-
tion (inverse problem) is studied numerically We consider the identification
of the coefficient of an elliptic equation in one dimension as our model prob-
lem. First, we use multiscale bases to analyze the degree of ill-posedness of
the inverse problem. Secondly, we show that the method of scale by scale
multiresolution yields robust and fast convergence. Finally, we show how
the method gives a natural regularization approach which is complementary
to Tikonov’s regularization.

Keywords

identification, distributed parameter, multiresolution, Haar basis, BFGS
optimization

Résumé

Une méthode multirésolution pour I’estimation des paramétres répartis (prob-
leme inverse) est étudiée du point de vue numérique. Le probleme modele
considéré est I'identification d’un coefficient dans une équation elliptique de
dimension un. On utilise d’abord des bases multi-échelles pour analyzer le
degré de la non linéarité du probleéme inverse. Ensuite, on montre que la
methode de multirésolution échelle par échelle produit une convergence ro-
buste et rapide. Enfin, on montre comment la méthode donne une approche
naturelle de régularisation qui est complémentaire de la régularisation de
Tikonov.

Mots-Clé

identification, paramétre réparti, multirésolution, base de Haar,
optimisation BFGS
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I Introduction

Inverse problems are usually considered as difficult problems. One essential
question is how to obtain rapidly a stable solution. The idea of multi-
scale representation has suggested various parallel and iterative algorithms.
For example, multigrid methods have been widely used for solving partial
differential equations (direct problems) [4, 5] in order to accelerate the con-
vergence. However, this idea has been rarely used until now for inverse
problems (lack of theory). Recently, some approximation framework have
been developed for inverse problems {2] and wavelet theory (multiscale bases)
have appeared [14, 13]. This allows the idea of multiresolution to be used for
inverse problem without grand modification from the classical optimization
methods.

We take a simple clliptic problem as our model problem, which is a well
known nonlinear ill-posed problem. A number of study for this problem
have been done (for example [12]). In this paper, we first analyze the in-
verse problem using the Haar basis (a multiscale basis). We remark that
the objective function is more "ill-posed” (or nonlinear) with respect to the
coefficients corresponding to the finer scales, but it is less sensible with re-
spect to these coefficients. Then we investigate numerically the behavior of
a BFGS optimization routine in the IMSL library [11] when the unknown
parameter is represented on the usual local basis, and on the Jaar basis.
This leads us to propose a multiresolution, or scale by scale, optimization
method to solve the parameter estimation problem. This method turns out
to be very robust (convergence is obtained for any initialization of the op-
timization algorithm) and efficient ( a good solution is obtained in a very
small number of iterations). The multiresolution method allows, for the
problem under consideration, to perform a global optimization with a local
optimizer. Finally we give regularization methods which are complementary
to Tikonov’s regularization. A number of numerical results are shown.

II A simple model inverse problem

We consider the following elliptic equation:

d du(z),
- —(a@)—F)=f(z)  ze(0)) (1)



with the Dirichlet’s boundary condition:
u(0) = u(1) = 0. (2)

where f(z) € L%*(0,1) is known.

The direct problem is:
(DP)let Quq be the convex set {a(z)|0<m <a(z)< M ,z€(0,1)}C
L>; given a(z) € @44, we solve for u(z) in the equations (1),(2).

This problem is very simple, as the equations (1),(2) have a unique solution
u(z) denoted by ®(a). The application ¥ is continue from Q.4 cquipped
with the L®-norm into Hj C L2.

The inverse problem is:
(IP) given a distributed observation z(z) € L?(0,1) of u(z), we minimize
the objective function (output least square error):

J(a) = 18(@) - 2l = [ (u(a) - 2(2)de (3)
over a € Q4.

The problem is a typical ill-posed nonlinear problem. There are two types
of "ill-posedness”. First a(z) cannot be determined by equation (1) on
the set {z|u.(z) = 0} so that there is no uniqueness for the solution if
measure({z|u.(z) = 0}) > 0. Secondly, from homogenization theory [3], we
remark that there is a sequence of a,(z) which is not convergent in L*, but
still the sequence u,(z) = ®(an(z)) is convergent in H}(0,1), so that the
solution is not stable.

Remark: we can obtain easily an analytical solution of equation (1),(2):

_ L YWF@)dyfg b(y)dy _ [°
z) = P ) Py ()
with v
bz) = (@)™, F@) = [ fls)ds (5)

This analytical solution will be used in paragraph 3.2.



For the numerical solution of (1 P), we shall consider the following discretized
problem (I PH):

Minimize J,,(a”) = Z(U}, - Zh)? (6)

with
An(an)un = fa, (7)
where u;, and ay are the discretization of u(z) and a(z) respectively (h =
1/n and H = 1/N): uy is made of the n — 1 values of u, at the nodes

z; = th,i=1,..,n— 1 and ay is made of the N values of ay on intervals

(i = 1)H,iH[,i=1,2,..,N.

Remark: for well-posedness of the discrete problem (/P[), the condition
h < H is necessary. When H = h, we have N = 1/H numbers to be esti-
mated, but only N — 1 observation numbers.

IIT Using multiscale bases to analyze the inverse
problem

I1I-1 Multiscale Bases

Multiscale bases exist since a very long time, the first one being the Haar
basis which appeared at the beginning of this century. They were however
relatively little used for numerical computations, until the uproar around the
wavelets which developed in the early 80’s. Presented first as a challenge to
Fourier Analysis, the wavelets turned out quickly to be a systematical way of
constructing multiscale basis of function spaces. The use of these multiscale
bases is now being widely investigated for the resolution of partial differential
equations (Direct Problem). We show in this paper that they can be a very
valuable (and simple) tool for the resolution of the inverse problem stated
in paragraphe 2. Because the parameter a(z) we are looking for is required
only to be in L%(0, 1), we shall use the simplest multiscale basis, namely the
Haar basis. Of course, in inverse problems where the unknown parameter is
more regular, we will have to resort to more sophisticated wavelet bases.



Let Z be the set of relative integer, using the characteristic function

¢(x):{ 1 z€(0,1)

0 otherwzise,

the mth scale approximation of a general function a(z) is represented by

a™(z) = Za}"q&(?"‘z —1) (8)

i€z

where a is the mean values of a(z) over the interval [¢/2™,(i 4+ 1)/2™].

The corresponding multiscale basis is the Haar basis, made of the func-
tions ¢! (z) = ¢¥(2'z — j) for all i, € Z, which are constructed from the
following mother wavelet function:

-1 z€(0,1/2)
P(z)=< +1 =z €(1/2,1)
0 otherwise.

The ¢!, 1,7 € Z form a complete orthogonal basis of L?(R), which is multi-
scale in the sense that the mth scale approximation a™(z) is simply obtained
by setting to zero all coefficients of ¢} with j > m in the expansion of the

function o
a(z) = ) dyl(z) (9)

s€2,j€Z

on the basis.

Remark: for the space L2(0,1) and a fixed mth scale approximation, we have
two equivalent orthogonal bases: the characteristic basis made of {¢(2™z —
i+ 1) i =1,..,2"} and the Haar basis made of {¢(2z —i +1)| j =
0,...,m~1,i=1,...,2/} and of the constant function ¥°(z) = ¢(z) = 1 over
[0,1].

ITI-2 Curvature’s Analysis

A geometrical theory for general nonlinear least-square problems [7] shows
that the velocity and the curvature along curves of the solution space which
are images by ® of segments of )., are important to measure the "degree
of ill-posedness” of the inverse problem with output least-square formula-
tion. In the limiting case, the curvature is equal to zero for a linear problem.



In this section, we suppose f(z) = 1. The algebraic computation systems
(Macsyma, Maple etc) allow us to calculate the velocity and the curvature
along the curve ®(a + tfa) at t = 0 for the directions of the base functions:

0 z€(0,t-h)
-1 z€(t-h)
1 ze(tt+h)
0 z€(t+h,1)

Sa(z) =

for the exact mapping ®, i.e. without any approximation to the solution
u(z) of equations (1) and (2).

We obtain for the velocity V' and the curvature K in the direction éa(z)
at a(z) = 1 the following formulae:

_ h3(180hs? + 5h + 30h3 + 4052 —24h?)

V2

60 (10)
K? =
—480(1230’17—600}18—940}26 + 317h5—40Ah* + 1800h7s2—400s*
—3000h%s2 + 7200h%s* + 2640h*s? + 480h2s* 4+ 240h2s? (11)

—1480h352—8400h3s* ~330h%s? + 7200hs® + 1600hs*—4800s°)
(180ks? + 5h + 30h3 + 40s2—24h?)~3h~*

where s =1~ 1/2.
From these formulae, we have

3.2
Via ths , K ~6h2 as h~0 (12)

The conclusion is that the objective function is more nonlinear with respect
to the coefficients of the finer scales, but is less sensitive with respect to these
coefficients. For illustration, we plot the curves log(V) and log(1 + K'?) at
five different scales in Figure 1 (bottom).

Remark: In the same way, we have for the characteristic basis:
_ h%(h® 4 30h?s%—20hs? + 10s® 4 120s*)
B 120
K2 4800h3s?(10hs? + 2h—12s% ~ 1-h?)
(4= —

(A3 + 30h252—20hs? + 10s? + 120s)°

v? (13)

(14)
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h?s?(1 + 12s?%) K? 4.8h®
1z s(1 4 1259

in the direction of the base function:

1% as h~0  (15)

0 z€(0,t-h/2)
da(z) =< 1 z€(t—-h/2,t+h/2)
0 r€(t+h/2,1)

where s =t — 1/2.

Remark: If we take b(z) = a(z)~! as the parameter to be estimated, we have
not the same result. The curvature K in the direction éb(z) at b(z) = 1 is
the following:

K= 9600h%(5—24h + 60s? + 30h2—90hs?)

= 16
(5h + 40s2~24h? + 180hs? + 3043)° (16)

_ 3h%(1 412

1.'2
! 458

as h—0 (17)
where s =t - 1/2 and

0 z€(0,t—h)
-1 z€(t-h)
1 ze(tt+h)
0 ze€(t+h,1)

éb(z) =

It is not surprising that the equations (12), (15), (17) are very different.
The equation (12) show that singularity directions for A" = oo correspond
to h = 0 and from the equations (15), (17) singularity directions for K’ = oo
correspond to s = 0. These two kinds of singularity directions correspond
to exactly the two kinds of ill-posedness mentioned in the paragraph 2.

IV Multiscale parametrization, Multiresolution and
Regularization

We investigate in this paragraph various strategies for the practical compu-
tation of ay by minimization of the objective function J,. We have used
in all runs the subroutine BCONF of the IMSL library based on the BFGS

algorithm [11}. The only initializations required in this subroutine are the



initial guess of the unknown parameter and the other parameters are given
by default values (the initialization of the Hessian is an identical matrix).

Our investigations concerned first the behavior of the BFGS algorithm for
various initializations and various parametrizations of ay associated to dif-
ferent bases of R3?: the characteristic (or local ) basis ( the paragraph IV-1)
and multiscale bases (the paragraph IV-2). Parametrization on the usual
Haar basis will prove to yield in many case a much better convergence of
the BFGS algorithm than the usual local basis.

Our analysis of this phenomenon will lead us to experiment with a mul-
tiresolution (scale by scale) optimization approach in the paragraph IV-3,
which turns out to be very robust and yields the fastest convergence. Fi-
nally, we show in the paragraph IV-4 how multiscale parametrization and
multiresolution can be efficiently combined with a regularization approach
in order to stabilize the estimation of ay with noisy data.

We summarize here the data common to all runs: the elliptic equation
(1),(2) (with right hand side f(z) =1) was discretized using a finite differ-
ence scheme with a mesh size h = 1/32, and the parameter ay was also
discretized with H = 1/32 (hence we are faced with the estimation of 32
unknown parameters).

The data 2z, (exact in the sections IV-1, IV-2 and 1V-3 as well as noisy
in the section 1V-4) was generated using the above finite difference scheme
and the following "true parameter”

1 =z¢€(0,1/5)
atvi(z)={ 10 ze(1/5,2/3)
50 e (2/31).

Notice that aij“c is quite strongly heterogeneous ! Because of the Dirichlet
boundary condition, 2), consisted only in 31 numbers representing the solu-
tion u(z) at z = h/2,3h/2,...,63h/2. Hence the problem of the estimation
of ay from z, was clearly undetermined !

Two initializations were used, corresponding to ai3** =1 and 10. The first
initial guess is "poor” (underestimated), and the second one is a "good”
one (in the range of the values of a};“¢). The corresponding initial values of
Ji are 215. and 0.84 respectively. Optimization runs using the local basis



were made with the bound constraint of 0.1 < a; < 100. ( except one run
in paragraph 4.2) and optimization runs using the multiscale basis or using
the multiresolution method were performed without any constraint.

IV-1 The BFGS algorithm and the local basis

The traditional method is to perform one optimization run to estimate si-
multaneously 32 numbers representing the value of ay on each interval. If
we use the subroutine BCONF in this way, we obtain the result shown at
bottom left of Figure 2 after 1000 iterations with initialization aj7** = 1. The
algorithm is not convergent and final relative ob jective function is equal to
3.0e-4. If we choose the better initialization al}** = 10, we obtain the re-
sult shown at top left of Figure 2. We have recoved the "true” parameter
aji*¢, but the rate of convergence is slow. To understand in more details
the behavior of the algorithm on the problem, we plot the evolution of the
relative errors for parameter at different scales in L? during the procedure of
optimization in Figure 3, 4. The result coincides with the analysis in para-
graph 3. The coefficients of finer scales do not converge toward the "true”
coefficients at all when the "bad” initialization a}}** = 1 is used.

IV-2 The BFGS algorithm and Multiscale bases

We tested the influence of the representation of ay on the Haar basis (or-
thogonal) as in (9), on the normalized Haar basis (orthonormal) and on
the local basis (orthonormal) when a minimization without constraint was
performed for the three bases. Notice that quasi-Newton algorithm are
expected to produce the same sequence of iterates when an orthonormal
change of basis is performed on the unknown parameter and when the Hes-
sian is initialized with an identity matrix in both cases. Hence one expects
that using the local basis or the normalized Haar basis will not influence
on the behavior of the BFGS algorithm. This is what we observe on fig-
ure 5. However, the decrease of the objective function is slightly better with
the normalized Haar basis for the two initializations a’3"* = 1 and a'}** = 10.

Then we used the usual Haar basis for the parametrization of the unknown
parameter ay . As we already noticed in (8], the convergence of the BFGS
algorithm was much better with this basis for the two initializations a}}** =

and aif** = 10 (figure 5). We try now to give an explanation of this phe-
nomenon. We notice first that in the Haar basis, the L?>-norm of the basis



function is decreasing when the scale index is increasing. Hence replacing
the local or normalized Haar basis by the Haar basis amounts to perform a
rescaling of the unknown parameter depending on the scale level: the sen-
sitivity to an unknown is decreased proportionally to his scale index (this
is apparent by comparing the top and bottom of left part of figure 1). Sur-
prisely at first glance, this rescaling goes in the opposite direction of what
would be required to try to "spherize’ the objective function J, around its
minimum: the discrepancy in sensitivity in all basis directions is much larger
with the Haar basis (bottom left of figure 1) than with the normalized Haar
basis (top left of figure 1)! Numerical experimentation with an ”overnormal-
ized” Haar basis (for which all scale had approximately the same sensitivity)
did not produce any enhancement of the convergence.

The explanation may come from the nonlinear effects: as we already men-
tioned it in paragraph 3.2, the non linearity is increasing with the scale
index, hence "spherizing” the objective function, which requires to boost up
the sensitivity of fine (high index) scales, also boosts up the nonlinear effects
associated to these fine scale, so that the "convergence domain” around the
exact solution becomes extremely small, and the quasi-Newton method is
not able to find its way to the global minimum as soon as the initial guess
is not too good. Conversely "despherizing” the objective function, i.e. still
diminishing the sensitivity of fine (high index) scales (which is performed by
using the Haar basis), also lowers the influence of the strong non lincarities
associated to fine scales coefficients: at the beginning the objective function
seems to depend almost only on the low scales, low nonlinear cocfficients. It
is only once these low scales coefficients have been approximately set that
the influence of the finer scale coefficients become apparent. This is con-
firmed on figures 6 and 7, where the evolution of the relative errors on ay is
plotted for each scale against the iteration index. On figure 6 for example,
we see that coefficients associated to scales 1 and 2 begin to adjust only after
iteration 20, when the scale zero (mean value) coefficient has been approxi-
mated to 10%. Similarly, until iteration 150, the BFGS algorithm basically
don’t touch the coefficient of the finer scales ( 3th, 4th and 5th), and hence
performs an optimization in the 4 dimension space associated to scale 0, 1
and 2! Also, one sees that the coefficients of the finest (5th) scale begin to
really adjust only after iteration 340, where the error on all coarser scales
becomes below 10% !

This behavior suggests strongly to try to optimize the objective function

10



successively on spaces of increasing dimensions associated to finer and finer
scales. This is the subject of the next paragraph.

IV-3 Multiresolution algorithms

As we have seen above, the nonlinear effects are increasing when finer scales
are added, and the size of the corresponding "domain of convergence” of
the quasi-Newton method is decreasing. It is hence natural to solve first the
optimization problem on a small number of (coarser) scales which is likely
to yield the global minimum as the nonlinear effects are small, and to use
this point as initial guess for an optimization run including more scale index.
The hope being this initial guess will be inside the ”convergence domain” of
the new, more nonlinear problem. This is the basis of the multiresolution
algorithm.

Another argument is the estimation of approximation error. In the solu-
tion of the PDE (direct problem), we have the following error estimation
(1, 9]:

llun — ul) < KA (18)

This error estimation is usually considered as an essential support for the
full multigrid methods (nested algorithm) [5]. For inverse problems, an
approximation theory have been also developed recently for elliptic problem
in some special case 2, 10] under the condition h ~ H, which gives for non
noisy data a similar estimation:

”GH - a|] S I(g”ﬁ (19)

This also suggests to use a nested algorithm for our inverse problem.

The multiresolution algorithm is as follows: we solve first the optimiza-
tion problem with scale zero (one unknown), the result is used as initial
value for an optimization run with scale one (two unknowns) etc. This al-
gorithm can be implemented using either the local basis or the Haar basis.
The advantage of the local basis is to allow for an easy implementation of
the bound constraint, but our numerical experiments show that with mul-
tiresolution algorithm the solution does not tend to hit the constraints. The
multiscale basis allows to perform easily multigrid patterns as V, W cycles.
But the inverse problem has not the same behavior as the direct problem
and until now we have not found any need of using such patterns. We illus-
trate on figures 8, 9 and 10 the behavior of local basis implementation of the

11



multiresolution algorithm. Figure 8 shows that multiresolution achieves an
excellent fit (objective function =1.e-10) in only 120 iterations, and beats
clearly (mono)resolution with either local or Haar basis (compare also with
figure 5). The figure 9 shows the parameter obtained at the end of each of
the 6 optimization runs (scale 0, 1, 2, 3, 4 and 5), and figure 10 the evolution
on the relative error on the parameter associated to each scale.

IV-4 Multiscale bases, multiresolution and regularization

When the data is noisy, the estimation error of approximation become [1, 9]
llay — a|| < K\(dist(z,$(Qaa))H* + K, H”. (20)

So ay may be far from a when H is sufficiently small. To stabilize the
solution of inverse problem, the classical method is to use Tikonov’s regu-
larization [15], for example, replacing the objective function J(a) by

do(z)

Ti(a) = J(@) + ol S5

2
1% (21)
This function of course can be efficiently minimized using the multiresolu-
tion algorithm of paragraph 4.3. The numerical results corresponding to «
= 107%J(a;ni:) and 5% noisy data are shown on figure 11. We sce that a
stabilization is achieved to the price of less accurate fit to the true parameter
value.

The use of multiscale basis and/or of multiresolution algorithm leads natu-
rally to two other types of regularization:

If we use a multiscale basis, we can express the smoothness of a function
by the decay of the coefficient in the expansion. So we can replace J(a) by

(8]
Ja(a) = J(@) + 3 e 3 () (22)

Hence the regularization is obtained by limiting the amplitude of the small
scale oscillations of ay (compare with the usual regularization (21), where all
scales are affected ') We refer to [8] for numerical results for this approach.

With the procedure of multiresolution, a very simple type of regulariza-
tion (corresponding to the limit case of the equation (22) with a; = 0,5 =
0,...,m and a; = 00, j > m) can be performed, just by stopping at a rea-
sonable scale during the multiresolution procedure. Different regularizations

12



can be obtained using different multiscale bases. For example, it is probably
interesting to use some regular multiscale basis as Meyer’s basis [14].

The figure 12 and figure 13 show the parameters obtained at different scales
for 1% noise and for 5% noise respectively. As the noise increases, the os-
cillation increases also: hence we should stop the procedure of optimization
at an adequate scale, i.e. regularize the solution. For example, we can stop
at 4th scale (16 numbers) for 1% noise and at 3rd (8 numbers) for 5%. We
remark that the solutions until 3th scale are the same with 5% noise or
without noise (figure 9, 12, 13).

V Conclusion

We have studied numerically the use of a multiresolution approach for the
inverse problem in a 1-D elliptic equation. It has been shown that the
methodology of multiresolution is well-suited to solve this ill-posed nonlincar
problem. The advantages of this method are:

o The final solution is independent of the choice of the initial parameters;
¢ Some local minima can be avoided;
e A very fast convergence is achieved;

¢ It leads naturally to the use of new types of regularizations which are
likely to perturb less the low-frequency components of the optimal
solution.

The methodology proposed in this paper is very general. It has been also
used for the identification of the conductivity coefficient in a parabolical
equation [8], and for the identification the relative permeabilities and capil-
lary pressure [6]. We believe that this method will also prove to be powerful
for more complicated inverse problems.
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Figure 1: log(V?) and log(1 + K?) at different scales
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Figure 2: The comparison of the final results of minimisation for different initializations (hottom
Qinit = 1, tOp ainir = 10 ) and for different parametrizations of the unknown parameter (left: local
basis, right: Haar basis). The bound constraint [0.1,100] was used with the local basis and no
constraint was used with Haar basis.
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Figure 3: The evolution of relative errors on different scales for parameter a(z) in L? during the

optimization with the local basis, a;n;; = 1 and bound constraint= [0.1,100]




Relative Errors

100 T T T T T T T T T
10
1
0.1
0.01
0.001 scale 0 —
’ scale 1 —
scale 2 e
0.0001
18-05 || 1 1 d 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Iterations

Relative Errors

100 T T T T T T T T T
10
1
0.1;'
0001 E Seale 4 —
0.0001 seale 5 ==
1e-05E L . . L . L L L :
0 100 200 300 400 500 600 700 800 900 1000

Iterations
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Relative Errors

1

0.1

0.01

0.001

0.0001

aanaonl 2ol 4oaaud goa o nd 014

0 50 100 150 200 250 300 350 400 450 500
Iterations

Relative Errors

1 I 3

0.1 E

0.01 3

0.001 scale 3 — E

scale 4 — 3

scale § == ]

0.0001 -
1e-05 1 1 ! ] ] 1 1 ! 1

0 50 100 150 200 250 300 350 400 450 500

Iterations
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optimization with the Haar basis and a;n;; = 1.




Relative Errors

1

0.1

0.01

0.001

0.0001

le-05

FEETIT W ENE I EEEEITT BRI BT

le-06 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

Iterations

I}elative Errors

0.1 3

0.01 3

3

]

0.001 3

3

0.0001 -

le-05 1
18-06 l 1 1 L 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450

Iterations

Figure 7: The evolution of relative errors on different scales for parameter a(z) in L? during the
optimization using the Haar basis with a;ni; = 10.




-

Relative objective function

1 T T T T T T T T T )
0.1 multiresolution —— i
one-resolution — 3
0.01 initiation for different scales & 71
0.001 —_— .
0.0001 1
1e-05 3
le-06 ;
!
le-07 !
1e-08 !
1le-09 i
18-10 1 1 ] } 1 1 1 1 ]
0 20 40 60 80 100 120 140 160 180 200
Iterations

Figure 8: Convergence of the objective function obtained with single- and multi- resolution (the
local basis and a,n;; = 1 were used in both cases).




70
60
50
40
30
20
10

0

70
60
50

40

30
20
10

0

70
60
50
40
30
20
10

Figure 9: The parameter obtained at the end of each step (scale level) of the multiresolution
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optimization with a;»;; = 1 and bound constraint [0.1:100] using multiresolution

40 60 80

Iterations

100

120

140

T

-
-

TTm

Yoy

TYITT

scale 3 —
scale 4 —
scale § ==

M R

LAALL BRALLL B

1

1 I 1

1

|

avued sosnd snd 2saud

aaued sanad s uued

0 20

40 60 80
Iterations

100

120

140




1 parameter

70 T T T T
60 - -
50 - exact ——
40 F calculed - o--
30 - 1
20 -
10 + =
0 ‘XX XN l......l...."l.'.‘.‘..fi...'..
0 0.2 0.4 0.6 0.8 1
6 iterations, cost=1.7e-2
2 parameters
70 T T T T
60 - -
50 - exact ——
40 F calculed "¢ -
30 B .
20 ' -
10 | : -
0 g0 9eydpocscogend 1 1
0 0.2 0.4 0.6 0.8 1
39 iterations, cost=5.2e-4
4 parameters
70 T T T —T
60 i '...’.'.'.:
50 - exact ~—— '
40 F calculed "o -
30 =
20 sovngees N
10 | XXX 7
0 ha 1 1 1
0 0.2 04 0.6 0.8 1

Figure 11: The parameter obtained at the end of each step (scale level) of the multiresolution
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Figure 12: The parameter obtained at the end of each step (scale level) of the multiresolution
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Figure 13: The parameter obtained at the end of each step (scale level) of the multiresolution
method applied to the unregularized problem and data with 5% noise
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