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RESUME

Dans ce travail nous considérons des problémes de contréle optimal des systémes gouvernés
par des équations différentiels ordinaires. Nous faisons I’analyse de une approximation discrétisée dans
le temps et nous étudions la vitesse de convergence de la solution discrétisée a la solution du probléme
original. Nous avons prouve, en employant des techniques de ’analyse convexe, que la vitesse de
convergence est de 1’ordre h(7/2)/\(1/2) dans le cas general (ou 7€§R+ dépend des données du

(

probléme), et de ’ordre h 7/2)A1 dans le cas ou des hypotheses de semiconcavitée sont valables.

ABSTRACT

In this paper we consider optimal control problem of systems described by ordinary differential
equations. We analyze its discrete time approximation and we study the rate of convergence of the
approximate solutions to the solution of the original problem. We prove using convex analysis
techniques that the rate is of order h(7/2)/\(1/2) in the general case (where 7€§R+ is a constant
(7/2)A1

depending on the problem data), and of order h when semiconcavity hypotheses hold .
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1. INTRODUCTION

Dynamic programming theory prove that the value function of an optimal control problem for systems
. described by ordinary differential equations satisfies (provided smooth regularity conditions hold) a
nonlinear partial differential equation of first order of type Hamilton-Jacobi-Bellman (see [4]). Classical
procedures cannot be employed directly because even in simple problems the optimal value function has
discontinuous partial derivatives. To avoid these nuisances it can be considered (see [3] and [7]) that the
optimal value function is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation
associated to those optimal control problems which for the particular case of infinite horizon takes the

form:

v
i —Ju + @ u 4 @8 =0, inRY, AeRT, 1
) { RAPIL Y~ i O

In this paper we study the properties of the family of functions uh, discrete time approximations of
Hamilton-Jacobi-Bellman equations. We obtain explicit estimates of the rate of convergence of these

approximations to the viscosity solution of the original problem.

We will also deal with the optimal control problem with finite horizon. The corresponding equation takes

the form:
du 14 du
: T T —
glénA { ¥ —/\uT + i_E lgia 7;;- + f['} =0, ae. (t,x)€[0, T]xRY (2)
up(T,x)=0 Vx € RY (3)

The central results are the following:

e Using convex analysis techniques and introducing a suitable family of finite horizon problems, we obtain

the following error estimates for the finite horizon problems:

up(t, x) — ul‘r(n, 9| < Mo(T—t) /2 (4)

and when semiconcavity assupmtions hold for f,g:



up(t,x) — ug(t,x) <M %(T—t)h (5)

o Based on estimations (4) and (5), an argument using a time optimization procedure gives for the
infinite horizon problem the estimations (6), valid for the general case and (7) valid for the case with

semiconcavity assumptions:

u(x) . uh (x) I S C h(7/2)A(1/2)

(6)

| u) —aPpo | < cn!07? (7)

where v, ¢ and ¥ are functions of the problem data.

These results are closely related to those obtained in [2] and [8]. The most remarkable differences are the
use of convex analysis techniques to prove them, and that the estimates obtained using semiconcavity

assumptions are sharper (in the set 1 <7 <2) than those presented in [2].
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2. DESCRIPTION OF THE PROBLEM
2.1 Description of the Problem with Infinite Horizon
2.1.1 Definition of the optimal cost function u
The problem consists in to find the optimal value function u, such that:
u(x) = inf  J(x,e(- VxeRY. 8
() = inf  J(xa(-)) ®

where A is the set of measurable functions a(-) defined in [0,00) with values in a compact subset

ACR™,
00
I(x,a-)) = Jf(y(x,s),o:(s))e"\S ds
0
f:RYz A — R is the instantaneous cost and A>0, is the discount rate.

The state of the system y(s)=y(x,s) corresponding to the control a(-) and to the initial condition x, is

given by the following differential equation (g : #/z A — RY):
y(s)=g(y(s), a(s)), s>0, (9)

y(0)= x.

It is well known (see [4]) that equation (1) has not, in general a C! solution, so we consider the viscosity
solution of Hamilton-Jacobi-Bellman equation. A function u is called a viscosity solution of equation (1)

iff for any function ¢€ C'(RY) it is verified that:

(i) If u—¢ has a local maximum in x;, then:

Vv
. d¢ .
- Y e o= + 1% 5 <0, i
aEA { " &5 o, ¥ } =0

(ii) If u—¢ has a local minimum in x,, then:

v
. d¢ .
min { — Au + XZZ 45 >0, .
a€EA { i:zlgl 8xi + } !

The function u, although is not continuously differentiable, is bounded and Holder continuous as it is



established in the following section.
2.1.2 Properties of the optimal cost function u
Proposition 2.1: If the following inequalities are verified Vz, 1 €RY, a € A.

ﬂg(x,a) - g(iva)“ < LgHX—f( b

(10)
le(x.a) | < Mg,
| f(x,e) — f(%,@)| < Lelx — x|,
(11)
]f(x,a)l < Mf,
then u satisfies:
My
lu) | < =
(12)

[u(x) —u(x)| < Clx —x% /7,

Vx, x €RY, where

Lf )
——/\—Lg v=1 zf/\>Lgy
1- .
1—7
2M -
f 1 7 f \ —
( " ) ek y€(0,1) iA=Ly

Moreover, u is the unique viscosity solution of Hamilton-Jacobi- Bellman equation (1) (see [7]).



2.2 Description and Characteristics of the Problem with Finite Horizon
2.2.1 The optimal cost function for the finite horizon case
In this case, for the finite horizon problem, the optimal value function up is defined by:
up(t, x)= aigt;iTJT(t’ x,a(-)) Ytel0,T],VxeRY (13)

where A is the set of measurable functions defined in [0,T) with values in a compact subset ACR™,

T

gl x o)) = [y als) e ds (14)
t

and y(-) is the solution of (9) with initial conditions

y(t)=x (15)
2.2.2 Properties of the optimal cost function up
In this case, it is possible to prove that function uy is always bounded and Lipschitz continuous.

Proposition 2.2: If condiiions (10) and (11) are satisfied, then:

M - -
[up ) | < 5 (1= (16)
L Ly,—A)(T—
Ti* (e( el t)—l)llx—xu if Lg# A
| urp(t, X) = up(t, %) | < (7
L¢ (T—nh) §x—x| ifLg = A

The viscosity solution of equation (2) is defined in a similar way as it has been done in the case of infinite

horizon (see [3]). Function ur is the unique solution of (2) in the viscosity sense.



3. APPROXIMATION OF HAMILTON-JACOBI-BELLMAN EQUATIONS
3.1 Analysis of the Problem with Infinite Horizon
3.1.1 A discrete time scheme of approximation
To find a time-approximated solution of (1), we consider the equation:
max {uh(x) — (1=2h) uP(x+hg(x,a)) — hf(x,a)}:O, xe€RY, A>0. (18)
a
We can prove that if 0<h <-§, then (18) has a unique bounded uniformly continuous solution uh; in
fact, they are equi-uniformly Holder continuous functions and {uh} converges uniformly in £, when h
tends to zero, to the unique viscosity solution of (1).

Moreover, YxeRY (see [1] and [2]) it can be proved that:

uh(x)z min Jh(x,a) (19)
ae.Ah

where AP denotes the subset of A of the controls that have a constant value in the interval [ kh,

(k+1)h ), k=0,1, ..

M (x,a)= héof(yh(x,k),a(kh)) (1-xn)k

and the sequence yh(x,k) is given by the following recursive formula:
yp(xk+1) = yp (k) + h g(yh(x,k),a(kh)), k =0,1,... (20)

yh(xao) =X,

3.1.2 Properties of the function uh

The discrete time solution uh, also as the continuous function u, is bounded and Hélder continuous.



Proposition 3.1: If (10) and (11) are valid, then:
M
h f
l u™(x) I Sy
| uh(x) - uh(i) | <Clx—-x 17,

where h € (0,%\), Vx, x €RY

L; )
X——Lg ‘)/—l lf > Lg,
— 7 1y 1 1 _A -
C= Lf (2Mf) (:\+Lg—A) 7—L"‘g 'f’\<Lg’
2M
£\l 1 fA=
( I ) e v€(0,1)  ifA=Lg.
3.2 Analysis of the Problem with Finite Horizon
3.2.1 The recursive discrete time scheme of approximation
In this case we define recursively function u,};‘(n, x), for h:%, ue N+, n=0, .. .,u.
h, o _ h -
uT(n 1, x)_(r)lnglA {(1 Ah) uT(n, x+hg(x,a)) + hf(x‘a)} n=1,.,u (21)
u,}i‘(p, x)=0 V xeR” (22)

It is obvious that u,};‘ is the solution of the following optimization problem:

u}%(n, x)= min J},;(n, x, a(+)) (23)
aeig

where .A,lf denotes the subset of A of the controls that have a constant value in the interval [kh,

(k+1)h), k =0, 1, .. (p—1).

Mn,x, a(-)=h :gl (v Cok)a(kh)) (1-3n)F (24)



The sequence yh(x,k) is given by the following recursive formula:

vy (k+1) = v, (xk) + h g(yh(x,k),a(kh)), k=n, .. (u-1). (25)

yh(x, n)=x

3.2.2 Properties of the function u,}},

The following proposition establishes some important regularity properties of function ul,}\; in particular,
the fact that it is always Lipschitz continuous plays a key réle in the proofs of the central results of this
paper.

Proposition 3.2: u,}i\ is uniformly bounded and Lipschitz continuous; i.e.N h € (0,/1\), Vx, X € ®Y

— (1- #-n
uh (0, x) ‘ < M; (-li/’\\—hu (26)

u,}}(n, X) — u,l;,(n, x) | < Luh (n) Il x —x | (27)

T

L, —A)(T=nh)
1 ( g .
Lf IF\ e Ing > A

1 .
T g

L (T~nh) ifLg = A

Proof: By (11), (23) and (24) it follows easily the validity of (26). It is clear too that for n = p, ul,ll is
h _

Lipschitz continuous with L h = 0, because uy =
u
7

To complete the induction procedure, we consider the following inequality:

ulh(n,x) — ulk(n,y) < (1-h) u,}f(n+l,x+hg(x,é))-}-hf(x,é.) — (1=Ah) ur}f(n+l,y+hg(y,é))—hf(y,é)

where 3 realizes the minimum of (21) for u},f(n,y), then

ull(n,x) — ubh(ny) < ((1=xh)(1+Lgh) Ly (4D + L h)px =y
analogously for u,li.(n,y) — ur}i‘(n,x), then we obtain: T



L 1 (n) < (1=Ah)(1+Lgh) L } (n+1)+ L h _ (28)
up up

Analysis of different cases
e Case Lg = A
In this case we have that (1—Ah)(1+Lgh) = 1—(Ah)%2<1, then:

Lpms Ly, (n+1)+ L¢ h
T T

which implies

L)< L,(p)+(p—n)Lgh= L(T—nh)
uT 4T

The formula (28) becomes

Lu%(n) < ( 1 - (A=Lgh ) Lu’}i‘(n+1)+ Lc h

then

n

1= (1= (=L )*7
1
L | (n) < Lch — <L
u,li\()— f h (A - Lg) =M A-Lg

The inequality (28) becomes

n

( 1 + (Lg=A)h )"_
h (Lg—X)

T
” (Lg —A)(T—nh)
Ly — —n
T

h

Remark 3.1: From here we will denote with Ly, the Lipschitz constant of up and we will discriminate the

three cases between them when it were necessary.



Remark 3.2: From here, and in order to obtain simplicity of notation and clarity of arguments, we will
use letters C, M, K to denote arbitrary constants (which values depends on the context where they
appear) which depend on the data of the problem (constants A, Mg, Mf, Lg, Lf, etc.) but do not depend

on the parameter of discretization h, of the regularization p, etc.

4. APPROXIMATION OF CONTROL POLICIES WITH STEP-FUNCTIONS

4.1 A Convexity Result

Proposition 4.1: Let f: A — RT be a map with F={f(a)/a € A} a compact set, then

w € CoF (29)

1
where wO:If(a(t)) dt, and CoF is the convex enveloppe of F, i.e.:
0

n

CoF :{zn:,\ixi, A20, Sox=1, x;€F, neN}
i=1 ]

1=1

Proof: The proof consists basically in the establishment of the closeness of CoF.

We know (see [9]) that in a finite dimensional space (dimension r in this case) we have:

r+1 r+1
CoF = { 3 Ax / X20, 3"\ =1,x €F} (30)
i=1 i=1
Then let x€ CoF, i.e.:
r+1
x = lim xk = lim Z /\!( xk
— 00 k—oo =1 L
with
r+1 r+1
k _ k _k k _ k k
x_zl,\ixi, Z:l/\i_l,/\izo,xieF
1= 1=

But {/\:( }k C [0, 1] then, there exists a convergent subsequence (that we srt-lilll denote /\}() such that:

k . . . _
AL = A if k—oo, Vi=l.,r+1, with A €[0,1], Zl A =1
1=

k

Analogously we have x{(—.xi e€F , as k—oo, Vi because {xi }kC F and F is compact. By virtue of this

—10—



observation and (30) we have:

r+1
x = lim xK = 21 X x; € CoF,
i=

Therefore, CoF is closed, i.e. CoF = CoF.

Finally we will prove that wg € CoF. By definition of integral, W is limit of integrals of step functions

defined in a partition {Ii} i=1,...,k (with Ii measurable) of the interval [0,1], i.e.

l 1 ky  k k ky k
wozlf(a(t)) dt :kh—r?oo 1:2:1 lf(ai ) x; (t) dt :kll—Too 1:2:1 fog ) m{,

1 iftel.
1 k
where x{‘(t): and Zm{(=1,
0 in other case i=1
then, by virtue of (30)
k ky _k k
> f(a)mS = x* € CoF, VK,
1=1

and consequently w0 =klim xk € CoF because CoF is closed.
— 00



4.2 Approximation of Controls with Step-Functions
e By virtue of proposition 4.1 and (30) we have:

1 r+1
wy = Jf(a(t)) dt = Z/\if(ai)
0 =1

with
r+1
.Z’\i =1, A20, f(o)€F, a; €A
i=1
Then,-there exists a partition {Ii}’ i=1,...,r+1, of interval [0,1], with measure of Ii = '\i and a step

function aw(t), with aw(t) =a; €A, il t €], such that:

1 1

wO:J’f(aw(t)) dt:Jf(a(t)) dt

0 0

By a simple argument, we obtain the same result for an arbitrary interval [a,b}, i.e. there exists a step

function with at most r+1 steps such that:

b b
w0=Jf(a(t)) dt:Jf(aw(t)) dt (31)
a

a

Finally, by virtue of (31), the following lemma is self-evident.

Lemma 4.1: let b: %m+l — R be a bounded continuous function, ti::%‘, 1=0,1...,u-1 a discretization of

interval [0, T], then there exists a step policy vy, with values in A such that:

a) ayw has at most r+1 steps in each interval [ti, Li+l]

tit1 tit1
b) tj b(ci,a(s))dsztj b(t; 0w (s)) ds

i i
Remark 4.1: From here, we will denote Q(u,T,b(.,.),«(.)) the mapping with the above property, i.e.:

tit1 bit1
aw(.)= Q(g,T,b(.,.),a(.))  implies {f b(t;,a(s)) ds = £[' b(t;,aw(s)) ds  i=0,...,u—1

1 1

The following lemma establishes an estimate for the difference between the original trajectory of the

system and the response corresponding to the approximating step control function ay.



Lemma 4.2: Let y(-) be the response corresponding to the control a(-) (i.e. the solution of (9)). Let us

consider a partition of interval [0,T] in n, intervals of length h, =T/ n, and

t
yw(t) = x +£ glyw(s),aw(s)) ds V t € [0,T],

where ay = Q(u,T,b(.,.),a(.)) and the function b: ML gl defined by:

b(t, a)= (g'(y(t),@){(y(t),a))’
then

Lot
| ¥(t) = yw(t)  <3Mgh, e ©

Proof: Let be

t. t.
B, = o) — )] = | sate) és - (I] gyw(shaw(s)) ds

then

b1
BipS B+ f (B(v(e)a(s) = glyw(s)aw(s)) ds| <
i

Yit1 b1

B+ [ Jerie)he) —elr()a@)] ds +) f (8t)a()) — g(3()saw(s)) ds| +
bit1

+ 1 [t aw(s) = glywls)aw(s)] ds (32)

By virtue of lemma 4-1 the third term at the right side of inequality (32) is zero, i.e.:

tit1

] (8r(4).a(5)) — gly(t;)aw(s))) dsf = 0

i

Applying inequality (10) and considering that:
H y(s) — y(t;) || SMg(s—t) Vse [ti’ ti+1)’

we have:

bigl big1
E, <E +tj LgMg (s—t.) ds +tj Lg | ¥(t;) — yw(s) | ds
i i

—13—



finally, taking in mind that:
[ = yw®) | € [ ¥(&) = yrlt) |+ ywity) = ywis) |

the previous inequality becomes:

tit+1 b1

E 1 <E + _f LgMg(s—t;) ds + f Lg( E;+Mg(s—t;) ds

IA

l l

h? )
<E + LgMg2 + LgE:h; + LgMg 5 5 = E; (14+Lgh;) + LgMghj (33)

From (33), it follows by induction:

1+ Lgh,)i!
EingMhz( gh)

i-1

Letbete[t t. 0<i<n,, then

i+ 1]

t t
[ v(t) — yw(t) ﬂ=ﬂ gg(y(S),a(s)) ds — gg(yw(S),aw(S)) ds| <

t t
I &(y(s),a(s)) ds — [ glyw(s),aw(s)) dsf <

<E + <
t. t.
i i
t
< Ei + E[[Ig(y(s),a(S)) - g(yw(s),aw(s))“ ds < Ei + 2Mg(t_ti)
i
By virtue of (34), this last inequality becomes:
Lgt. Lgt.
| Y()—yw()] SMghy (1 +Lg7) 1 +2Mgh, <M hl( i} 9e ')531\4ghleLgt (35)
In consequence
| y(t) — yw(t)] < 3Mgh, e
a

—14—



4.3 Approximation of Controls with Uniform-Step Functions

The control policy given by lemma 4.2 is a step policy and it has at most v+2 steps in each interval of

h h
length hlznll. To relate this type of functions with those belonging to A and .AT

approximate them with step functions where the step has a constant length h,. We introduce the

, 1t is necessary to

parameter n. and we define:

T by
h, = =
27 nyny (v42) " 0y (v42)

(36)

We assign to each function ay a function O’}v‘v (with steps of equal length h,) by the following procedure:

For each interval [t,, t’i+l)’ t;=(i-1)h;, we know that ay, takes at most (v+2) different values that we
denote aij’ i=1, n; 1=0, ... v+1, we will denote /\ij'the length of the subinterval where oy takes the

value aij and

nij= [/\ij /h2] (37)

where [s] denote the integer part of a real number s.

h

w
length nijh2’ where it takes the value &5 l.e.:

We define the new function o in such a way that it coincides with ay, at least in a subinterval of

where:

to=Y for j=0

j-1
t,ij—_— t; +Z%) ’\ij forj=1, v+2 (39)
r—=

i’ij: h, [t,ij/hz] for j=0, v+2

Then a}vlv coincides with ayy in [ti, ti+l) except in at most (v+1) intervals of residual length ﬁij’ with:

and so in a set of measure 7; such that:

—15—



7, < (v+1)hy (40)

With this considerations we can prove lemma 4.3. This lemma establishes an estimate for the difference
between the original trajectory of the system and the response corresponding to the approximating control

h

function with uniform steps ay.

Lemma 4.3: Let y(-) be the response corresponding to the control a(-) (i.e. the solution of (9)). Let us
consider a partition of interval [0,T] in p intervals of length h, u=(v+2)n, n, and

) = x+§ g (s),0l(s)) ds ¥ 1 € [0,T]

where alv]v is obtained applying the above construction, then:
_ Lot
yt) =@ [ <KB (41)
Proof: Let be
t. t.
3 Y ohoy oh h :
B, =] sv(hate)) ds — [ g6}, @l 6) ds] = vt = ] i=11m,y (42)

then

41

Bip1S B+ | ) (s0ehate) - ey (ays) s <

b1 Yyl
<+ | Jev@ae)-eoeae]| a] T (09a) - eray o)) o +

i i

Y41 N bit1 X b
+] |atv)ew () — gyt )0l )] as + I s t)aho) - eh @l (@3)
i i
By virtue of lemma 4-1 the third term of (43) is zero, i.e.:
Y41

] (r(t).a(5)) — B(y(t;) 2, (5))) ds| = 0,

i

—16—



-~

The fourth term of (43) can be bounded, by virtue of (40) in the following way:
bit1 N )
[ [spen) - gt alen] ds < 2.9, Mg

i
because

g(y(t).aw(s)) = gy (t;)ell(s))

except in sub-intervals of total length 7
Applying inequality (10) and considering that:

ﬂ y(s) = ¥(t,) ﬂ <My (s — &) Vs €[t t, )

we have::

i+1 141 h
By SB o+ [ LgMglomt)ds + Lg“ y() = ¥R (s) L ds + 2 Mg (v41)h
1 1

and having in mind that:

h h h h
) =¥ < |y = e |+ | vhe) - vhe |
the last inequality becomes:
it b4l
Ei+1 <E + tj LgMg(s—t;) ds + é]' Lg( Ei+Mg(s——ti) ds + 2 Mg (v+1)h <
i i
2 h 2

1 1 -~

— 2
= E; (1+Lgh ) + LgMgh *+ 2 Mg (v+1)h

From (45} it follows easily:

i-1
E, < (Lg Mgh 2409 Mg (1/+1)h) 1_(1 +LLg}:11) L=
1 +Lgh -

2 Mg (v+1)h

(44)

(45)

=(Mgh + —8——— ) (1+Lgh )"} = (Mgn,(v+ )b + 2 Me ) (L+Lgh )
A Lgh) €717 T\8"2 Lg n, g1

—17—



Taking ny = [(th(u+1)/2)“/ %1, we obtain:
1/2 i-1
E< Kh/" (1+Lgh)

Letbete[ti,t 0<i<n, then:

i1l

<

t t
7 =70 |= | ] eha(e) ds = [ gl Ghery (4) ds

t bt oh h
<E + tI g(y(s),a(s)) ds — tf gy, (shayw(s)) ds} <

1 1

[

t
<E + t!'!g()’(s),oz(s)) - g(yl‘:,(s),alvlvw(s))“ ds <
i

<E, + 2Mg(t—t,)
By virtue of (46), this last inequality becomes:

h 1/2 T \i- 1/2 Lgt;
ﬂ y(t)—yw(t)N <Kh /P14t + aMgh < (K0 /" 2Mgh e

In consequence:

_ Lgt 1/2
v -yl < ke € nY

—18—
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5. RATE OF CONVERGENCE

5.1 Convergence in the Case with Finite Horizon:

Theorem 5.1: Let us consider a partition of interval [0,T] in n=(v+2)n n, intervals of length h=T/n, then

u (0, %) — ul,;‘(O, %) | < ¢ o) n'/?

where ¢(T) is defined by

Ly—\)T
eV if Lg > A
o(T)= | T ifLg = A
1 ifLg < A

Proof: let be

ueT(t,x)z min N Jp(tx,a( - )
QEJ’.T

then

4 (0, %) - u,*;,(o, x)

5| un (0, x) ~ ufr(o, x) | +

e _ . h
uT(O, x) uT(O, x)

It is easy to prove (see [2]) that:

uf (0, %) — uf(0,x) | <C(T)h

(47)

(48)

(50)

(51)

The meaning of (51) is simply the bound of the error associated to the Euler’s method of integration of

(9). The proof of (51) is contained in [2].

It remains now to obtain an estimate for uT(O, x) — ueT(O, x)

Let a(-) be an arbitrary control, if we apply to it the process of approximation with uniform length step

functions described in §4.3 , we have:



<

T
' 5(f(y(s),a(s»—f(y*»‘v(s),a{;(s)))e'*sds

+

T 2s T s
< [1H56)06)~Tre(oho(9) 2% + | [(re(eh (o)~ e ue)

+ﬁf( () aw(s)) —1(¥( A8 Tlf ) —f(y(s),ll (s)) |eH5d
J|re(ehaw y(s)aw() [ 45ds + Tlty(s)aw9) ~10r(s)ab@) |¢oas
T h h,\ _h s
+ (f)lf(y(s),aw(s»—f(yw<s>,aw<s>) |esds

where
ye(s):y(ti) ifs € [ti, ti+1)’ i=1,...,n—1.
We are going to study each terms of (52), taking in mind in particular that:

| ¥() —vels) [ S Mg (s — t;) Vs€l[tpt; )

By virtue of (11) and (53) the first term of (52) becomes:

T T
I (@)D~ Ttve( o) |25 < T L Jo(e) = wetl] %5 <

n,-i t‘i—+—1 s
_<_MgLf§% tf(s—ti)e ds <
1= 1

1

i h ;AT
gMgthz% tj ¢%ds < Mg L 2 (1-¢"%)
1= i

In the same way we can estimate the third term of (52), i.e.

T
g|f(ye(s),aw(s))—f(y(s),aw(s)) e A%ds < Mg Le B (1 — &),

We can estimate the second term of (52) in the following way:

—20—
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nl‘l t’i

T +1
(f)(f(ye(s),a(s»—f(ye<s),aw(s>))e'*sds =2 (1 (4),0(6) =yt aw(s)) Je ¥ ds <
i=0 Y
-1ty ) n-lt R
< Z ﬁl. (f(y(ti),a(s))—f(y(ti),aw(s))) ldS + 2Mf2%) / l s _ lldSS
i=0 Y i= i
<2Mp (1-e*Tyn  (55)
because, by lemma 4.1:
n Y -2t
> ( ()~ fy(t;),aw(s) Je  1ds| =0
1=0 t
The fourth term of (52) can be bounded, by virtue of (40), in this way:
T n;-1 i
[I) |5y w(s) =Ty (s)alh(9)) [e25ds < oM, 3 ™M (b 1)h <
=0

<Ahy
<2Mg (1—e " ) (v+1) b

Finally, taking into account (36) and that no = [(th(V+1)/2)_l/2], the last expression becomes:

T -
[ |ty Ghaw) ~tvis)alis) [ ¥5ds < 2 M (1= ™" (w+1)h < M {h (56)
0

By virtue of (11) and lemma 4-2 the last term of (52) can be bounded in the following way, if Lg#A:

T
_[ |f(y s)) f(y (s),a}vlv(s)) |e"\sds < %'Lf “y(s)—y&v(s)"e"\s ds <
(Lg—\)T
<K (¢ ng_/\—l)Jh_ (57)
If Lg = A, we would pbtain
T _
gl f(y(s)oli(s) — 1y (e).alh(s)) | 25ds < R L, TR (58)

In consequence, inequality (52) becomes, in the case Lg # X
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(f(y(s),a(s))—f(y{}(s),a&(s)))e"\sds <2 Mg L % (l—e"\T) + 2 Mf(l—-e"\T)h +

Oe—

(Lg-—,\)T_l

+M{h + I'((e—————)J—h

Lg—,\
and in the case Lg:./\

-AT AT
<2Mg Le B (i) + 2 Mg (1—e*Thh +

T
] (o)t~ Tyl shay o0 ¢ s

+M{h + KLT{h

Using a compact notation, by virtue of (59) and (60) we get the following inequality:

T
Va(-) 3 aw(:) / ‘(f](r(y(s),a<s)>—f(y&(s),a&(s)))e'“ds < My(Dh,

therefore

u(0,x) = m'mh Ip(0,x,0) < (ixnefA I(0x,0) + M $(T){h = up(0,x) + M ¢(T)h

a€eA

On the other hand, obviously uT(O,x) < u?r((),x); then: VT
|u(0,%) — up(0.x)| < M #(T)¥h
In this way, from (51) and (61) we obtain

< M ¢(T)h

’ up(0,x) - uh(0, x)

(59)

(60)

(61)



5.2 Convergence in the Case with Infinite Horizon .

The procedure to prove the convergence in this case, is fundamentally based in the application of the

result of convergence for the case of finite horizon.

Theorem 5.2:
lug) = uP)| < e n?/? (62)
where
=] ff/\>Lg
7=LA if A\<Lyg,
g
Y€ (0,1) ifA:Lg.
Proof:

[ue) = ubo)| < Jux) = wpC)] + o) — oo + |ubi(x) - b (63)
It is easy to see that:
| u(x) = wp(x) [ <2 B;—f e T (64)

By Theorem 5.1 we have:

up(x) = ub (o) | < ¥ 6(T) {h (65)
Finally, as:
\ o - whe) ' <2M; AT (66)
we obtain
lu) = wP) | < M) B+ aMpeAT (67)

To obtain (62), we will deal with the following cases:
e Case Lg > A:

By (67) we have
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_ (Lg-N)T
|u(x)— uh(x)l <M, (e AT 4 Jhe & ) (68)
The expression (68) has a minimum in T, given by:
1 A -1/2
T, =+ In h
1 Lg ( Lg—/\ )
in consequence defining y = E’\—
g
(Lg— AT A VT (=D/2
e = ( i h
g
. Ly—X\\7 /2
M= (")
Finally, replacing in (68) we have:
(v=1)/2 /2 /2
| ubx) = u(x)| < M, K, AR +M K, h' =2MKh (69)
where
-y v
Ly—2A
_ A 8
o {(25) L (50) )
By virtue of (69) we have:
lux) — wbol < en?”? irLg >
e Case Lg < A:
In this case we have that (67) becomes
and taking T — oo we obtain:
lu—uhe| < MR (70)

24—



oCasengz\:

By (67)
I u(x) — uh(x) l <MTq{h + 4Mfe"\T§ M, (e"\T +4{hT) (71)

The minimum of expression (71) is realized by:

T = —%ln@, if{h < A,

then expression (71) becomes:

iu(x)— uh(x)l < -—Mzgln \I} + M2i_/\h— (72)
now we prove that V v € (0,1) there exists K > 0 such that:
v
—xlnx € Kx (73)
In effect:
—xlnx €K, x & — lux <K, x_q, o x3n % < K,, with q=1—1.
Let be

wx) = x4 1 >0, x € (0,)

i
As t(1)=0 and lim 0t(x):O, then t(x) has a maximum at X = e 4 50
X—
1

t(x) < tle ) =L ! = K,

L
q
By virtue of (72) and (73) we have

lu) — wlo] < en”? ifLg = A with 4 € (0,1)

where C depends on ¥ and €—o00 when y—1 0
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5.3 Convergence in the Case of Semiconcave Functions

In the case that functions f,g have more regularity properties, it is possible to prove that also the optimal
cost function u is more regular and to use that fact to prove a better estimate for the error Hu - uhi in
the set A > Lg.

In addition to the convex analysis results used throughout this paper, other key points to get this result is
the use of the family of functions u,}i‘(n,x) and the proof of the semiconcavity property of them. By virtue
of it, the regular approximation u};’T has a hessian matrix uniformly bounded from above. This result
enables us to obtain a suitable estimate forll up — u,}i.n using simple techniques of interpolation theory of

differentiable functions. In terms of it, the corresponding estimate of the error Hu - uh“ follows easily

employing the same procedure used in theorem 5.2.
We assume here that f, g have the following semiconcavity property, for any a€ A

le(x+2,0) — 2 g(x,a) + g(x—2,a)] < Ciz1? (74)
H,
[f(x+2,0) — 2 f(x,a) + f(x—z,a)| < Cyz ¥ (75)

Theorem 5.3: Under assumptions H;, we have that VYn/0<n<py, u,}i‘(n,-) has the following

semiconcavily property

u},i\(n,x+z) -2 u,}i\(n,x) + u,}f(n,x—z) < $(T—nh) gz y? (76)
where (2L, — )
—A)t
Me & if 2Ly > A
W(t)= | Mt if2Lg = A (77)
M if2Lg < A

Proof: By (23) and (24)

h _o.h h _ h _9gh h —
u(n,x+2) — 2 up(n,x) + up(nx—z) < sup (JT(n, x+z, a)—2 JT(n, X, a) + JT(n, X—2z, a)>

aGA%
then, V a € .A,}f, we have
p-1
u,}i\(n,x+z) -2 u,)i‘(n,x) + u},i\(n,x—z) <h kgn AL (I—Ah)k‘n (78)

where oy = a(kh), and
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A= f(yh(x,k)+(yh(x+z,k)—yh(x,k)),ak) - 2f(yh(x,k),ak) + f(yh(x,k)— (yh(x+z,k)—yh(x,k)),ak) +
+ £y (x=200),03) )= {3y (k) = (v (xb2.k) =y () vy )
By (11) and (75) we can estimate A, in the following way
2
A< C| yp(xtzk) = yp (k) |+ Le | yp (x+2.k) = 2yp (xk) + yp(x—2.k) | (79)
By virtue of (10) and (25) it follows
[ yROe+20) = v 00k) | < (14 Lgh)¥ 121 (80)

Taking into account (80) and using an argument similar to those used above to obtain the estimate (79),

we can also obtain the following estimate:
| yh(x+2.k)=2yp (k) + vy (x—zk) | < (1 + Lgh) |y (x+2.k-1)=2yp (x,k-1)+ yy (x—2k-1)j+
+Ch (14 Lgh)?K 22

From here it follows, by a simple induction procedure

(1 + Lgh)¥ N

H yh(x+z,k) — 2yh(x,k) + yh(x—z,k) || < Mh(1+ Lgh)khl méh_) Izl

Finally, replacing in (79) we obtain
A SM(1+Lgh) %242
Now, replacing in (78) we have

p-1 -
u,}i\(n,xﬁ-z) -2 u.}i\(n,x) + u,}%(n,x—z) < Mhjz 2 Y (1+Lg h)2(k n) (1—/\h>k'n <
k=n

#-1 (2Ls—A)h(k-n
gt A GG
k=n

< Mhiz 2 ¢(T —nh)
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5.3.1 Definition of ug,T, regularization of u,}f

By convolution with a smooth function f((.), we obtain a regular approximation of u.li‘

u};,T(n,x) = (u.lf * Bp )(x) = J u,lf(n,x—y) Bp(y) dy (81)
B(r)

where
Bi(-) € CH(RY),
B1(x) >0 Vx, support of B, C B,={ xeR¥ /1x1< 1}
%ju Bi(x) dx =1

Bp(x) = 7y F1(F) 2 0 VpeRr™

It is easy to prove that ug T verifies the properties established in the following propositions:
b
By convolution of (76), it follows the semiconcavity of ul; T+
k]
Proposition 5.1:

“},;,T(“v"“) -2 U};,T(",X) + u},’,,T(n,x—Z) < Y(T—~nh)jzy’ (82)

As u};) T(n, -) € Coo’ taking limit in (82), we obtain:

Proposition 5.2: u}; T(n, -) has a hessian matriz bounded from above in the following sense:

azug’T(n,x)

57— W) S Y(T—nh) 1wy’ (83)

(w,

where for w € RY. we consider (w,v) the euclidian product and | wi’= (w,w).
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By definition of convolution, taking into account that u,}f(n,x) is Lipschitz continuous

with constant L |, we have the following estimate of the difference between the function u}i\ and its
u
T

regularization:

Proposition 5.3:

u,}f(n,x) -~ ul;’T(n,x) < Luh p (84)
T

By convolution of (21), it holds the following inequality:

Proposition 5.4:

ul (n,x) € (1-2h) ub p(n+1, x + hg(xa) ) + hi(x,a) + (1=Ah)L , Lg hp (85)
P P ull,

Using basic inequalities of interpolation theory, it follows from (83) that:

Proposition 5.5:

v+1 b h v+l
jZO u, (i1 y(4) + hg(y(t),a5) ) Ay < up p (i1 y(t) + hj§0 g( ¥(t;),a;5) A 5) +

+ M (T —(i+1)h) h* (86)

Where ’\ij verifies

v+l

Ao =1 , A..>0 ,
E i e
=0 . I

and the relation between ’\i,j and ai,j 1s qiven by lemma 4.1, t.e.:

it v+1
[ ) e as =1y 0, 2 (87
t. J=0

1

The previous properties allow us to obtain the upper bound for u,}f(O,x) established in the following:
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Theorem 5.4: Under assumptions (10), (11) and H; we kave

uh(0,) < up(0,%) + Y(T)h (88)

-A
Proof: By virtue of (54) and (55) and that |e

t. .
l—(l—z\h)" < C h? we have:

t.
T p-1 ) i+1
[ o w0 as = T (-2 [ 10t o)) a) + neh)
0 i=0 i

i
where | n(h) | < Mh.

By virtue of lemma 4.1:

T \ p-1 v+l
[ fvto), won ¢ P =h 3 (1A 3 Mol g Ng) + (89)
0 1= j=0

but by (85)

hi(y(t), o 5) 2 ub oG ¥(t)— (1= A0) ub (41, () +hg(y(y),a5) —(1=Ah) Ly Lg hp

then (89) becomes:

T
[ 66, wtep @5 >
0

%
-

v+l .
2‘ (l Ah)! Z:( pT(l t))—(l—Ah)up’T(l+l,y(t)+hg y(t;) 8 )))

._
I
o

— (1=Ah)Ly Ly hp) —n(h) =

#-1 v+1 b
= (0 -y ( PT(i’ ¥(t) ‘(1'“’)1-2:% u, T(i+1L y(4) + he(y(t)a5)) /\i,j) -
— (1=Xh)Ly Lg hp) —n(h)
By (86)
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T
J f(y(s), u(s)) e ds >
0

[u—y

. b h . v+1
2 ((1—'\11)l ( Up,T(l’ ¥(t;)) —(1-Ah) up’T(1+l, y(t;) +h .20 g( Y(ti)’ai‘j) ’\ij) +
i=0 =

™

+ M y(T —(i+1)h) hz) — (1-Ah)LyLg hp) —n(h)

as L, =L, = ¢(T~ih) and taking into account that
u u
. opT T
v+1 ;
Y(ti+l) = Y(ti) +h 'ZO g( Y(ti)'ai,j) Ai,j + x'(h) (90)
J=

where I xi(h) H < M h?

we obtain, taking in particular into account that ¢(t) < ¥(t) V t

T p-l :
[ e uen P as > > (=a) ( R G y(t) —(1-A) o 1 (i, (k) -
0 =

-M (4>(T—(i+l)h)+¢(T—(i+l)h)) h2> — M (1-Ah)LyLg p—n(h)>

u-1 .
2 u},},T(O,x) - M_;) ((I-Ah)‘ W(T - (i+l)h)h2) —M (1—Ah)Ly Lg p — n(h)

Then, taking limit when p — 0 the last inequality becomes:

e Case A<2Lg

2L, - AT
e( & ) h

T
J f(y(s), u(s)) €% ds > ulh(0,0) — M (91)
0

e Case /\>2Lg

T
[ #0569, u(sp) &2 ds 2 ulh0.0 M (92)
0
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e Case /\=2Lg

T
J f(y(s), u(s)) €*° ds > ulh(0,x) —MTh
0

By definition (13), from (91)—(93) it follows the thesis (88).

The effect of the regularity property (76) on the rate of convergence is established by the following:

Theorem 5.5: Under assumptions (10), (11) and H, we have

Mh 2Ly < A

up(0,0)— ull(0,x) < |M Th if2Lg = A
2Ly — )T

MM if2Lg > A

The proof is obvious because by (49) and (51) we have:

up(0,%)= inf I (0,x,0(- ) < n;ithT(O,x,a( ) = u$(0,%) < ul(0,x) + C ¢(T)h
04

where ¢(T) is given by (48).

As the inverse inequality is given by theorem 5.4, we obtain the desired estimate.
Taking in mind that

I u(x) — uh(x) I < M e~ AT + | up(0,x) —uf}i\(O,x)

we obtain the following

—32—
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Theorem 5.6: Under assumptions H; we have

Ch if2Lg < A
i) —uPl< [T ye(01)  ifeLg = A (93)
cn/? if2Lg > A

The proof is obtained using the same procedure employed in theorem 5.2.

Remark 5.1: Estimate (93) improves (62) (estimate obtained in the general case without semiconcavity

assumptions) in the set ¥ >1, as it is clearly shown in Figure 1.
Remark 5.2: In [2], Capuzzo Dolcetta-Ishii have obtained under semiconcavity hypotheses the estimate:
Ch if2Lg < A
lub(O,x) — u(O,x)lg (94)
(v—1) :
Ch if Lg<A<2Lg
In consequence, this estimate improves (62) only in the set 3/2 <y < 2. This behavior is clearly seen in

Figure 2. In Figure 3 it is also possible to see that the estimate (93) is better than (94) in the set
I<y<2
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CONCLUSIONS

h‘y/2 for the error of

1) In [2] Capuzzo Dolcetta-Ishii have obtained estimates of type
approximation due to time discretization of Hamilton-Jacobi-Bellman equation. These estimates,
corresponding to the general case, (without semiconcavity assumptions) have been proved using classical

arguments of the viscosity solutions field. In this paper we prove the same estimates using convex analysis

techniques.

2) Under semiconcavity assumptions it is possible to prove sharper results. In fact, in [2)
improvements of the rate h‘Y/2 has been presented, again obtained by arguments related to viscosity
solution methods. Here we have proved others improvements using techniques of regularization, convex
analysis and the introduction of a suitable family of finite horizon problems. They are sharper than those

obtained in [2] in the set 1<y<2.

3) When one want to obtain numerical results it is necessary to discretize equation (1) also with
respect to space variables; in particular, using finite element methods. In that way one can compute a
fully discrete solution u}:. A general procedure with this aim has been established in [5]. Estimates of the
approximation errorju(x) — u{:(x)ﬂ can be obtained essentially from estimates (6) and (93). In general the

better error it can be expected is of order (J h +—j—-€ )7; under semiconcavity assumptions sharper rates

of convergence can be obtained (see [6]).
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