N
N

N

HAL

open science

Database issues in object-oriented design
G.T. Nguyen, D. Rieu

» To cite this version:

G.T. Nguyen, D. Rieu. Database issues in object-oriented design. RR-1373, INRIA. 1991. inria-

00075188

HAL Id: inria-00075188
https://inria.hal.science/inria-00075188
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075188
https://hal.archives-ouvertes.fr

[N\

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
: BP105
> /8153 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche

N° 1373

Programme 4
Robotique, Image et Vision

DATABASE ISSUES IN
OBJECT-ORIENTED DESIGN

Gia Toan NGUYEN
Dominique RIEU

GROUPE DE RECHERCHE
GRENOBLE

Février 1991

D

DATABASE ISSUES IN OBJECT-ORIENTED DESIGN
NGUYEN Gia Toan! & Dominique RIEUZ

1 INRIA & 2 IMAG
Laboratoire de Génie Informatique
BP53 X
38041 GRENOBLE Cedex
France

Tel : (33) 76.51.45.75
e-mail : nguyen@imag.fr
fax : (33) 76.44.66.75

ASPECTS BASES DE DONNEES EN CONCEPTION ORIENTEE OBJET

Résumé

On décrit un modele de représentation de connaissances dédi€ aux applications de conception.
L'objectif est de définir, réaliser et expérimenter un systéme basé sur une approche "objet"” et
capable de gérer la dynamique de ces applications. Le modele s'inspire des techniques de
I'intelligence artificielle, de la programmation par objets et des applications d'ingénierie assistée
par ordinateur. Il met en oeuvre des concepts émanant des modeles a base de frames et des
langages a objets. Sa définition tient compte également des besoins d'applications qui gérent
des objets évolutifs comme la CAQO.

Ces besoins sont tout d'abord examinés. L.'accent est mis sur les objets composites et les objets
évolutifs. Les avantages et inconvénients respectifs des modeles actuels sont ensuite analysés.
L'approche par objets est spécialement étudiée.

Le modeie SHOOD est enfin décrit. C'est un compromis entre les concepts d'objets et les
techniques de représentation de connaissances. Son adéquation aux applications de conception
est analysée. L'accent est mis sur les relations sémantiques, par exemple les dépendances entre
objets, et sur I'évolution des objets.

Mots-clés : représentation de connaissances, programmation par objets, conception assistée.

Database issues in object-oriented design. 1

DATABASE ISSUES IN OBJECT-ORIENTED DESIGN
NGUYEN Gia Toan! & Dominique RIEU?

1 INRIA & 2 IMAG
Laboratoire de Génie Informatique
BP53X
38041 GRENOBLE Cedex
France

Tel : (33) 76.51.45.75
e-mail : nguyen@imag.fr

fax : (33) 76.44.66.75

Abstract

A knowledge representation model which is dedicated to design applications is described. The
aim is to define, implement and experiment a system supporting the dynamics of design
applications, based on the object paradigm. The model draws on artificial intelligence
techniques, on object-oriented programming and engineering design applications. It includes
concepts found in frame-based knowledge representations and object-oriented programming
languages. It also takes into account the requirements of applications that support dynamically
evolving objects e.g, CAD/CAM.

The requirements of engineering design applications are described first. The emphasis is on
composite and evolving objects. The advantages and shortcomings of current modeling
paradigms are analyzed. The object-oriented approach is specifically considered. The model
SHOOD is finally described. It appears as a compromise between object-oriented concepts and
knowledge representation techniques. Its ability to model design objects is detailed. The
emphasis is on the support for semantic relationships, e.g dependencies between components,
and for object evolution.

Key-words : knowledge representation, object-oriented programming, design applications.

1. INTRODUCTION

Engineering design applications provide an interesting challenge to the database and knowledge
base communities because they involve the management of large, complex and evolving
objects. This concerns various domains like VLSI circuits, architectural design and aircraft
prototyping.

On the one hand, intricate semantic relationships involve usually numerous components which
participate in the overall design. Structural complexity is therefore intimately mixed with
semantic complexity. It is shown in the sequel that a confusion of both aspects exists in almost
all knowledge representation and object-oriented languages, not to speak about previous data
models. It is our opinion that design requirements require a clear distinction between the
structural definitions and the semantic relationships.

On the other hand, the specific nature of the design process involves trial and error cycles
which involve various alternatives. They may eventually appear untractable. The complexity of
the design objects is therefore supported by a dynamic design process which produces partially
complete and temporarily inconsistent artifacts.

The challenge 1s therefore twofold for the designers of knowledge base systems :

- they must implement a powerful modeling paradigm to cope with the evolving objects,

Database issues in object-oriented design. 2 14/01/91

- they must simultaneously provide a flexible framework to support the design process, in
order to manage :

- the multiple representations of the objects,

- the successive versions and alternatives of each particular object,

- the specific nature of the design artifacts i.e, their evolving structure, relationships and values
whilst the design is in progress.

This complexity is probably the reason why existing database and knowledge base systems
support only part of these requirements. Versions servers, simulation tools and ad-hoc
database systems storing object libraries are commonly used [KAT86]. But the inadequacy of
relational database systems to support effectively engineering design applications is now
widely recognized [KIM90]. Also, the lack of persistent store for existing knowledge
representation systems and languages has motivated experiments to connect them to databases.
However, the usual discrepancy between the databases and the knowledge representation
languages is cumbersome. Relational databases provide only flat or embedded relations which
are inadequate to model semantic information and complex hierarchical part-component
structures [SCHS88]. Entity-relationship data models often require an underlying relational
database management system to store the data [CAS90]. Finally, knowledge representation
paradigms lack the storage capability and concurrency control of commercially available
database systems [STES86].

New programming languages and database systems have appeared recently e.g, object-oriented
languages [GOLS83, STR86] and databases [BAN88S, COP84]. While adequate for Computer
Aided Software Engineering (CASE) from which they originate, they unfortunately lack
important features for design applications e.g, semantic relationships [DIT88, KIM90]. This
has given rise to a number of research efforts intended to extend their functionalities [CAR89,
DES90, DIA90, MUR90].

Considering these advantages and shortcomings, this paper describes a model called SHOOD,
which is an attempt to provide a sophisticated modeling paradigm for applications involving
evolving and composite objects. It is assumed that the objects may be temporarily incomplete
and inconsistent, and are linked by intricate semantic relationships.

The model elaborates on object-oriented programming languages and on knowledge
representation languages found in Artificial Intelligence [STE86]. It tries to avoid many
confusions currently associated with the basic object concepts in object-oriented and
knowledge representation paradigms. It also takes into account the requirements of engineering
design applications. They are described in Section 2, considering both composite objects
(Section 2.1) and evolving objects (Section 2.2). The various advantages and shortcomings of
existing data models are considered. The object-oriented paradigm is specifically considered in
Section 3. The model provided by SHOOD is described in Section 4. It appears as a
compromise between the knowledge representation and the object-oriented languages. Its
ability to model design objects is detailed in Section 4.2. The emphasis is on the support for
semantic relationships between objects and their dynamic evolution. Similarities and
differences between engineering design and CASE applications are briefly mentioned where
appropriate. Section 5 is a conclusion.

2. REPRESENTING DESIGN OBJECTS

Design objects can be characterized in terms of structural complexity and semantic complexity.
Structural complexity is often amenable to part/sub-parts hierarchies that model composite
objects [BLA&7, KIM89]. Semantic complexity is however not amenable to semantic
relationships only. The semantics of the objects is usually disseminated in ad-hoc design rules
and constraints verification programs, because the modeling paradigms available today do not
permit all the semantic information to be implemented in a single framework [RIE86]. The
emphasis is here on the structural complexity i.e, on composite objects hierarchies (Section
2.1) and on the evolution of the design objects (Section 2.2).

Database issues in object-oriented design. 2 8/01/91

2.1 Composite objects

Composite objects construction is the rationale for design applications [GIA90]. In contrast
with business applications, the incremental nature of the design process involves the
integration of existing parts or the design of new components that will ultimately form the

required objects.
8737

(B737-400) (B737-509

S
sub-cliass

component

Figure 1. Composite objects.

New artifacts may involve only specific modifications to previous designs e.g, the B737
family includes the B737-300, B737-400 and the B737-500 models (Figure 1). The -100 and -
200 models also exist but are no longer manufactured. They include more than 50% of similar
equipment and components. The difference is in passenger capacity, engines, cockpit
instrumentation and so on. They can generally be powered by different engine models e.g,
CFMS56 or V2500 for the Airbus A320. Further, marketing arguments make vendors put an
emphasis on commonality between various models e.g, the B757 and the B767 have almost
the same cockpit instruments, thus drastically reducing crew training and maintenance costs.
Reuse and evolution of earlier designs is therefore a common practice.

Designs may also share subparts. For example, the components of an electronic flight
management system (horizontal situation indicator, auto-pilot, fuel management system, ...)
share the same redondant data bus. Sub-part definitions are therefore referenced by larger
designs. This might put a real challenge on the designers because the available paradigms do
not usually allow high-level component sharing. Further, instances of part/sub-part
composition graphs are made of true hierarchies.

The ultimate goal is therefore to design a unified model that will support :

- part/sub-part agreggates i.e, composite objects,

- sub-part sharing,

- object reuse,

- object evolution,

- semantic relationships between objects and/or sub-parts (dependencies, etc...).
Existing modeling paradigms do not support simuitaneously all these points, if at all.
Composite objects are difficult to model in existing database systems for many reasons. The
CODASYL-like data models implement relationships through physical pointers which prohibit
structure evolution and program modifications.

The relational model of data does not allow the definition of semantic links. It is "not rich
enough to admit the nested construction of complex designs or to properly capture the
semantics of versions and representations of a design" [KIM90]. Component hierarchies must
be disseminated in muitiple relations, thus confusing the implementation and the manipulation
of the objects. All the semantics is contained in the application programs.

The entity-relationship model permits the definition of a limited form of semantic links : they
may have specific attributes concerning the relationship roles and associated cardinality
constraints. But their semantics has to be written in application programs. To some extent, the
latter allow semantic information to be stored in the design objects : for example, an Airbus
A320 has two engines. This can be stated in the cardinality constraints of a relationship
between the aircraft and the engines. However, dependency relationships and value
propagation among components is not allowed.

As described in Section 3, the object-oriented paradigm provides a more sophisticated notion
of composite objects. However, "the basic object-oriented concepts are not sufficient for

Database issues in object-oriented design. 3 8/01/91

modeling design objects" [KIM90]. For example, the semantics of composite objects is hard-
wired and cannot be altered. There is a confusion between structural aspects - the sub-part
hierarchies - and the semantic links that relate them - the dependencies between sub-parts. This
severely limits the ability of these languages to perform design representation adequatel y.

2.2 Evolving objects

The design process is evolutionary by nature. Existing designs can be altered to produce new
objects or to produce more satisfactory results. Database systems provide version and
alternative mechanisms to support the multiple design instances [KAT86]. They put the burden
on the user for handling the proper versions of the objects. Further, version derivation and
merging for composite objects is the users’ responsability.

Also, new customized components can be designed by trial and error cycles. This implies that
they are not stabilized for long. That is, the definition of the design objects is not completed
until some constraints and verification or simulation programs have been completed.
Meanwhile, they can be inconsistent and only partially complete. Most database systems do not
support adequately unknown and incomplete data. Systems providing integrity checking may
in fact prohibit inconsistent data. This is in contradiction with the basic nature of the design
process which requires a more sophisticated (and probably tunable) consistency control on the
objects [BORS87]. In particular, constraint violations should be controlied by the user
[KOT88].

In contrast, knowledge base systems often allow inconsistent data without user control, except
when ad-hoc triggering mechanisms are implemented. They may even lack any control on the
absence or inconsistency of the data : information may be untyped until it is actually created
[STES86]. That is to say, they are too permissive and are in severe contradiction with usual
database systems which are generally too restrictive concerning completeness and consistency
issues. A compromise must therefore be found to allow a user-controlled form of data
incompleteness and inconsistency in order to cope with the evolution of the design objects. A
proposal is made in Section 4 concerning the model SHOOD.

Integrated CAD/CAM systems also handle design variants which may ultimately be chosen for
the final design or which may be reworked for further testing and modifications. This is the
price to pay for object reuse and evolution. For example, aircraft can be tested aerodynamically
by numeric simulation programs, thus avoiding part of the long and costly wind-tunnel testing.
The F-15 "Eagle" fighter wing was tested with multiple different designs. Similarly, the
French "Rafale” fighter demonstrator was tested with 15 different wing configurations using
extensive numeric simulations. The basic variants must therefore support alterations in their
definitions i.e, in their structural and semantic definitions. This has also been recognized in
CASE applications [DUC90].

Provision for these modifications is however rarely supported by existing database and
knowledge base systems. CODASYL-like systems do not allow any evolution except for
changing accordingly all the programs that use them. Relational models allow only addition of
attributes to a relation, seldom deletion of attributes. Object-oriented data models allow
modifications of the class definitions with the corresponding propagation on the object
instances [PEN87, NGU89]. However, they provide only generic relationships between
classes, thus prohibiting the modification of inter-object relationships. This is detailed in the
next section.

Generally speaking, data evolution has been handled very crudly in database systems.
Relational and object-oriented databases often provide version mechanisms. But they still place
the burden on the user by offering complicated concepts without the corresponding assistance
e.g, "generic" and "version" instances of the objects [KIM89].

Clearly, the dynamic evolution of the data requires more sophisticated mechanisms, alleviating
the task of what the software engineering community call "configuration management”
fDUC90]. This involves the definition, modification, documentation and retrieval of pieces of
designs - all varying in time, and all related by semantic links and impacting on each other
[AND90]. A first step towards the assistance to the user in managing object evolution in
described in Section 4.2.

Database issues in object-oriented design. 4 8/01/91

3. THE OBJECT-ORIENTED PARADIGM IN DESIGN

The object-oriented paradigm is often advertised as the most sophisticated and flexible
approach for a large variety of applications, ranging from software engineering to office
automation and database applications [GIA90]. Various features in object-oriented languages
are discussed in this section to point out the potential advantages and shortcomings that are of
interest for design applications. It appears that some basic functionalities are in contradiction
with specific requirements of design applications, including semantic aspects and object
evolution. Some advantages are detailed first.

3.1 Advantages
3.1.1 Abstraction

In the following, we shall distinguish between the notion of abstraction, which hides the
implementation of the objects, and the notion of encapsulation found in the object-oriented
paradigm. Encapsulation provides data abstraction but includes methods within object
definitions to form their public interface {GOL83]. Abstraction is of interest in design
application because it allows specific details to be hidden from the user. It allows also different
variants to be used successively in composite objects without changing their definitions. For
example, designers may be working on components which are not dependent on other sub-
parts e.g the airframe and the engines of an aircraft. Abstraction is also a means to implement
the notion of "grey boxes" to provide various levels of details to the designers [BLA87].

3.1.2 Reusability and sharing

Reusability is another important feature in object-oriented languages which is of great interest
for design applications. This has been recognized in CASE applications also and the notion of
"reusable element” is explicitly present in some advanced software engineering environments
[DUC90]. Together with the notion of components in sub-part hierarchies, it provides the
ability to abstract the objects at various levels of details. It also provides the opportunity to
define clean interfaces and thus improve modularity and reusability.

For example, modemn airliners may be fitted with integrated navigation equipment produced by
different manufacturers. Inertial and navigation computers have standardized interfaces which
may be connected to different displays in the so-called "glass cockpits" of today's airliners.
This is also the reason why several engine models are usually available for an aircraft : control
and monitoring equipment are somehow standardized. Clearly, abstraction also favors reuse of
components since the redesign of existing parts is no longer necessary.

sub-class

component

Figure 2. Sharing and adding components.

For example, the upcoming Airbus A330 and A340 share the same wing design. They may
refer to the same class Wings-330 - a sub-class of Wings, itself a component of the class
Airframe, which is in turn a component of the class Aircraft (Figure 2). Similarly, the A321 is
a stretched version of the earlier A320 model fitted with two new fuselage sections fore and aft

Database issues in object-oriented design. 5 8/01/91

of the wing (Figure 2). These two sections can be created as new sub-classes of the class
Section - itself a component of the class Fuselage.

3.1.3 Specialization

Inheritance is also used in object-oriented models to implement a specialization relationship
between objects. Objects can therefore be refined and incrementally defined using more
specific constraints and new attributes. This can be straightforwardly adapted to design
applications.

A systematic use of built-in inheritance imposes some constraints however, because it is never
clear where the specialization process must stop. For example, each particular aircraft delivered
is indeed a most specific specialization of some standard model. Within each specific airline
carrier, dozens of A320 aircraft may only differ by their serial number. From a strict object-
oriented perspective, they should be modeled by instances of a generic A320 model,
implemented itself by an aircraft class. This is fundamentally a design decision which is not
facilitated by the object-oriented paradigm. It is the result of the dichotomy existing between
classes and their instances. It does not exist in paradigms based on prototypes [STE86]. This
is one of its main drawbacks and probably the main challenge that object-oriented fanatics have
to face. Some other problems follow.

3.2 Shortcomings
3.2.1 Encapsulation

A systematic use of the abstraction and encapsulation mechanisms, although adequate for a
clean implementation, can be cumbersome but for one single reason : access to the values of
object attributes would require the definition of many specific read and write operations. This
is of course burdening, although it can be generated automatically for atomic data types
(integer, strings, etc) [DEM87]. For example the age of an aircraft should be invoked by
sending a message to the proper class, with the selector argument "age"”, the message argument
the oid of the aircraft, and the receiver of the message the Aircraft class.

Calling methods to access attribute values is very time-consuming and can affect performance
badly. Specific mechanisms have been proposed to extract attribute values elsewhere e.g, by a
particular "*" prefix to attribute names [BAN88]. This syntactic sugar seems quite unatural.
Record-based management systems do not require such artificial mechanism : invocation of the
attribute's name is all what is needed. This is common sense, and do we really want such
peculiarities in object-oriented systems ?

Another problem specifically related to encapsulation is the definition of methods within
classes. Most programs in engineering design applications are external simulation, verification
and display programs. Most of them already exist and need only be invoked where and when
appropriate on the argument objects. Next, mixing code and object definition is in contradiction
with design processes where much code operates on few object definitions. This point is of
course irrelevant in CASE applications - where it all comes from - because the objects and the
code are used together to produce large software environments {DUC90], whereas CAD/CAM
applications only use the code to produce new design objects. In our opinion, this discrepancy
is the reason for the first important mismatch between engineering applications and object-
oriented concepts. Our conclusion is that programs or methods should be separated from object
definitions.

3.2.2 Generic relationships

Another disadvantage of the object-oriented approach for modeling design objects is to support
only generic relationships. They can only be defined between classes of objects, thus reducing
the ability to implement specific relationships depending on the values of the instances being
related. For example, dependency relationships can be defined in ORION between composite
objects and their components [KIM89]. But the underlying semantics for this dependency is
exclusive and existential : the deletion of the object implies the deletion of all its components.
This is of course too strong for design applications where for example engine deletion on some

Database issues in object-oriented design. 6 8/01/91

aircraft produces lots of spare parts that can be used to retrofit other engines. Instances should
therefore be allowed to migrate from one class to another - say from the class Engine to the
class SpareEngine - prior to the deletion of an aircraft. This in turn implies that the dependency
between the aircraft and its engines be changed. Similarly, the semantics of composite objects
in LOOPS implies that they can only be created if all their components are simultaneously
created [STES86]. This is in contradiction with the design process where partially unknown
objects must be worked out and later assembled together to form larger designs. The
conclusion here is that dependency relationships should be decoupled from the part/sub-part
graphs.

3.2.3 Multiple perspectives

Multiple perspectives or users points of view are seldom provided in object-oriented
approaches [CAR89, MAR90]. They correspond to different ways by which the users perceive
the objects : they correspond precisely to the notion of multiple representations found in
knowledge representation languages [STE86]. They can be modeled by existing concepts in
object-oriented languages e.g, specialization, aggregation and multiple-instanciation [NGU91].

4. A KNOWLEDGE REPRESENTATION APPROACH

The model SHOOD presented in this section is based on three principles :

P1 - every information is represented by an object,

P2 - every object is an instance of some other object,

P3 - any information concerning an object is stored as the value of an attribute.
The model is therefore reflexive and meta-circular i.e, it has access to its description and it is
implemented using its own concepts [ESC90]. This approach provides the basis for
extensibility. The model is implemented using two layers :

- the knowledge representation layer (KRL),

- the knowledge manipulation layer (KML).
A storage layer will also be provided to support object persistency. This will be achieved by
interfacing with an existing object server (Figure 3).

KNOWLEDGE MANIPULATION
LAYER
) {

Lxuowulm REFREBENTATION

LAYER
I sTomAGE LAVER l

Figure 3. Overall architecture.

The KRL provides data abstraction, but does not provide encapsulation. Interface with existing
programs should therefore be made at this level because object structures are made visible. The
KML provides encapsulation and method invocation based on message passing techniques.
The interface with design programs can therefore be implemented at both layers, providing the
opportunity to access the data from both the usual attribute level of the objects, resembling the
record-field access methods, and the encapsulated - method based - layer for sophiticated
programming paradigms.

The rationale behind this approach is to provide the designer with the usual attribute-based
representation of data which is in our opinion mandatory for CAD/CAM applications. It also
provides higher level abstraction mechanisms in the KML, should the applications require
casual user query facilities and graphics or other high level design facilities.

Database issues in object-oriented design. 7 8/01/91

4.1 Concepts

In the following, the term object stands for object instance. An object instance belongs to one
or more classes that define its structure and behavior.

The KRL includes the fundamental characteristics of frame-based knowledge representation
languages, combined with concepts found originally in object-oriented languages. As such, the
KRL merges functionalities usually not provided simultaneously in either paradigms.

Among them stand the usual notions of class, meta-class, instance, multiple inheritance and
method (Section 4.1.1 and 4.1.2). Outstanding features include a disjunction relationship
between classes and semantic relationships which are either dependency relationships between
objects (Section 4.1.3.1) or attribute propagation among composite objects (Section 4.1.3.2).
Further, the systematic use of the principles P1 to P3 for the design of SHOOD has given rise
to a powerful, reflexive and extensible model. Its implementation is based on a kernel of
approximately 10 meta-classes which form the bootstrap of the model. The basic concepts are
then implemented as instances of these meta-classes [ESC90].

The implementation is in Lisp. The extensive use of the kernel and of its meta-classes support a
powerful representation language where the methods, attributes, inferences and constraints are
themselves classes which, following the principle P2 above, are instances of specific meta-
classes in the kernel. The invocation of a particular method or inference and the value of an
attribute are instances of the classes which model methods, inferences and attributes. Besides
its very condensed and easy to develop kernel, this provides the basis for extensions and
evolution of the model itself (Section 4.3).

The actual concepts implemented by the model are generated from the bootstrap to provide the
user with a basic set of functionalities e.g, set, list and bag manipulations together with the
usual notions of class, inheritance, instance and composite objects. An emphasis is put on
object evolution and its control by the designers (Section 4.2).

4.1.1 Attributes and classes

Objects are modeled in SHOOD by agregations of attributes e.g the length, wingspan, range
and weight of an aircraft. They model either atomic values (integer, strings, etc) e.g range is
2,000 nautical miles (Figure 4), or complex components e.g the landing gear which includes a
nose gear and two main gears (Figure 5). The scope of attributes is the class where they are
first defined plus all their sub-classes. A sub-class may refine inherited attributes. It may not
redefine them entirely, e.g give them a new domain class. Attribute refinement means for
example more stringent constraints on the attribute. Attributes are defined by descriptors. There
are three different descriptors attached to attribute definitions:

- type descriptors,

- constraint descriptors,

- inference descriptors.

Type descriptors define the domain of an attribute i.e the class where it takes on its values.
Constraint descriptors define restrictions on the attribute values. Inference descriptors define
the different ways an attribute value can be obtained. A partial order between the different
inferences is required. Should an inference fail to provide the attribute value, the next inference
in the list is activated. The conflict between different candidate inferences is solved by the
method selection. This out of the scope of this paper. The user is always a default option i.e, if
no other inference can provide the attribute value then the user is requested to give one.

AIRCRAFT

length
wingspan
weight

range
alrframe
engines

Figure 4. Auributes of the class Aircraft.

Database issues in object-oriented design. 8 8/01/91

The complex components are themselves objects. This implies that components are referred to
by identifiers. The identifiers, or OIDs, are unique within the system. Objects having the same
attribute structure are grouped into classes €.g, the class Aircraft.

Figure 5. A composite object Aircraft,

4.1.2 Inheritance and disjunction

As provided by frame-based representation and object-oriented languages, the classes are
structured in SHOOD along a super-class/sub-class relationship. It implements an inheritance
relationship, by which sub-classes inherit all the attributes and methods of their super-classes.
The semantics of inheritance in SHOQOD is the strict set inclusion : a sub-class groups a set of
instances which is a strict subset of the instances in the set represented by each of its super-
classes.

SHOOD also features a disjunction relationship between classes. In contrast with the previous
one, which is usually provided by object-oriented languages with various semantics, the
disjunction relationship is genuinely provided in SHOOD to support generic concepts which
are known to be distinct. This accelerate the classification mechanisms. It also inhibits name
conflicts and several other features e.g, multiple inheritance and multiple instantiations. For
example, aircraft and submarines are different and so far incompatible vehicles. They can
therefore be defined by two sub-classes of the class Vehicle, namely Aircraft and Submarine
which are related by a disjunction relationship (Figure 6). A side-effect of the disjunction
relationship is that attributes defined in disjoint classes with the same name e.g "age", are
considered different.

-—

AIRCRAFT SUBMARINE L e 4

disjunction

Figure 6. Inheritance and disjunction relationships.

A class may have several sub-classes which inherit its definition e.g, the class Aircraft has the
sub-classes Long-Range, Short-Range which have the same attributes and which may refine
them e.g the range attribute may only have specific values depending on the type of the aircraft.
Subclasses may also add new attributes : Amphibian aircraft must have specific floating
equipment (Figure 7).

VESSEL

(LONG-RANGE } (SHORT-RANGE) AMPHIBIAN
Figure 7. Sub-class/super-class example.

A class may have several super-classes : multiple inheritance is supported. For example, the
class Amphibian inherits the attributes of the classes Aircraft and Vessel. Because the attributes
are inherited by all the sub-classes of a given class, name conflicts may appear in the attributes
of a class having several super-classes. In SHOOD, such name conflicts are solved by an
explicit inheritance of all conflicting attributes : they are prefixed by the name of the class
which define them. For example in Figure 8, the class Amphibian inherits both the attribute
"engine" of the class Aircraft and of the class Vessel. But it happens that naval engines have
little to do with airborne engines, as well as the corresponding propellers. They are both

Database issues in object-oriented design. 9 8/01/91

inherited and defined in the class Amphibian with their full name i.e their class name dot
attribute name : "Aircraft.engine” and "Vessel.engine" respectively.

The semantics of inheritance is a strict set inclusion. This excludes exceptional instances i.e,
objects which do not conform to the class definitions. This also implies that a class which has
several super-classes models the intersection of the sets defined by the super-classes : an
amphibian aircraft is both an aircraft and - a limited form of - a vessel. For example, the recent
tilt-rotor aircraft "Osprey" V22 is both really an aircraft and a "rotor-craft"...

Due to the potential name conflicts involving inherited attributes, another facility in provided in
SHOOD to avoid the duplication of attributes in a class when they represent the same concept.
For example the classes Aircraft and Vessel depicted in Figure 14 have both an attribute
"length" with the same semantics. The designer can define in a common super-class e.g
Vehicle a so-called "deferred attribute". It defines a virtual attribute which cannot be
instantiated in the class where it is defined, here Vehicle. It simply states that all the sub-classes
from there down the inheritance graph will define this particular attribute "length" with the
same semantics attached - up to disjunction of classes. The "length" attribute therefore need not
be prefixed by any class name. It is implicitly here the Vehicle class where it appeared as
deffered (Figure 8). It bears the same semantics wherever it appears in the sub-classes of
Vehicle : the classes Aircraft, Vessel and Amphibian. In contrast, the attributes "engine” are
different. They are inherited with their full name : "Aircraft.engine” and "Vessel.engine".

AMPHIBIAN

Atrcreft.enging
Yessel.ongine
length*

Figure 8. Full names for inherited attributes and deffered attributes.

* igentical semantics

4.1.3 Multiple instantiation

Multiple instanciation allows instances to belong simultaneously to different classes. This
departs from the usual notion of instance in object-oriented approaches [GOL83]. It bears
several advantages. First, it allows hollow classes to be avoided i.e classes with very few
instances. This is a common problem in object-oriented modeling. Second it supports different
simultaneous perspectives on the objects [NGU91]. Instances related to a particular class are
seen by the user with the corresponding definition, and they can be seen simultaneously by
other users as instances of other classes. We believe that it is easier to manage the
"instance_of" relationship between object instances and their classes than to define new sub-
classes modeling various points of view involving multiple inheritance, thus complicating the
inheritance graph.

4.1.4 Semantic relationships

Semantic relationships are the most powerful and original feature in SHOOD. They elaborate
on the relationships found in SRLwhere the user can define application dependent links, with
their particular operations and attributes {[FOX86]. Inheritance and disjunction are treated in
SHOOD as particular cases of relationships. There is therefore no distinction between system
defined and user-defined relationships in SHOOD. Two kinds of user-defined relationships are
provided : dependency relationships and attribute propagation.

4.1.4.1 Dependency relationships

The dependency relationships are complementary to composite objects. They define the
semantics of the part-component relationships which would otherwise be mere structural
agregations of sub-parts. Recall that it is the case of all frame-based languages and that object-
oriented languages impose an implicit and generic semantics to the composite obejcts. Semantic
relationships are there mixed with the structural definitions of the composite objects. This

Database issues in object-oriented design. 10 8/01/91

appears inadequate in many applications. As noted elsewhere [DIA90], various relationships
must be available to the user. One of the most flexible system which offers user definable
relationships is SRL. The goal in SHOOD is to provide a more limited although powerful set
of links that the designers can use to model usual inter-object dependencies [ESC90]. There are
four different kinds of such links : the exclusive, shared, existential and specific dependencies.

Exclusive dependency

The most simple and stringent form of dependency is the exclusive dependency. It allows a
part to be the single owner of a component. In SHOOD, it allows an instance of the owner
class to hold a privilege over an instance of the component class. The exclusive dependency
can be defined between the corresponding classes i.e, in generic terms. It will then apply to all
their instances. For example, an instance of the class Aircraft owns exclusively the instances of
the class Engine which are fitted on its airframe. It should be noted however that no existential
dependency is associated here. This is in contrast with most proposals in the literature
[KIM89, STE86]. It is our opinion that the notion of existence should not be mixed with other
notions of dependency as is usually the case : an aircraft may be equipped with a particular
engine. The engine may be overhauled and later fitted on another aircraft. Or the previous
owner aircraft may be scrapped and its engines reused on another. This is how it really
happens. So there seem to be no reason to limit the flexibility of the dependencies by
inappropriate confusion.

The notion of dependency is not necessarily linked to the notion of composite object either. A
dependency may exist between two classes which are not linked by any component
relationship. An aircraft belongs to a specific company, but it is not necessarily defined as a
component of the company.

Shared dependency

The second form of dependency supported in SHOOD is the shared dependency. It is used to
define a link between various parts and a particular object. Various airline carriers may for
example share a particular hub in an airport. A particular side-effect is that the shared object
cannot be deleted as long as any other object holds a dependency on it. This is a particular form
of implicit existential dependency.

Existential dependency

The existential dependency is the most commonly used and provided in object-oriented
languages. The main problem however is that it is always mixed with other kinds of
relationships e.g composite objects. This confuses the design and the designers. In SHOOD, it
can be used together with other relationships but it has to be explicitly defined by the user. As
noted before, the existence of aircraft engines do not depend on the existence of aircraft, and
vice-versa. But the existence of an aircraft is dependent on the existence of its airframe.
Conversely, the airframe exists prior to the aircraft which is built around it. These differences
have to be taken into account and are expressible in SHOOD. They were not in previous
languages and representation models.

Specific dependency

A degenerated form of exception is supported concerning the dependencies. It is the specific
dependency, which outrules the generic dependencies defined by classes. It states that between
any particular instances of objects exist a dependency that does not follow the same pattern
than the generic form. For example, a exclusive existential dependency may exist between the
instances of helicopters - which can be otherwise defined as particular aircraft - and their rotor.
These cannot be serviced and must be replaced periodically, as specified by the manufacturer.
There is therefore a specific existential dependency between each particular rotor and the
helicopter using it.

4.1.4.2 Attribute propagation

Attribute propagation is a feature allowing values from component attributes to be visible from
various levels in the part hierarchy of composite objects. It is sometimes called horizontal or

Database issues in object-oriented design. 11 8/01/91

selective inheritance [CARS89]. It is emphasized here that inheritance is a generic relationship in
object-oriented languages, relating classes in the inheritance graph. It implements the super-
class/sub-class relationship between classes. In contrast, the propagation of attribute values
among objects is a instance specific relationships. It broadcasts attribute values among sub-
~ parts of composite objects. It is therefore a relationships between instances, hence the
"horizontal” qualifier, to differentiate from the "vertical” and generic inheritance relationship
which is orthogonal.
Assuming that an airframe has an attribute "age”, and that an aircraft is composed of an
airframe and engines, the age of the aircraft may be inferred from its airframe's age. Due the
fact that aircraft engines have to be overhauled periodically - typically every 2,000 hours - and
that an airframe can be used 20 years or more, it is clear that selective propagation must be
defined between components.
In the example, the aircraft age cannot be inferred from the engines' age. The designer must
therefore propagate the airframe's "age" to the aircraft, excluding the "age" of the engines
(Figure 9). Note that with attribute propagation, the class Aircraft need not have an attribute
"age" defined. Again, this is an instance specific relationship, and the propagation must be
done for each particular aircraft. From the designers point of view, the "age" of an aircraft will
appear as if it had been defined for the class Aircraft.

Figure 9. Attribute propagation.
4.2 Modeling design objects

The modeling paradigm offered by SHOOD is threefold. It gives the ability to represent objects
using three combined perspectives (Figure 10) :

- a semantic perspective, implementing the semantic relationships between object components,
- an structural perspective where objects can be altered, refined and reuse existing definitions,
implementing the structural definitions of composite objects,

- a variant perspective where the evolution of the objects is modeled. It copes with the
structural, semantic and content evolution of the objects using object versions.

While the inheritance perspective does not introduce new concepts with respect to existing
object-oriented and frame-based languages, it is treated like other relationship in SHOOD. The
semantic perspective includes the notions of dependency relationships and attribute
propagation. The semantic perspective includes all semantic relationships because the
composition relationship is decoupled from the notion of dependency between components.
The variant perspective includes the notion of object evolution using the concepts of design
improvement and degradation. It automatically generates versions of the successive designs
produced.

(EVOLUTION)
VARIANTS

(SEMANTIC RELATIONSHIPS)
DEPENDENCIES & PROPAGATION

(STRUCTURAL DEFINITIONS)
INHERITANCE 8 COMPOSITION

Figure 10. The three modeling perspectives in SHOOD.

Managing the various changes in the design objects, classifying them in the appropriate
variants, finding the adequate variants to perform a specific design task and documenting them
is called "configuration management” in CASE applications. While the model SHOOD does
not provide extensive functionalities dedicated to this problem, some interesting features are
available to handle the evolving nature of the designs. They are described in the following
sections.

Database issues in object-oriented design. 12 8/01/91

4.2.1 Evolving structures

Evolving structures may result from two main causes. The first one is the implementation of
inappropriate class definitions. This is out of the scope of this paper. It is the "object-oriented
design" problem. The second reason is reusability. It is of first importance here because it may
result in the reuse of previous definitions for the design of new objects.

Evolving structures concern two different aspects. The first one concerns the operations
available on the class definitions e.g adding an attribute. The second is the impact of these
modifications on the corresponding instances. While the first aspect requires only appropriate
code to implement the modifications of the class graph and is usually provided in some limited
form by existing languages, the second requires carefull attention and specific mechanisms. It
is usually very limited and unflexible.

Operations

The operations concerning class modifications can be classified in two categories : those
modifying a single class e.g delete an attribute from a class, and those involving several classes
e.g make a class a component or a subclass of another. Operations in SHOOD allow the
modification of any part of an inheritance and composition graphs. Among the operations
detailed elsewhere [NGU89] are the addition and deletion of super-class/sub-class and
part/sub-part relationships.

Impact

Most important is the impact of the operations on the existing instances. A designer may want
to leave the existing instances unchanged, and thus provoke the creation of a new version of
the class. He may also wish to test the effect of the modifications performed on a class
definition to all or part of the instances. A original feature is provided by SHOOD to support
this form of evolution. It is based on the notion of relevant structure which corresponds to the
potential combinations of attributes that can be generated from a class definition. Any
modification performed on the original class definitions will be traced and the instances -
whether incomplete and inconsistent - migrate and are attached to exactly one relevant
structure. This allows the instances to be modified automatically according to the modifications
performed on their class.

4.2.2 Evolving instances

Instance evolution is the most common aspect in data-intensive applications. In object-oriented
paradigms, modification of attribute values may force instances to migrate. Available languages
are usually very limited concerning this aspect because it requires a classification mechanism.
In SHOOD, modification of the instances values triggers their propagation in the class graph.
The qualifying classes are all the super-classes of its current class, plus all their subclasses of
which the modified instance meets the constraints. This is called instance propagation. It uses
multiple instantiation, by which an instance may implicitly or explicitly belong simultaneously
to several classes. This can be used as an assistance to the designer who may occasionnally
wonder to which classes the object he is working on resembles most. For example previous
regulations allowed transatlantic flights only to aircraft fitted with at least three engines, like the
DC-10 or B747. Nowadays specific medium-range and twin engine aircraft like the B757 or
Airbus A310 may be equipped for transatlantic flights under particular IATA regulations
known as ETOPS ("Extended Twin-engine Operations”). It requires ad-hoc equipment e.g,
Administration-specified engines. If modified accordingly, they will belong simultaneously to
the Long-range and Medium-range classes.

4.2.3 Object improvement

The ultimate goal for all design process is to define objects that meet a given set of
specifications, should this concern a space shuttle or a bicycle. The design evolves
incrementally in stepwise manners but not linearly. Various alternatives may be explored in
parallel. Older designs may also be deleted or reused and modified. Today, the control of this
task is entirely left to the designers. They have to define with the appropriate tools and

Database issues in object-oriented design, 13 8/01/91

expertise what defines good or better designs : greater speed, smaller space, lighter weight,
etc.

An assistance is given by SHOOD concerning the evolution of the artifacts towards more
complete and more consistent designs, with respect to the design specifications. Using the
notion of relevant structure mentioned above (Section 4.2.1) the system generates
automatically different versions of an object when its completeness or consistency improves.
This is called an improvement cycle. Whenever the completeness and the consistency of the
object does not improve, a degradation cycle is automatically created and hooked on the current
improvement cycle. It can be deleted whenever the object reaches it back again after the
appropriate modifications. For example, different wing configurations may be tested for an
aircraft (Section 2.2). Those that improve the coefficient of lift CL and that decrease the
coefficient of drag CD will be selected and stored as new versions in the improvement cycle.
Those wing configurations that decrease CL or augment CD are attached to the degradation
cycle (Figure 11).

segradsiion
cysln

N

Imprevement cysls

cﬂ o C:‘
Figure 11. Improvement and degradation cycles.

4.3 Extensibility

An important aspect concerning the ability of the model to support evolution is extensibility. It
provides for the extension of the concepts provided by the system or defined by the users.
There is a facility in SHOOD which allows the designers to implement basic concepts by
extending the system classes. This is done by the extensive use of the reflexive nature of the
model. In particular, the basic concepts are all instances of metaclasses. They form the minimal
structure of the system [COI87, KEE88]. They implement generic structures and behaviors for
class and instance creation, modification and deletion. The users may adapt them by more
specialized structures or behaviors. They can also extend this kernel to adapt it to the
applications [PAT90]. This feature is fundamentally the support for the evolving nature of the
design applications [ESC90].

5. CONCLUSION

The model SHOOD described in this paper appears to be a compromise between object-
oriented modeling paradigms and knowledge representation languages found in Artificial
Intelligence.

The rationale behind its design is the inadequacy of existing object-oriented languages to
support flexible semantic relationships between objects as found in design applications. The
ultimate goal is to implement a unified model to support :

- part/sub-part agregates i.e, composite objects,

- sub-part sharing,

- object reuse,

- object evolution,

- semantic relationships between parts or sub-parts (dependencies, attribute propagation, etc).
SHOOD is therefore an attempt to merge the advantages of both areas and to elaborate on
existing techniques found in both paradigms. It includes features usually not provided
simultaneously by existing knowledge representation and object-oriented languages e.g, meta-
classes, disjunction, composite objects and powerful semantic relationships. Other outstanding
features in SHOOD are :

- its ability to support evolving object structures,

- the management of incomplete and inconsistent objects,

- the ability to automatically support object evolution by the notion of object improvement,

- a uniform treatment of inheritance, disjunction, composition of objects and other semantic
relationships e.g, dependencies.

Database issues in object-oriented design. 14 8/01/91

The model therefore overcomes current limitations of object-oriented languages e.g, generic
inheritance hierarchies or part-of relationships between object classes and built-in
dependencies. It also overcomes limitations in existing knowledge representation languages by
providing an automatic management of object evolution, concerning both the data structures,
the completeness and the consistency of the design artifacts, Sophisticated method selection
algorithms are being studied.

Experiments are underway in the project CIM-ONE for mechanical CAD/CAM, in cooperation
with INSA, Ecole Centrale and Université Claude Bemard in Lyon (France).

Acknowledgements

The authors wish to thank Annie CULET, Chabane DJERABA and José ESCAMILLA for their contributions
to the design and implementation of SHOOD. They also thank MM. B. DAVID, C. MARTY and D.
VANDORPE for many invaluable discussions. This work is partially supported by INRIA and IMAG for the
project SHERPA and by Région Rhone- Alpes for the project CIM-ONE.

REFERENCES

[AND90] ANDERSON B., GOSSAIN S. Hierarchy evolution and the software lifecycle.

Proc. 2nd Intl. Conf. Technology of Object-oriented Languages & Syst. Paris (F). June 1990.
[BAN88] BANCILHON F. Object-oriented database systems. Proc. 7th ACM Symposium on
principles of database systems. Austin (Texas). March 1988.

[(BLA87] BLAKE E., COOK S. On including part hierarchies in object-oriented languages,
with an implementation in Smalltalk. Proc. ECOOP '87. Paris (F). 1987.

[BOR87] BORNING A. & al. Constraint hierarchies. Proc. ECOOP '87. Paris (F). 1987.
(CARB89] CARRE B. Méthodologie orientée objet pour la représentation des connaissances.

PhD Thesis. In French. Université de Lille Flandres-Artois (F). 1989,

[CAS90] CASANOVA M.A & al. Algorithms for designing and maintaining optimized relational
representations for entity-relationship schemas. Proc. 9th Intl. Conf. on Entity-Relationship
Approach. Lausanne (CH). October 1990.

[COI8&7] COINTE P. Metaclasses are first class : the ObjVlisp model. Proc. OOPSLA '87
Conf. Orlando (Fla). 1987.

[COP84] COPELAND G. & MAIER D. Making Smalitalk a database system. Proc. ACM
SIGMOD Conf. Boston (Mass). 1984.

[DEME87] DeMICHIEL L., GABRIEL R.P The Common Lisp Object System : an overview.
Proc. ECOOP '87. Paris (F). 1987.

{DES90] DESFRAY P. A method for object-oriented programming : the class-relationship
method. Proc. 2nd Intl. Conf. Technology of Object-oriented Languages & Syst. Paris (F).
June 1990. ‘

[DIA90] DIAZ O. & GRAY P.M. Semantic-rich user-defined relationship as a main
constructor in object-oriented databases. Proc. IFIP Conf. on Database Semantics "Object-
Oriented Databases : Analysis, Design, Construction”. North-Holland, 1990.

[DIT88] DITTRICH K. Supporting semantic rules by generalized event/ trigger mechanisms.
Proc. Intl. Conf. Extending Database Technology. Venice (I). March 1988.

[DUC90] P. DUC. ROSE/ADELE data models comparison. Eureka Software Factory.
February 1990.

[ESC90] ESCAMILLA J., JEAN P. Relationships in an object knowledge representation model
Proc. 2nd Intl. Conf. Tools for Artificial Intelligence.Washington DC (USA). November 1990.
[FOX86] FOX M.S et al. Experiences with SRL : an analysis of a frame-based knowledge
representations. Proc. 1st Int. Workshop on Expert Database Systems. Kiawah Island (South
Carolina). October 1986.

[GIA90] GIACOMETTI F., CHANG T.C Object-oriented design for modelling parts,
assemblies and tolerances. Proc. 2nd Intl. Conf. Technology of Object-oriented Languages &
Syst. Paris (F). June 1990.

[GOLS83] GOLDBERG A., ROBSON D.Smalltalk 80 : the language and its implementation.
Addison-Wesley Publ. Co. 1983.

[KAT86] KATZ R. & al. Version modeling concepts for computer-aided design databases.

Proc. ACM SIGMOD Conf. 1986.

Database issues in object-oriented design. 15 8/01/91

[KEE88] KEENS S.E Object-oriented programming in Common Lisp. A programmer’s guide
to CLOS. Addison-Wesley. 1988.

{[KEMPER 87] KEMPER A. & al. An object-oriented database system for engineering
applications. Proc. ACM SIGMOD Conf. San Francisco (Ca). May 1987.

[KIM89] KIM W, & al. Composite objects revisited. Proc. ACM SIGMOD Conf. 1989. -
[KIMO90] KIM W. Object-oriented databases : definition and research directions. IEEE Trans.
on Knowledge and Data Engineering. Vol. 2, n® 3. September 1990,

[(KOT88] KOTZ H. Supporting semantic rules by a generalized event/trigger mechanism. Proc.
Intl. Conf. Extending Database Technology. Venice (I). 1988.

[MAR90] MARINO O. Multiple perspectives and classification mechanism in object-oriented
representations. Proc. ECAI Conf. Stockholm (S). July 1990.

[MUR90] MURPHY G.C & al. Genericiry, inheritance and relations : a practical perspective.
Proc. 2nd Intl. Conf. Technology of Object-oriented Languages & Syst. Paris (F). June 1990.
[NGU87] NGUYEN G.T, RIEU D. Expert database concepts for engineering design.
Artificial Intelligence for engineering design, analysis and manufacturing. Vol. 1, n°® 2.
Academic Press.1987.

{NGU87] NGUYEN G.T, RIEU D. Expert database support for consistent dynamic objects.
Proc. 13th Intl. Conf. on Very Large Data Bases. Brighton (G-B). September 1987.

[NGU89] NGUYEN G.T, RIEU D. Schema evolution in object-oriented database systems.
Data & Knowledge Engineering, North-Holland. Vol. 4, n° 1. July 1989.

[PAT90] PATON N.W, DIAZ O. Metaclasses in object-oriented databases. Proc. IFIP Conf.
on Database Semantics "Object-Oriented Databases : Analysis, Design, Construction”. North-
Holland, 1990.

[PENS7]PENNEY D.J & STEIN J. Class modification in the GemStone object-oriented
DBMS. Proc. OOPSLA '87 Conf. Orlando (Fla). 1987.

[RIE86] RIEU D., NGUYEN G.T. Semantics of CAD Objects for Generalized Databases. Proc.
23rd Design Automation Conference, Las Vegas (USA). June 1986.

(RIES8] RIEU D., NGUYEN G.T Dynamic schemas for engineering databases. 4th Intl
Co§18f. on Systems Research, Informatics and Cybemnetics. Baden-Baden (FRG). August
1988.

[RIES1] RIEU D., NGUYEN G.T Multiple instantiation for object representations. Submitted
for publication.

[SCH88) SCHEK H. Nested relations, a step forward or backward? IEEE Data Engineering.
Vol. 11, n® 3. September 1988.

[STE86] STEFIK M., BOBROW D.G Object-oriented programming: themes and variations.
The Al magazine. January 1986.

[STR86] STROUSTRUP B. The C++ programming language. Addison-Wesley. 1986.
[ZDO85] ZDONIK S.B Object management systems for design environments. IEEE Database
Engineering. Vol. 8, n° 4. 1985,

Imprimé en France
N . . par . .
.1I'Institut National de Recherche en Informatique et en Automatique.
q q

ISSN 0249 -6399

