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Abstract
We consider, in a distributed system, a sct of Af identical resources
shared between n processcs. Fach of these resources can be used by at

most onc process abl a given time (i.c. in mutual exclusion). In the kout
of- M resources allocation problem a process £, can request al once any
number & of these Af resources ; this process remains blocked until it has
gol a sct of k, resources. A distributed algorithm, wlhich generalizes the
Ricart-Agrawala’s mutual exclusion algorithm, is given for this problem
a variant reducing the number of messages is also proposed. Finally this
solution is extended to solve the geueralized resources allocation problem
i which a process request can concern several instances of diflerent types
of resources, cach type being represented by some number of identical
[CSOMTCCS.

Index terms @ A-out of-M resources allocation, distributed mutual
cxclusion, distributed synchronization, and-syunchronization, permission-
based algorithuns.

Résumé

Unc solution répartic au probleme de
Pallocation de ressources & parwi A

On s’iutéresse a Mallocation de A ressources identiques dans un sys-
teme réparti, Putilisation de chacune d'clles étant soumise i la rigle
d’exclusion mutucllc.  Dans P'allocation & parmi M un processus quel-
conque cffectue ses demandes globalement pour un nombre quelconque
k. de celles-ci ct reste blogué jusqu’d les avoir obtenucs. Un algorithme
réparti, qui généralise Palgorithme d’exclusion de Ricart et Agrawala, est
donné pour cc probleme. Une variante, qui réduit le nombre de messages
cst également proposée. La solution est enfin étenduc pour résoudre e
probleme de allocation généralisée de ressources dans lequel la demande
d’un processus pcut concerner plusicurs ressources de types différents,
chacun représenté par un certain nombre de ressources identiques, la de-
mande précisant le nombre d’excmplaires requis de chacun des types.
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Abstract

We consider, in a distributed system, a set of M identical resources
shared between n processes. Each of these resources can be used by
at most one process at a given timne (i.e. in mutual exclusion). In
the k-out of-M resources allocation problem a process P; can request
at once any number k, of these M resources ; this process remains
blocked until it has got a set of k; resources. A distributed algorithm,
which generalizes the Ricart-Agrawala’s mutual exclusion algorithm,
is given for this problem ; a variant reducing the number of messages
is also proposed. Finally this solution is extended to solve the gen-
eralized resources allocation problem in which a process request can
concern several instances of different types of resources, each type
being represcnted by some number of identical resources.

Index terms : k-out of-M resources allocation, distributed
mutual exclusion, distributed synchronization, and-synchronization,
permission-based algorithms.



1 The basic k-out of-M problem

We are interested in the management of a set of M identical resources shared
by n processes Py,..., P, ..., P,. At any time a resource can be used by at
most one process, i.c. in mutual exclusion. On the other hand a process can
request and use several of these resources at the same time. When a process
wants to use any number k; (1 € ki < M) of these resources it requests
tliem at once, and not one after the other, in order to avoid deadlock ; a
process remains blocked until it has got the requested number of resources.
After having used and released them it can make a new request for any
number &} of these M resources. The k-out of-M problem lies in ensuring a
correct management of these M resources, that is to say in the two following
properties :

o safety property : the number of resources which are allocated to the
" processes at any time is always less than or equal to M. (Each resource
being allocated to only one process at a time).

e liveness property : cach request has to be satisfied within a finite time
(under the hypothesis that the allocated resources are eventually re-
leased).

If we consider the case M=1, the k-out of-Af problem reduces to the mntual
exclusion one {10] ; if for any 1, k; is always equal to 1, the problem reduces
to the multiple entries critical section one [1,2,9].

We consider the k-out of- M problem within the context of a distributed sys-
tem composed of n sites ; we suppose one and only one process is associated
to cach sitc and we use the terms process and site without distinction. In
such a system, the sites communicate only by exchanging messages along
channels. These channels allow each process to send messages to each other ;
they are reliable (no loss, no duplication, no spurious messages), and fifo
(i.e. for cach channel the delivery order of messages is the same as the send-
ing one). Communication is asynchronous : transfer delays are finite but
umpredictable.



2 Underlying ideas of the solution

In order to ensure the safety property a solution consists in giving a site P,
that wants to use k; resources, a consistent view of the number of resources
used by the other sites. Let us call used;{j] the F;’s local view of the number
of resources used by P;. If used;[j] is greater than or equal to the number of
resources actually used by Pj, then the test :

Z used;{j]+ ki <M
1<5Fign

is a consistent onc ensuring safety. The management of these local variables
has to be done accordingly.
One way to ensure liveness lies in putting a total order on the requests
and serving them according to this order [5,11]. Such an order can casily
be obtained by associating timestamps to requests (the timestamp attached
to a request by a process has to be higher than any timestamp attached
" to a request received by this process ; timestamps can be generated using
Lamport’s rule [5]).
These two devices (over estimates of the number of resources used and total
order on the requests) are combined to get the solution. Ricart-Agrawala’s
distributed mutual exclusion algorithm {12] is also based on these two prin-
ciples. In this algorithm when a process P; wants to enter the critical section
it asks each other process the permission to enter ; it is only after having
reccived the (n-1) permissions that a process can proceed (safety). Requests
(asking the permissions) are timestamped and consequently totally ordered.
This total order allows to ensure liveness : the sending of a permission by a
requesting process is immediate or delayed according to the timestamps of
the conflicting requests. As [9] we use this algorithm as a building block on
which the solution to the k-out of-M problem is grafted. So the algorithm
proposed belongs to the family of permission-based distributed algorithms
[1,2,3,5,10,11,12,13].

3 The algorithm

Each site P; is endowed with the following local context :



var booleen : scdem;, ok;, prio; init false;

integer : h;, maxh; init 0;

[1..n] of integer : used; init 0;

set of l..n : delayed; init ¢;

integer: &;;
The variable sedem; has the value true when P; is requesting resources ; ok;
is truc when P; has got the resources it was waiting for ; maxh; represents
the highest logical clock value ever received by P; ; it allows it to timestamp
its requests with h; [5,12]. When P; wants to usc resources, it does not
know how many resources arc actually used by the other sites P;. Such
a P; can be using an arbitrary number of them comprised between O and
M ; conscquently before sending its timestamped request to each site I, the
process P increments by M each variable used;{j] in order its value be greater
than or equal to the actual value.
When P; receives from some P; a request message req(h,j) ((h,j) is the times-
tamp ol this request), it sends back a message free(M) if it is not interested
in the resources or if its request has not priority over P;’s one (i.c. it has a
higher timestamp). In the contrary case (P’s request has priority over P;’s
onc) P; sends back P; a message free(M — k;) (where k; is the number of
resources £ is requesting or using) ; this message indicate to ; it can use
only A — k; from resources P;’s point of view ; morcover P; memorises, by
imcluding jinto the set delayed;, it will have to send P; a message free(k;)
when it has finished to use these &; resources. In the particular situation
where P; is such that j € delayed; when it reccives a request from Pj it
can send back free(M) to P; immediately : indeed in this cas P; knows the
number of resources P; is using (P; learnt this number previously with the
P;’s answer to its preceding request ; moreover the £%’s request had priority
over I’;’s one).
The behaviour of each P, is defined by the 4 following statements. Each of
these statements is presented as a procedure body triggered by some event ;
they are atomic, except for the one including a wait instruction. The order
over the timestamps is defined as usual by

(hiy7) < (h,3) = (hi < hor (h; = h and 1 < j))



when requesting resources

begin k; := number of resources requested by P;;
scdem; = lruc;
ok; := false;

hi == mazh; + 1;
for 1 <j #1 < n do used,[j] := used,{j] + M,
send req(h;, 1) to P,
od;
wait (ok;);
end

when releasing the resources

begin ok; := false;
for j € delayed; do send free (ki) to P; od;
delayed; := ¢;

end

when receiving req(h, j) from P;
begin mazh; := maz(mach;, h);
prio; := (scdem; or ok;) and (h;,7) < (h,3);
case not prio; : send free(M) to P;
prio; : ifj € delayed; then send free(M) to P; (X X)
else begin
if ki £ M then send free(M — k) to P; fsi;
dclayed; ;= delayed; U {5}
end
fi
endcase
end

when receiving free (y) from P
begin used;[j] := used;[j] — y;
if scdem; and Zused,-[rr] + k; < M then scdem; := false;

¥t
ok; :=true fi

end



The number of messages per use of a sct of resources lies between 2(n-/) and
3(n-1). The lower bound can be improved (cf. §5.1).

4 Proof

Proof of safety (respt. livencess) relies on the following propositions Pl and
P2 (respt. Pj).

4.1 Proposition PI

Vi, j @ usedi[j] >0

The proof of this proposition is left to the reader.

4.2 Proposition P2

Let us consider the following situation. At a given time ! the sites 7(1),
..+, 1(g), ..., i(m) have carried out requests and are either waiting or using
resources. These requests are ordered by their timestamps in the following
way :

(h1,2(1)) < (he,2(2)) < ... < (hg.2(9)) < ... < (B, 1(m))

Morecover the site i(y) is waiting for or using k, resources (i(m+1) to i(n) are
not requesting resources al time i).

If the condition allowing i(g) to use the requested resources is true then the
condition is also true or will eventually be true for every site i(7) such that
1<z «<yg.

Proof

Let us examine the values the array used,,) contain when i(g) evaluates to
true its condition and the values the array used;(,) contains or will eventually
contain (the word "eventually” is used to take into account the arbitrary
transit delays of the messages along channels). The values are determined
by the answers (messages free) of the sites to the requests of respectively i(g)
and iz). The answer that some i(y) has sent for used;(,)[i(y)], and has sent
or will eventually send for used;y[i(y)], has involved (or will involve) the
following values :

[}



)1<y<z-1:

usedi,)[i(y)] = &y
used()[1(y)] = &,
) r<y<mn
ii1) value for i(z) :
the site i(y) is now either requesting with a higher timestamp (if 41 <
y <m)ornot (m+1 <z <n). In either case i(y) might be requesting

k; resources when it reccived the request from i(z), with a request
timestamp lower than the 7(z) one. If it was the case we could have

usedy[i(y)] = Kk,

but as the site i(y) has released its k; resources at the time 4, the
variable will eventually contain :

used;{i(y)] =0
We get also this value if i(y) was not requesting when it receives the
i(z) request.

112) for i(g) we have :

r<y<g—1: uscdyyli(y)] =ky
g <y < n: the same reasonning as previously can he applied.

So by summing the values in cach of the two arrays we can conclude :

if () used;g)li(y)]+ k) < M

v#g
then (Zuse(lg(,)[i'(y/)] + k,)is or will eventually he < A
y#z

In other words if the condition is true for i(g), it is also true or will eventually
become true (it depends on messages speed) for any site that has priority
over i(g).



Remark

This proposition clearly illustrates how the algorithm works. Requests are
virtually satisfied in their timestamp order. The actual order depends on the
message delays. Il M=1 actual and virtual orders are of course the same.

4.3 Safety P3

At most M resources can be used simultancously (each resource being used
by at most one process at a time).

Proof (by contradiction)

let us consider the situation depicted in proposition ’2 and suppose :

o that 3 k, < M (the requests of the processes i(1) Lo i(z-1) are or will

y<zx

be granted)

e and that, although the site i(h) (z < h < ¢) has evaluated its condi-
tion to true there are not enough resources to satisfy its request, i.e. :

> ky> M.

y<h

We have scen in P2 first that when i(h) evaluates to true its condition we
have :

Zused;(h)[i(y)] + k<M

y#h

and sccond that the left part of this inequation cannot be less than ley (as
y<h

i(1) to i(z-1) have not relecased their resources). Hence the contradiction :

M > M, proving safety.

4.4 Proposition P/

Let us consider the following situation. There are K not granted resources
and the unsatisficd request owning the lowest timestamp has been issued
by i(z), asks for k, < K resources and remains unsatisfied. We proof this
situation cannot last indefinitely. In other words resources are allocated cach
time it is possible according to the timestamps of requests.



Proof

Let us consider the situation depicted in proposition P2 with 1 <z < ¢ and
with :

Sky+ K =M
y<zr

The answers to the i(z) request will eventually produce :

o 1 <y < x: usediyli(y)] = ky alter receiving the first free message
from i(y)

= 0 after i(y) released its resources.

o x <y <n: usediyi(y)] = 0.

So by summing we eventually obtain :

ZtLSCd,'(T)[i(y)] + k:r S Zky + kx

y#r y<z

as ky < K the condition for 7{r) will then be true.

4.5 Liveness PJ

Fach request will be satisflied within finite time.

Proof

Let us consider the unsatisfied request with the lowest timestamp. If there
arc cnough resources not granted to satisly it, proposition P4 applies. In the
other case the requesting site will remain blocked until its condition becomes
true. That request can be blocked only by requests endowed with a lower
timestamp. When the sites that have issued these requests will release their
resources, they will send free messages and as soon as enough free messages
have been sent we are in the context of proposition P/. Consequently each
request will be satisfied within a finite time.

5 Variants

5.1 Reducing the number of messages

It is possible to reduce the number of messages by taking into account the
following fact. At the time P; sends a request it knows already the number

8



of resources used by some P; if used;(j] # 0 ; so it is no use to send P; a
request in that case (conscquently the statement noted XX in the algorithm
can be removed). But it is now necessary for P; to send P; a request when
it is waiting for resources and it reccives from P; a message free(y) such that
uscd;{j] becomes 0 (in fact this value means either P; dont use resources
or I’ knows nothing about ;). So an array asked; is used by each P; to
memorize the sites to which requests have been sent. (After P; has sent its
requests and is waiting, used;[j] = 0 and asked;[j] to true mean that P; do
not use resources from P’s point of view ; asked;(j] to false means P; knows
nothing about P; and consequently has to ask ;).

The modified algorithm is defined by the following behaviour for each P
The number of messages is now included between 0 and 3(n-1) ; however the
waiting time of a site can now be greater than in the first version as request
messages can be sent later.

when requesting resources
begin k; := number of resources requested by P;
hi := mazh; + 1;
for1<j;#£i1<ndo
if used;[7] = 0 then used;{j] := M;
asked;[j] := true;
send req(h;,7) to P;
else asked;[3) := false

fi od;
ok; .= Zztscdi[j] +k < M);
i
scdem; := not ok;;

wait (ok;);
end

when releasing the resources

begin ok; := false;
for j € delayed; do send free(k;) to P; od;
delayed; := ¢;

end

when receiving req(h, ) from P;



begin maah; := maz(mazh;, h);
prio; := (scdem; or ok;) and ((h;,7) < (h,J));
case not prio; : send free(M) to P;
preo; begin
if k; # M then send free(M — k) to P; fi;
delayed; := delayed; U {7}
end
endcase;
end

when receiving free(y) from P;
begin used;[j] := used;[j] — y;
if scdem; and used;[j] = 0 and not asked;{j]
then used;[j] := M,
send req(h;,7) to Pj;
asked;[j) = true
fi;
if scdem; and (Zuscdi[n'] + ki < M) then scdem; := false;
r#i

ok; := true fi;

end

5.2 Adaptation to others topologies

A [ully connected network has been implicitly assumed to carry req and free
messages. The algorithm can be adapted to take into account a ring topology
by using the principle described in §6.3. of [12], or a trce topology {R.14] or
an arbitrary network [4].

6 A solution to the generalized AND-
allocation
Now we consider there exist several types of resources : R(!), ..., R(p). Each

type is represented by several identical resources : there is M(«) instances
ol the resource type (). A process P; requests simultancously all the

10



resources it needs ; in the following demand for example :

demand((k;(er), R(a)), (k:(B), R(8))) (Z)

the process P; asks for k;(a) resources of type R(a) and k;(B) resources
of type R(B). P, remains blocked until it has obtained all the requested
resources. This problem is a generalized AND-allocation one (several types
of resources are requested and for a given type R(a) the request asks for
k;(a)-out of-M(a) resources).

The preceding algorithm constitutes a basic building block to obtain a simple
solution to this problem. Let us call GR(«) the set of sites which share the
M («) resources of type R(a) ; in such a set the sites have distinct identities.
Giving a unique timestamp to each demand allow to solve all the conflicts
in the same way whatever is (or are) the resource(s) concerned. So, for
example, if P; and P; are in conflict to use resources of type R(a), () and
R(~), these threc conflicts are solved in the same way : cither in favour of P;
or P; according to the two timestamps of their requests.

As an illustration, here is the program text relative to the demand by P
described in line (7) ; it concerns 2 types of resources. The text is obtained
from the initial version (the other texts are obtained in the same way).

when requesting resources
begin
ki(a) := number of resources of type R(a) P; needs;
ki(B) := number of resources of type R(f3) P nceds;
hi .= mazh; + 1;
scedem(a) := true; ok;(a) := false;
scdem;(B) := true; ok;(B) := [alse;
forz =ao,f
do %used;(z) is the array relalive 1o Lhe resource type
R(z); ils entries are the clements of GR(x)%
for j € GR(z),7 #1
do used;(z)[j] := used;(x)[j] + M(z);
send req(R(z),(h;,7)) to P
od
od;
wait (oki(a) and oki(f));
end

11



Messages req and free take the resource type concerned as a parameter. State-
ments associated to the reception of these messages use the data structnres
associated to the type of resources defined by the corresponding parameter.
Remark

The drinking philosophers problem (3] is some kind of AND-allocation prob-
lem. Each philosopher (i.e. site or process) shares bottles with it neigbhours
and can request any subset of these ones. However between two neighhours
philosophers sharing M bottles, neither philosopher can request k out of M
of these bottles : his request must concern an a priori defined set of k bottles
and not an arbitrary set of k of these M hottles (yet he may need distinct
scts of bottles for different consecutive requests). A very interesting prop-
certy of the Chandy-Misra’s solution to the drinkers problem lies in using only
bounded variables (there are no timestamps).

7 Conclusion

The proposed solutions to solve the basic and the generalized resources alloca-
tion problems are simple. They have been designed from a well-known build-
ing block, namely the Ricart-Agrawala’s distributed mutual exclusion algo-
rithm [12]. Other basic building blocks are possible : algorithms based on a
travelling token (6,7,8], or algorithms using a more sophisticated permission-
bascd protocols {11,13]. An interest on the proposed solution lies in its sim-
plicity. The variant illustrated some tradeofl between response time and
number of messages.
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