N

N

Tuning distributed control algorithms for optimal
functioning
M. Bui

» To cite this version:

M. Bui. Tuning distributed control algorithms for optimal functioning. RR-1359, INRIA. 1990. inria-
00075201

HAL 1d: inria-00075201
https://inria.hal.science/inria-00075201
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00075201
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocguencourt
. BP105
78153 Le Chesnay Cedex
France

Tl(1)39635511

Rapports de Recherche

N° 1359

Programme 2
Structures Nouvelles d'Ordinateurs

TUNING DISTRIBUTED CONTROL
ALGORITHMS FOR OPTIMAL
FUNCTIONING

Marc BUI

Décembre 1990

(AR
*RR.1358 |*




Tuning distributed control algorithms for optimal
functioning

Un modéle pour optimiser les algorithmes
distribués de controle

Marc BUI

Novembre 1990

Action PARADIS - INRIA
Domaine de Voluceau, Rocquencourt BP 105
78153 LE CHESNAY Cedex, FRANCE
e-mail : bui@seti.inria.fr



Résumé

Dans cet article, nous présentons un modeéle d’algorithme distribué de contréle
a base d’états et de transitions. Plus précisément, nous proposons une mod¢li-
sation du comportement de processus distribués & l'aide de chaines de Markov,
linterconnexion de ces chaines de Markov caractérisant 'algorithme distribué. Ce
modéle offre un mécanisme de spécification des comportements observables de pro-
cessus distribués permettant de donner des propriétés de bon fonctionnement ;
d’autre part, il permet de déterminer parmni les régles de fonctionnement, celles
qui assurent un fonctionnement optimal ou a défaut un fonctionnement judicieux.

Nous illustrons les fonctionnalités du modeéle au travers de son application a
trois problémes classiques de l'algorithmique distribuée : & savoir le probléeme du
diner des philosophes, celui de ’exclusion mutuelle, et celui de 'interblocage, (tout
en généralisant les résultats annoncés dans nos publications antérieures [1], [2]). Au
cours de I’étude, nous montrons que I’équité inter-processus revét une importance
particuliere.

Abstract

In this paper, we present a model which characterizes distributed computing
algorithms. The goals of this model are to offer an abstract representation of asyn-
chronous and heterogeneous distributed systems, to present a mechanism for speci-
fying externally observable behaviours of distributed processes and to provide rules
for combining these processes into networks with desired properties (good function-
ing, fairness...). Once these good properties are found, the determination of the
optimal rules are studied.

Subsequently, the model is applied to three classical distributed computing prob-
lems : namely the dining philosphers problem, the mutual exclusion problem and
the deadlock problem, (generalizing rcsults of our previous publications [1], [2]).
The property of fairness has a special position that we discuss.

Keywords : Supervisory systems, Processing, Optimization and variationnal techniques,
Markov chains with discrete parameters, Distributed computing,.
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-1 Introduction

This paper presents a new model which describes the phenomena of distributed comput-
ing through a behavioural study of distributed algorithms. This model is based on the
interconnection of N MARKOV chains, each representing a distributed process.

Our model differs from the usual ones (see [4], [5], [14]) since it handles a for-
mal specification of distributed systems through local considerations. Good functionning
properties for the execution of algorithms are found from the processes’ behaviour. Thus
good rules for designing algorithms with desired properties (liveness, safety, fairness) are
found.

Optimal functionning is then studied through the optimization of a decision function
under some constraints imposed by the network structure.

The model is applied to three classical problems : namely, the dining philosophers
problem, the mutual exclusion problem and the deadlock problem in which fairness reveals
itself to be an important issue.

Finally, we address the practical use of our model.

2 Formal model for distributed algorithms

A distributed system is a software and hardware structure distributed in a network of
processes which computes information by message exchange. This network consists of
sites (or processes) and a communication system. Each site corresponds, at the hardware
level, to a processor with its own local memory and, at the software level, to a sequential
process with communication primitives ([7], [8], [10], [12]).

The emergence of real distributed machines, has added a new urgency to the de-
velopment of adaptable algorithms and to their control. In order to solve the problems
encountered in the development of distributed operating systems, a formal model must be
defined. In particular, distributed mechanisms must be well understood, new problems
related to the use of parallelism have to be highlighted, and adapted solutions have to be
found ([12], [13]).

Three main issues are usually considered over this framework on distributed control
problems : the design of control algorithms, their correctness proof and the evaluation
of their performance. Our model helps to investigate the last two issues as it will be
described in the following. Its main characteristics are that it is based on an observationnal
approach, it deals only with local considerations and uses a known mathematical tool,
the MARKOV chains.

This gives a new approach to deal with distributed systems.

3 Decision function and optimality criteria

Consider N finite homogeneous MARKOV chains with state spaces *X = {1,---,14},
(k=1,---,N) and corresponding transition matrices *M, (k = 1,---, N).

The notation ¥ M expresses the fact that each transition matrix depends on a multi-
dimensionnal parameter p; characterizing it, for example p, = (*p11,- -+, *pij, -+, *Pu,us )-
Thus, these *M are matrices M,, .



3.1 Definitions

" (i) The distributed system is made up of a network of processes logically represented
by the interconnection of N MARKOV chains. Then there exists a set of relations

between the parameters p,,---, py which defines and characterizes the network;
Ry(ps-- o) =0 G=1-,N (1)
These relations are constraints (which can be linear). We write p = (py,-+-,pn) € R

iff the parameters py, - -, py satisfy (1)

(i1) For every k € {1,---, N}, suppose that there exists only one acyclic ergodic class ¥&
and at most one transient class *P. This is the condition (C).

For the chain number k, if i € ¥€ let *T; be the mean recurrence time of state i (that

istosay *T; = Y2, n F™ where £ is the probability that starting from state 1,
. . . k — 1 .

one comes back to ¢ for the first time in n steps). Recall that *T; = oo this

IMn oo
latter expression is independent of 7, "m;?) being the coefficient (j,¢) of the matrix
(kM)
If j and j' € *P, let us denote by *S;; the total mean sojourn time in j' starting
from j (that is to say *S;; = E(*o;;), where ¥o;; is the random sojourn time in j'
starting from j). These *S;; are given by the matrix (I — *W)~* where *W is the
submatrix restriction of *M to the transient states (states of *P).

A decision function is a real function f of variables *T; and *S;;,, ¢ € *€, j and j'
€ ¥P, and with k € {1,--., N}. Since these *T} and kS, are expressed in term of
matrices (*M)", i.e. in term of py, f is a function of the variables p;. The definition
of a decision function f implies that the network verifies condition (C).

For each problem, following its context, a decision function will be defined and its
role will be to control the functioning of the system and to find so the optimum
policies.

(iii) An optimality criterion is based on the optimization (maximization or minimization)
of a decision function f, under some constraints.

4 Owur model

Referring to many authors (see for example [4], [5], [7] [12], [14]), we specify our definition
of a distributed system.
Our model (S, S°, T, F) is based upon the interconnection of N MARKOV chains :

e S, the set of system-states, is here the set 1Y, (*.X)

o S°, the set of initial system-states is a subset of S

® T is the set of functioning rules. Each functioning rule, denoted here by M,, is a
N-tuple of transition matrices (M,,,---, M,,), where p € R.

We are only interested in functioning rules with which we can associate a decision

function f (that is to say only with rules associated with a Markovian network which
satisfy condition (C)).



A functioning rule is said to be optimal if and only if its p maximizes (resp. mini-
mizes) the decision function f when the imposed optimality criterion is the maxi-
mization (resp. minimization) of f.

A functioning rule M, is said to be bad if and only if its p maximizes (resp. min-
imizes) the decision function f when the imposed optimality criterion is the mini-
mization (resp. maximization) of f.

Every functioning rule which is not bad is said to be advisable. Optimal and advis-
able functioning rules are good functioning rules.

e For each problem, we want to find one or several optimal functioning rules, or if
this is not possible to find advisable ones. Welet G = {M,,pe R,, R, CR} C T,
define the set of good functioning rules of the problem.

Now, we are going to study 3 applications of our model.

5 The dining philosophers’ problem

5.1 The problem

In distributed computing, the problem of resource allocation and of solving conflicts be-
tween processes is well illustrated by the dining philosophers problem. Traditionally, the
philosophers are arranged in a circle around a spaghettis plate, with a fork between each
pair of philosopher. In order to eat, each philosopher requires his two adjacent forks ({7]).
Algorithmic solutions can be found in [7].

The problem considers a network of N finite homogeneous MARKOV chains with
the same state space. Vk € {1,---,N}, ¥X¥ = X = {1,---,4}, where state 1="waiting”,
state 2="with one fork”, state 3="with two forks”, state 4="thinking”, and with the
following transition matrix :

1- ay (84 0 0

_ 0 1-6 B O

Mo = 0 0 L= 7% %
1 0 0 0

where pi, = (o, Bi, i) €]0,1[3, for k € {1,---, N}.

The MARKOV chains verify condition (C) : more precisely, each of these chains has
only one acyclic ergodic class and no transient class.
The connection in the network is expressed here by the relations :

Lo, Brs1) = o + By —1=0 (k=1,---,N —1)
Ly(an,Bi)=an+6;1—1=0

The set of px = (o, B, V&) verifying these constraints is denoted by R.

5.2 Definitions

The set S of system-states is here XV,
The set S° of initial system-states is here the set X% itself.
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The set T of functioning rules is here (M,),cx.
The decision function is here :

_ N onBr + Bevk + e + 0xBrvi
F=> a
k=1 o Or

where the constants gi are such that Vk € {1,---,N},q €]0,1[ and %, qx = 1.

The reason to the choice of this function is that : on the one hand, Vk € {1,---, N}, each
state is recurrent so that the ¥T;, (i = 1,2,3,4), have a meaning ; on the other hand,
the best functioning rule is the one that minimizes the mean recurrence time to the state
with two forks (that is to say, the rule that performs a return to state 3 the most often
possible).

Thus, with the help of the computation of lim,_,.(*M)", we obtain the expression for
the ;—;—,' ; in particular ,

1 oS
KTy arfr + Bive + Yok + aBre

The function f expresses the sum of the recurrence time *T3 weighted by the coefficients
gx- Its minimization determines the desired functioning rule.

5.3 Results

THEOREM 5.1
V(11,5 7w) € (]0,1[)Y, the unique optimal functioning rule is M, = (M,,, -+, M,,)

where
Gh41Tk+1

pk — ( 1 L] 7]:) k c {1 o N}
ICTYSRI TS Get17ht1 ? ?
1 + 9kTk 1 + e Th

_( 1 V anvTw )
PN =
1+

1_1L’1+\/_91_n_"7”

and

1
gNIN gNIN

If the 11, -+, Y~ are bounded from below, that is to say (71, -,y~) € ML [ck, 1|, then
the set G of good functioning rules is the singleton {M,}, where

far+1Ckt1
4 ( /:hilckil ? ::c;::uﬂ ’Ck) ¢ - {1, o M= 1}
1+ QiCi 1+ QkCh

and
1Cy
oy ( 1 e )
= qict’ gic1 !’ N
1 + gNCN 1 + ql\llcN
Proof.
By considering the constraints L; and introducing the LAGRANGE multipliers A}, (j € {1,---,N}),



we have to solve the following system of equations :

N ——
ﬁ+—§——ZAijE DY L2\ =0, ke{l,--,N}

day By o

af o8 X —qrVk

— +— S \NL.=—"4X_1=0, ke{2,---,N}
0% 3ﬂk,§ 7 Bi

af XN -1

97 L % S aL= +an =0,

961 0B ,czz:l T B3

Which implies
AV Qe+1Vk+1

— 5 ,
alze :Bk+1

Qie+1Yk+1
Bry1 = ‘/ Ok.
dkVe
)

and thus

Since ay + B = 1, we have

1

and

1
X = 4+ [BTen
9Tk
/qk-tl'Yhil
ﬁ — Qe Th
k= 1+ ,qkil‘Ykil
Qe

Moreover, the function

N N-1
(o1, B, an, Bn) — Y {(1 + ¥i) -+ Z—’; + ;—;i] + Y MeLi(ow, Bi) + AnLa(an, By)
k=1 k=1 .

is convex as a sum of convex functions. Thus, the optimum is a minimum.

When (7y,--+,vn) varies, and if the parameters are bounded, the form of f shows

that the minimum is reached for (v, -+ ,vn) = (c1, -, cN)-
Remark that, in the particular case where Vk € {1,---,N} ¢, = %, we find the

result reported in [1] with
( 1 = )
Ck
Pr = ) yCk | -
Cktl Ckt1
L+ /78 14/

a

6 The mutual exclusion problem

6.1 The problem

When many processes require an access to shared resources, mutual exclusion must be
ensured. Such a protocol consists in a policy which allows at most one process to work
with the resource. This is the typical contention problem and an overview of solutions
can be found in (7], [11].



The problem considers a network of N homogeneous and finite MARKOV chains with
the same state space Vk € {1,---,N}, X = X = {1,2,3,4,}, where state 1="request
state”, state 2="refusal”, state 3="acceptation”, state 4="execution”, and with the fol-

lowing transition matrix :

ar B l—ap—f O

=% 7% 0 0
Mp=1" 4" o 5 1-6,
1-6, 0 0 0,

where pp = (ai, Bk, Yk, Ok, 0) €]0,1[° and 1 — ap — Bp > 0.

The MARKOV chains verify condition (C) : each of the chains has one and only one acyclic
ergodic class (and has no transient class).

The interconnection into network is expressed by the relations :

N
Li=Y a—-1=0
k=1

(there is almost surely a "request”), and

N

L;=Y(1-ax—B)-1=0

k=1

(there is almost surely an "acceptation”). The latter relation can also be written

N
Ly=N-2-) B =0,
k=1

which shows that N > 3.
The set of pr = (a, Bk, Tk, Ok, k) verifying these constraints is denoted by R.

6.2 Definitions

The set S of system states is X'V,

The set S° of initial system states is the set X'V itself.
The set T of functioning rules is (M,),cx.

The decision function is :

M (L) (- = B)
f—kglqk,cT3 qu(l_ék) B :

where the constants g, are such that Vk € {1,---,N},qx €]0,1[ and ¥ g, = 1.
As in the previous problem, from the computation of lim, .o (¥ M)", we obtain the
expression for 117‘; in particular :

k=1

_ =% 1-—ox =B | (1=~ Be)(1 — %)
kT, =1
2=t e T e =) B(l-06;)

and

-6 A-&) 1— 6
l—ax =B (l—o=0)1—m) 1-6
8

My =1+



In the present case, the best functioning rule consists in reducing as much as possible
the mean recurrence time of the state "refusal” (that is to say, coming back as often as
~ possible to the state "refusal”’) and at the same time in maximizing the mean recurrence
" time of the state "acceptation” (that is to say, coming back as late as possible to the state
" acceptation”).

Minimizing the sum of the ratios of the mean recurrence time of the state "refusal” to the
mean recurrence time of the state "acceptation” corresponds to the desired functioning
rule.

6.3 Results
THEOREM 6.1

a. Y(71,61,61, -, TN, 0n,0n) € (]0, 1[)?N, the unique optimal functioning rule is
M, =(M,, -+, M,,), where

1— —
O = T = S
Pk = ) N i y Yy Ok, Uk ] -
E, 1‘1115 =19 155,

b. If the v1,--+,vn are bounded from above and the é,,---,6y are bounded from below,
that is to say if v €]0,cx) and & € [di, 1], k € {1,---,N}. Then the set G of good
functioning rules is the set of optimal functioning rules M, described in a. with
(Y%, 0k) = (ck,di), k € {1,---, N}, when (64,---,6n) varies in (]0, 1))V

c. In the particular case where Vk € {1,---, N}, (ck,di) = (c,d), O = %, and ¢ = &,
then we find the fairness solution which is

_(,1_ N-2 1)
Pr = N’ N y Cy )N .
Proof.

By considering the constraints L; and L,, and introducing the LAGRANGE multipliers A,
and A, we have to solve the following system of equations :

of oL, 0L, _ Qk(l — ’)'k)

Y +/\1(9 +/\28ak = Be(1 = 6¢) —A1=0 (1)
of 0Ly _ qe(1—v)(1 — o)

Al A = — - =
5 Bﬁ 55, Bi-6) 270 @)

The solution of equation (1) gives

q’°1 —&y, ZJ qul 6

A = =
te Br N-2 "~
viz.
(N 2)qk1 s
k=TSN 1oy
i=1 9175,



Considering this value of 0, (2) gives :

(1) T g _(N-y
(N -2 qui=p (N —2)’

S Y

which implies
(N - 1)‘11:-}5}:

E;'vsl ‘Ii'i_:%f
Let us now show that this solution corresponds to a minimum for f. To this end, let us
reduce the initial problem to an equivalent one by setting wy = qki—:}: and A} =1 — o.
The equivalent problem is to minimize

ak——-l—

N Ai
F(Ay, By, AN, BN) = ) W
k=1 :Bk

under the constraints

N
N-Z_Eﬂk:‘())
k=1
N
S Ai=N-1,
k=1

A2 <1, Be>0, Al-0Gi>0.

It is straighforward that the solutions & = 1— %;3—125, B = zz:v L2 of the initial problem
j=1 Wi =13

correspond to the solutions A; = ,[Mz% 3, = W22 of the equivalent problem.
Zj:l w; z:j:l w;
3
Note that the function (A, Br) — %f is convex, since its hessian
2 =24,
( B By )
—24, 24,
Bi B

corresponds to a positive semi-definite quadratic form. F is thus convex as a linear
combinaison of convex functions with positive coeflicients.

Consequently, the solution (AI,BI, e ,AN,BN) corresponds to a minimum for F, and it
is the same for the solution

(1 — (N =1w, (N - Z)wk)

N ) N
Ej:l wj 2j=1 Wj

of the initial problem. "

7 The deadlock problem

7.1 The problem

The deadlock problem is a frozen situation generally resulting from a circular inter-process
dependence. It often occurs in a wait-for-communication scheme or for a concurrent access
to a resource [6)].
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" The problem considers a network of N finite homogeneous MARKOV chains. With
the same state space Vk € {1, , N} !X = X = {1,-++,4}, where state 1="active”,
state 2="idle", state 3="terminated”, state 4="blocked”, and with the following transi-
. tion matrix :

' Qe l—ak 0 0
M. = Be M 6 1=Be—m—0b |.
Pe 1 0 0 0 !

0 0 0 1

where pi = (ax, Bk, Tk, 6) €]0,1[%, and B + 7 + & < 1.

The MARKOV chains verify condition (C) : each of the chain has only one ergodic
class (reduced to the state 4) et has only one transient class.
The connection in the network is expressed here by the relations :

N
LlEzak—].:O (3)
k=1

(from state 1, there is almost surely at least one process which stays in state 1);

N
k=1

(from state 2, there is almost surely at least one process which goes to state 1);
N
L3527k—1=0 (5)
k=1
(from state 2, there is almost surely at least one process which stays in that state);
N
Li=) 6-1=0 (6)
k=1

(from state 2, there is almost surely at least one process which goes to state 3).
The set of the pi’s, {px} such that pp = (o, Bk, Vk,0k), verifying these constraints is
denoted by R.

7.2 Definitions

The set S of system states is X'V.

The set S° of system initial states is the set X" itself.
The set T of functioning rules is (M,)cr-

The decision function is :

X (Br+6k) + (1= ar)(1+ k)
f=,§::1qk (f_ak)(l_,gk —k’Yk—&S ’

where the constants g, are such that Vk € {1,---,N},qx €]0,1{ and TN, qx = 1.

The reason to the choice of this function is that states 1,2,3 are transient, while
state 4 is an absorbing state; a good criterion is to avoid entering too quickly into state 4.
As one can only enter in state 4 from state 2, it is equivalent to say that a bad criterion

11



is to enter state 2 as quickly as possible, i.e. to minimize the sum of the respective
mean sojourn times in state 1,2,3 starting from state 2. As indicated in subsection 3.2,
computing (I — *W)~! yields

S e _ Bt bt (11— o)1+ 6)
D e [y ey

i=1

from which we get the expression of f.

The search for optimal solutions of f, when taking into account the constraints L;
and introducing LAGRANGE multipliers );, i € {1,2, 3,4} leads to the following system
of equations :

fox szz“’ e e RS LI

5 * TmZA L= [1 _(ijﬁil—_;:k— A ] te=0®
g yadi= i [BabtloalCatl o
o = s [ zf‘fz:f”::.%z?:*“"”]+A4=° o

The simultaneous solution of all these equations is difficult. So we derive a partial
solution, first in relying on the importance of the role of fairness, and second in fixing 2
parameters out of 4 : then we have C? = 6 cases to study. Also remark that this study
has only a sense for N > 4 ; this is due to the condition Gx + v + 6 < 1.

THEOREM 7.1 Suppose that Vk € {1,---,N}, oy = -,17, B = ﬁ Then the set G of
bad functioning rules is the set of M,’s {M,}, M, = (M,,,---,M,,) where
_(L1_ N'42N-1 ANP-3N+41
= \N' N 3N2 5N+ 2 ¢ N(BNZ_5N + 2)

ke {1,---,N}, when (y1,---,vn) € (|0, ﬁ;—&%ﬂl—)[)”’ The fairness belongs to this set.

Its complementary set G is the set of advisable functioning rules.

Proof.
1. Considering the equations (9) and (10), we have :
q 14+(2- ~1—)6 ]
+ A3 =0,
e [(L — k- 5k) ’
% [3(1 - &)+t w +(1F 2”)7&]
N 3 + A =0.
~ (% =~ m = &)?
Thus
Az 1+ (2 - %)6 _ N*+2N -1

Mo 3-g+m () 3N?P-5N+2
12



which shows that

NZ+2N -1 + 4N?2—-3N +1
3N?_5N+2 ¢ N(3BNZ—5N + 2)

8 =

" Let us denote by (’yk,ék) these solutions. It can be easily checked that (&, ﬁ) is one of
such solutions. Note that the ¢i’s do not appear in these solutions.
2. Since 6, €]0, 1], we have

NZ4+2N -1 + 4N?2-3N +1
3INZ_5N+2 " N(3N?2—5N +2)

0< <1,
which implies that

—3N°+9N*-5N+1 _, _ 4N*-3N+1
N(N%+2N —1) *S N(N242N 1)

Since N > 4,
—3N3+9N?2 -5N +1

N(N?Z+2N - 1)

<0,

and
4N?2 - 3N +1

N(NZ+2N -1)

. . 2_
Therefore the result is valid for (7y,---,7n5) € (JO, o)
3. It remains to show that these solutions (¥x, 6;) minimize the function f,

<1l

N N
f=5—= afe
N - k=1 ,
where
fo (N1 4N
FTINS) =Nt )’
under the constraints (5) and (6) and

+o, < N1
Y& k N

Y% >0, 6 >0, ke{l,---,N}.

By setting w, = i + 6, and pf = (2N — 1)8 + N, the problem changes to

N N
9= N_-1 qugk,

where
B P}
gk - ]
(N - 1) - Nuk

13



under the constraints

N
douk=
k=1
N-1
N )
we > 0,00 >0, ke{l,-- N},

up <

N
S pE=Ni42N -1
k=1

Note that since N > 4, N2+ 2N — 1 > 0 this polynomial being positive outside
[-1 — /2, —1+ v/2]. g, is convex, since its hessian

2 2N pg
N-1)--N N—-1)-Nug|?
v2gk=( ( 213pk Uk I( 21\),2,)2 &) )

[(N—l)—Nu,.]’ [(IV-—I)—IV'IU.]3

corresponds to a positive semi-definite quadratic form. Therefore,
N N
9=N_1 :L:,l Qr gk

is also convex. Thus, the §oluti6ns (4, b%) of the initial problem (which correspond to
the optimal solutions (i, d;) of the reduced problem) are solutions which mirimize the
function f. N

THEOREM 7.2 Suppose that Vk € {1,-- N} o = 3, Tk = 5. Then the set G of
bad functioning rules is the set of M,’s {M }, =(M,,, -, M,,), where

(1, _1__2N+15+ 5N — 1
PE=ANP N TSN -2 T NBN-2))°

k€{l,---,N}, when (By,---,0n) € (10, sionin )" - The fairness belongs to this set. Its

complementary set G is the set of advisable functwmng rules.

Proof.
1. Considering equations (8) and (10), we have :
qi(2 + 6x)
+A =0
(Bt = b6
+3N - £+ &
1:1—1 ( v ) 2 m + /\4 = 0
N ("t~ B — 6k)
This gives
A _ (R )2+ &) _2N+1
A (5B +3N -4 + 4 T 3N -2
and thus,
2N +1 5N —1
O = —o5—=06 +

3N —2"*" NBN -2)’
14



Let us denote by (B, i) these solutions. We can easily check that ( ~, %) is one of such
solutions. As in the case of Theorem 7.1, the coeflicients ¢; do not appear in the solutions.
2. Since 6 €]0, 1], we must have

2N +1 5N —1

0 _
< 3N—-2ﬁk+N(3N—2) <1

which implies
—3N?+4+7N -1 < < 5N —1
N(2N +1) *SN@2N+1)
As N >4, ~3N?4+7N —1 < 0 (this polynomial being negative for N ¢[T=¥* V37 7 —t‘C]
and ]—v—?% < 1) Thus, the proposition is vAa,h(} for (6y,--+,B8n) € (], N?:ﬁ.vN+11)D
3. It remains to show that these solutions (0, ;) minimize the function f which is here

N N
=== afx
N-1

where
NBe+ (2N - 1)8 + (N = 1)

(N=1)-N@B+6&)

fu=

under constraints (3) and (5), and

N -1

Or + 6 <
Be>0, 6, >0, ke {1,-°',N}.
By writing f; in the form

(N —-1)8 +2(N - 1)
(N —1) = N(Bi + &)

and changing variables (as in (7.1)) ux = B + 6; and pZ = (N — 1)6, + 2(N — 1), we
transform the initial problem into the minimization problem of

N N
9= N——lngk’

fe=-1+

where
2
Py

H*=IN-1) - Nug’

under the constraints

N
S e =
k=1

N -1
N )

Up <
up > 0,

pk>0 ke{l,---,N},
Z = (2N + 1)(N - 1).
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The function g is convex since its hessian 72gy is the same as the one of Theorem 7.1.
Thus g is convex.

The solutions (Bk,ék) of the initial problem correspond to the optimal solutions (g, fx)
of the transformed problem which minimize f.

In the particular case where Vk € {1,---, N}, @& = &, we are brought back to the study

completed in [2]. )
THEOREM 7.3 Suppose that Vk € {1,---,N}, ar = % = % Then the set G of
bad functioning rules is the set of M,’s, M, = (M, -+ - ) ere
5 —2N2+N+1ﬂ N 3N’ +N-2 1
P = N’ BNTLaN -1 * T N(N?+2N-1)'N
ke {1,---,N}, when (834, --,8n) € (]O, %}N—U[)N The fairness belongs to this set.
Its complementary set G is the set of advisable functioning rules.
Proof.
1. Considering the equations (8) and (9), we have
SV 2N -1
1\?51 N= ;Yk 2| TA2=0
* (G —Be- ’Yk)
N’+N—1
1\?—1 N'Biv ! +A3 =0,
~ LGF —A- “Yk)
which gives
A m-BEL (N-1)(2N+1)
A3 ,B,‘+E1:L,_— N2 4+ 2N -1
Thus
—2N*+ N +1 3N?+ N -2
M= Nz B + 2 —-
+2N 1 N(N?+2N —1)

Let us denote by (B, %) these solutions. It can be easily checked that (%> %) is one of
these solutions. Note here again that the ¢ do not appear in the solutions.
2. Since 7, €]0, 1], we must have

—2N?24+ N+1 3N24+ N -2

0 1
SN 1T NeNE N S

This implies that
-N2+2 3N?4+ N -2

NeN+ D SP<menv-N-1)

Since for N > 4 and N:(’Z:;* _’Vi_zl) <1, N‘(;V;, +21,) < 0. Thus, the proposition is valid for

3N?+ N -2 O
N(2N2-N-1)" ~

(B, -+, Bw) € (10,

16



3. Let us show that the solutions (Bk, ) minimize the function f which is here :

Ly
f=5—=2 afk
N-_ k=1

where
_ Nzﬂk+(N2+N—1)

Ay (e
under the constraints (4) and (5), and

N-1
ﬂk+7k< N )

Br>0, v%>0 ke{l---,N}

First remark that since N > 4, N2+ N —1 > 0 (because this polynomial is positive outside
the interval [i;—@, —'1—§@]) By setting ux = Bk + 7 and p2 = N28, + (N2 + N — 1), the
problem consists then in minimizing

Ly
9= 557 qr gk,
N T k=1

where

under the constraints

up > 0, pk>0a kE{l,"',N},

N
S pt=N(N*+2N—-1)>0.
k=1

Here again, we sece that the function g; is convex since its hessian is the same as in the
preceding cases. Thus g is convex. Therefore, the solutions (ﬁk, 4+ ) of the initial problem
(which correspond to optimal solutions (4, 4x) of the reduced problem) are solutions
which minimize the function f. "

THEOREM 7.4 Suppose that Vk € {1,---,N}, B = %, 6 = % and g < N—zvl_z——).

Then the set G of bad functioning rules is reduced to {M,} = {(M,,,---, M,,)}, where
11 N-21
=5~ N - )
P (N’N WV =3+~ 5

k € {1,---,N}. In the particular case where Vk € {1,--- N}, q. = &, we find the

fairness solution py, = (%, %, % %) G 1is the set of advisable functioning rules.

17



Proof.
1. Considering the equations (7) and (9), we have :

2qs
N(1— )52 — )

+A1=0,

—qe[2+ (1 — ax)(N + 1))
N(1 - a)(BFE — )

+/\2=0a

which gives

Mo ~2 B ~2N
o (I—a)R+(I-a)V+1)]  2(N-1)+(N+1) T (1~ ;)2

That is to say Vj, k € {1,---,N},

-2 -2
(N+3)—2(N +2)ax + (N +1)af (N +3) - 2(N +2)aj + (N + 1)a?

This yields that
(ar — a;)[=2(N +2) + (N + 1)(ar + ;)] = 0.

Since a4, a; €]0, 1],

“2(N+2)+(N+1)(ar+ ;) < —2(N+2)+2(N+1)=~-2<0,

then ]
Qp = Q; = —ﬁ
Substituting o, = + in (7), we also have
_/\1 — 2q,c - 2N
NP2 - m) (N = 1N -3)

which gives
N -2
=—-(N-3 —_
e = —( Yk + —

Let us denote this solution by (&4, Y&).
2. Since v, €]0, 1], we must have

-2
<1,

which yields
-2 N -2

L €
N(N — ) SN -3)
Since N > 4, N(N 57 < 0and 0 < mr55s N(N 3) < 1. Thus, we have the condition

. N-2
N(N —3)

18



3. Let us show now that the solution (&, %), k € {1,---, N}, minimize f, which is here

N
f = Z Qkfk,
k=1

where
24+ (1-op)E

(1—ak)(N 2 )

fe =
under constraints (3) and (5), and

ai €]0,1],
N -2
0< < N ke{l,---,N}.

If we set a = %, b= ﬁﬁ—l, c = Y¥=2% the hessian of f; is

N
% G
“ax) - 1- =
vsz:( A A )

(1—aw)(c—m)? (1—on)(e—7)?
It corresponds to a positive semi-definite quadratic form, since V(z,, ;) € R?
)2 4 [42"' + 5(1 — o) 2}

xr
a(s—_m)z 2

1—-01,,

(z1 22) V* fi ( 2 ) 1 -ak?“a(c—’rk)

This shows that fx is convex and consequently f is convex. The solution (&g, %),
k€ {1,---,N} corresponds to a minimum for f. .

>0

(IBI + 2(:—: T2

7.3 Other cases

PROPOSITION 7.1 (concerning the case where Vk € {1,---, N}, B, = ﬁ, = 117) ‘
This case is more complicated than the § preceding cases. Here the set G of bad functioning
rules is a subset of the set {M,} = {(M,,,---,M,,)}, where

= (on 3o 3084).
Pr — ak’NN k

k € {1,---,N}, are such that (ox, &) €]0,1[x]0, 2=2[ for which the following relation
holds :

(N —2)+ N(N —3)6, — N26} _ N(2N —5) - N2y | 82
N(N -1)(3 -5 +2af) ~ 3N*(N-1)-5N(N-1)+2N(N -1)TN  a?’

The fairness (%, =, %, &) belongs this set of M,,.
Sketch of Proof. Considering the equations (7) and (10), we have :

~ + o
1 - a)2(%52 = &)

Qk( +A1:0)
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and

2N-3 N-1
=9 4 282
Qk N N_2N + A4 - O
(1—a)(TF" — )
" thus
N (G2 -8
M (11— oy)(3=2 4 AL,
This leads to the above relation. s

PROPOSITION 7.2 (concerning the case where Vk € {1,--- N}, 7o = &, & = & ).

As in the previous remark, the set G of bad functioning rules is a subset of the set
MP - (MPI " MPN) where
1 1
Pr = (ak,ﬁk, 2 N)

k € {1,.---,N}, are such that (o, ) €]0, 1[x]0, ¥ 2[ for which the following relation
holds :

(N—2)+N(N —3)8 — N*B} _ 2N-5-NY,B;

2N — (3N +1)ax + (N +1)el =~ 2N2—-3N-1+(N+1)T)X, o

The fairness (x, +, %, ) belongs to this set of M,,.

Sketch of Proof. Considering the equations (7) and (8), we have :

B + ¥
+X =0
TEPAE T2 B
and N Nel
qkT+ N (l*ak) + 2 =0,
(1 - a)(5F2 ~ Be)?
then L\ N2
M (Bt )P =B
A (1-a)[%2 + 80 - a)
this leads to the above relation. .

8 Conclusion

We have introduced a model for distributed computing that helps to handle the complexity
of concurrency control problems.

With this approach, we first showed that one can formally find good functioning
properties (safety and liveness properties) in a systematic way for the considered dis-
tributed control problems. It is an efficient theoretical tool for reasoning about distributed
algorithms, with property that the global behaviour is obtained from the study of local
behaviour.

We then devised optimal functioning properties for different classical distributed
computing problems in which fairness is proven a decisive issue.
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On the other hand, as we are able to estimate statistically the model’s parameters
from various executions ([3]), this gives tools for the evaluation of the means for the eval-
uation of the performance of distributed algorithms in their average behaviour. This also
corresponds to the requirements for a self-tuning method for distributed systems. From
a practical point of view, we have encoded the model’s functionnalities in a simulator,
having thus an interesting practical tool for comparing different asynchronous distributed
algorithms ([3]).
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