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A PROBABILISTIC APPROACH TO PATTERN MATCHING
WITH MISMATCHES

Mikhail J. Atallah, Philippe Jacquet and Wojciech Szpankowski
Abstract

The study and comparison of strings of symbols from a finite or an infinite alphabet
is relevant to various areas of science, notably molecular biology, speech recognition, and
computer science. In particular, the problem of finding the minimum "distance” between
two strings (in general, two blocks of data) is of great importance. In this paper we
investigate the (string) pattern matching problem in a probabilistic framework. Given
a text string a and a pattern string b of minor length, we call “optimal matching of b
over a” the maximum number of matches between b and all substrings of a. We consider
the probabilistic model where strings are random and independent over a finite alphabet.
Our aim is to precisely evaluate the behaviour of the optimal matching of b over a when
the respective lengths of the strings both tends to infinity with a polynomial dependence
between them.

UNE APPROCHE PROBABILISTE
A LA RECONNAISSANCE DE MOTIFS AVEC ERREUR

Résumé

L’étude et la comparaison de séquences de symboles jouent des réles importants dans
de nombreux domaines scientifiques comme la biologie moléculaire et 'informatique. Dans
cette note nous analysons une reconnaissance de motifs particuliére, dite avec erreur. Etant
données deux séquences a et b, de longueur inférieure, écrites dans un méme alphabet de
taille finie, on appelle le “maximum d’accords de b sur a”, le nombre maximum d’accords,
symbole par symbole, entre b et tous les sous mots de a. Nous nous intéressons au cas ot les
deux séquences sont construites de maniére aléatoire et indépendante a partir de ’alphabet
commun. Notre propos est de déterminer avec précision le comportement du maximum
d’accords de b sur a, lorsque les longueurs respectives des deux séquences tendent vers
P'infini en gardant entre elles une dépendance polynomiale.
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Abstract

The study and comparison of strings of symbols from a finite or an infinite alphabet
is relevant to various areas of science, notably molecular biology, speech recognition, and
computer science. In particular, the problem of finding the minimum "distance” between
two strings (in general, two blocks of data) is of great importance. In this paper we in-
vestigate the (string) pattern matching problem in a probabilistic framework. Given a
text string a of length n and a pattern string b of length m, let My, , be the maximum
number of matches between b and all m-substrings of a. Our main probabilistic result
shows that for logm/logn — a (i.e., m = O(n®*)) with @ < 3 for some § < 1 we have
My = mP + /mr where 7/logn converges in probability to 2(P — P?), and P is the
probability of a match between any two symbols of these strings. The parameter 8 depends
on the distribution of symbols from the alphabet. This result suggests an O(n) algorithm
that with high probability will compute M, , for two strings a and b, even if the detailed
probabilistic characteristics of the alphabet are not known.
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1. INTRODUCTION

Pattern matching is one of the most fundamental problems in computer science. The
version of this problem we consider here is the following one. Consider two strings, a text
string a = a;a;...a, and a pattern string b = b1b,...b,, of lengths n and m respectively,
such that symbols a; and b; belong to a V-ary alphabet ¥ = {1,2,...,,V}. Let C; be the
number of positions at which the string a;+1@;4+2...¢;+m agrees with the pattern b (indices
are modulo n). That is, C; = L7 equal(a;y;,b;) where equal(z,y) is one if z = y, zero
otherwise. We are interested in the quantity My, , = ma.xlS;Sn{C;}. This problem, posed
by Galil [11] for the case of more than one mismatch, of course has a linear time solution for
the case of zero mismatch (i.e., k = m). For the case of a single mismatch (i.e., k = m - 1)
a linear time solution is also known (attributed to Vishkin in {11]). The best known time
bound for the general case of arbitrary & is O(ny/mpolylog(m)) and is due to Abrahamson
[1].

We analyze M,, . and propose an O(m + n) time algorithm for estimating it, under
the following probabilistic assumption: symbols from the alphabet £ are generated inde-
pendently, and symbol o from the alphabet ¥ occurs with probability p,. This probabilistic
model is known as the Bernoulli model. The algorithm we propose does not assume that
we know the probabilities p,, it just assumes that they exist.

Our linear time algorithm is a simple consequence of our main probabilistic results,
which provide a tight estimate on M, ;.. More precisely, we show that for m = ©(n®) (when
a < B < 1and 3 depends on the probabilistic nature of the alphabet), M, , = mP + /mr,
where 7/logn converges in probability to 2(P — P?), and P is the probability of a match
between any two symbols of the text and pattern strings.

Our linear time algorithm does not specify where the pattern occurs within the text.
It outputs only the estimate of My, », from which one could deduce whether the pattern
(approximately) occurs in the text. There are several practical situations where such an
information is useful, notably in molecular biology and pattern recognition. In particular,
when searching for a homology between two biological strings (e.g., DNA, RNA or protein
sequences) one needs to know how close is one strings from the other one [21]. Finally,
our algorithm can also be used in the case when the position of occurrence of the pattern
is important. In that case, our algorithm can act as a ”"cheap” test whether one should
pay the O(n/mpolylog(m)) time cost (Abrahamson’s algorithm [1]) to find the position of
occurrence in the text.

The paper is organized as follows. The next section makes a more precise statement of



our results. In particular, Theorem 2 contains our main probabilistic result. All proofs are
delayed until Section 3, which is also of independent interest. It discusses a fairly general
approach that can be used to analyze pattern matching in strings. In that section we apply
extensively the saddle point method [14] to evaluate necessary asymptotic approximations.
Finally, Section 4 contains some comparisons of our theoretical results with computer sim-
ulation results. Interestingly enough, our estimate is typically within 5% of the true value
even for strings of length only in the hundreds. That section also suggests some future

research problems associated with approximate pattern matching.

2. MAIN RESULTS

This section presents our main probabilistic and algorithmic results derived under the
Bernoulli model discussed above. Note that, in such a model, P = 3-¥_, p? represents the
probability of a match in a given position of the text string a and the pattern string b. It

is easy to sce that the distribution of C; is binomial , that is, for any 1

Pr{C;i =€} = (’?) P!(1 - Py™t (1)
Naturally, {C;} is a stationary sequence, and the average number of matches EC; is equal
to ECy = mP. Furthermore, C; tends almost surely to its mean mP (by the Strong Law of
Large Numbers [8]).

The evaluation of My, , = maxls,-s,,{C’g} is more intricate, although the first order
asymptotics are easy to obtain (cf. Theorem 1). For simplicity of the presentation, it helps
to imagine that a is written on a cycle of size n > 2m, and that p'(b) is written on that
same cycle, cyclically shifted by ¢ positions relative to a. Then C; can alternatively be

thought of as the number of places on this cycle in which a and p*(b) agree.
Theorem 1. If m = O(n®) for some 0 < a < 1, then for every € > 0 the following holds
nlergoPr{l—e<Mm,n—mP<1+5}=1, (2)

that is, My n ~ EC; = mP in probability (pr.).

Proof. A lower bound on My, , follows from the fact that the maximum Mp, 5, over n values
of C; must be greater than C; which tends in probability to mP. So, now we concentrate

on an upper bound. From Boole’s inequality we have

Pr{Muyn>7r}=Pr{Ci>71 or Co2>71 or ..Cp>r}<nPr{C;>r}. (3)



It suffices to show that for » ~ mP the above probability becomes o(1), that is, nPr{Cy >
(14 ¢)mP} = o(1). For this one needs an estimate of the tail for the binomial distribution
(1). Such an estimate is computed in Section 2 by the saddle point method. A simpler
(and more general) approach, however, is necessary for the purpose of this proof. We
note that Cy can be represented as a sum of m independent Bernoulli (spanned on two
points) distributed random variables X;, where X; is equal to one when there is a match
at the ith position, and zero otherwise. From the Central Limit Theorem we know that
(Cy - ECy)/(/mP(1 = P)) = N(0,1), where A'(0,1) is the standard normal distribution.
Let Gm(z) and ®(z) be the distribution of 3772, X; and the standard normal distribution
respectively. Then, from Feller [8]

-z%/2
Gn(z) = 8(2) + “=o(Vm) ,

c-x’ /2

where &(z) ~ 5 Define in (3) r = mP + (1 + €)/m2P(1 — P)logn. Then, the above

directly implies our theorem. ®

Theorem 1 does not provide much useful information, and an estimate of My, , based
on it would be a very poor one. From the proof of Theorem 1 we learn, however, that
Mpyn — ECy = O(y/mTogn), hence the next term in the asymptotics of My, can have
a very significant value, and definitely cannot be omitted in any reasonable computation.
The next theorem - our main result — provides an extension of Theorem 1, and shows how
much the maximum My, ., differs from the average EC;. In Section 3 we prove the following

result.

Theorem 2. Let logm/logn — a, that is, m = ©(n?) for some a > 0.
(i) For every ¢ > 0 we have

lim Pr{ My - mP

n 7 1+e}=1, 4
n—oo -\ /2m(P - P¢)logn <ltel )

where P = TV, n?.
(ii) Let T = Y., p}. Then for every € > 0 the following holds

Mn - mP
V2m(P — P?)logn

=1 (5)

lim Pr{l —¢<
n—eo

provided 0 < a < f =1-4(T - P?)/(P—-3P?+2T). In other words, M, , = ECy + /m1
where EC; = mP and 7/logn converges in probability to 2(P — P?) when a satisfies the

above constraint.

Py



(i) Let 6 = \ﬁ“"‘a((’;{a),’::)*”). Then for every € > 0 we have

M, - mP

li 1-¢)6
nco Prill-e)f < V2m(P — P?)logn

}=1 (6)

provided 1 > a > 3 =1-4(T - P?)/(P-3P*+2T). n

Remark 1. If all the p;’s are equal to 1/V (the so called uniform case), the condition on
o becomes a < 1, which is always true since m < n. In all other cases & < 1. The proof of
Theorem 2 is considerably simpler for the uniform case, but that case is unlikely to arise in
practice. Much of the difficulty lies in establishing Theorem 2 in the general (nonuniform)

case.

Remark 2. Theorem 2 holds in a much more general probabilistic framework provided
the probability of a match P (and also T') is appropriately interpreted. For example, if the
probability of occurrence of a symbol k at any position of a (resp., b) is px (resp., p}), then
Theorem 2(ii) holds if & < 1 — 4(T = P?)/(P - 3P? + T 4+ T') where P = 529 p,p,, and
T = 527 pipk and T’ = Ti77 pe(p)*.

Theorem 2 suggests a simple algorithm that can approximately determine M, , provided
that the strings are independent (see [5] for justification of the independence assumption for
some DNA sequence searches). We also predict that our theorem - and hence the algorithm
discussed below - holds under much more general probabilistic model (cf. [15], [20]). We
first note that in many practical applications the probabilities {p,-}}/=l are unknown. In such

situations, Theorem 2 provides an algorithmic tool to obtain an estimate of My, ,:

Algorithm .

1. Compute Cy + C2 + ... + Cp. This is straightforward to do in O(m + n) time, but we
nevertheless sketch how it is done, for the sake of completeness: first, in O(m) time,
we compute the number of occurrences (call it count;(i)) of each symbol i € I in the
pattern. This is done by scanning the pattern and, if the current symbol being scanned
is (say) i, incrementing count;(i) by one. We do the same for the text, obtaining in
O(n) time the number of times (call it county(7)) that each ¢ € ¥ occurs in the text.

Now, observe that

v
Ci+Ci+ ...+ Cr = Z(countl(i) * county(1)),

i=1

and hence we can compute the quantity we seek with an extra O(V) time.

5



2. Evaluate C as follows Lo
C==3Ci. (7)

=1

(This takes constant time, in view of the previous step.)

3. From the Strong Law of Large Numbers [8] one concludes that ¢ — EC, almost surely
for large n. Hence, we may estimate the probability P as P = C/m, and finally the

estimate of M, ,, is evaluated (in constant time) from Theorem 2 as

M = C +1/26(1 = C/m)logn . (8)

;From Theorem 2 we know that M, ,, = M, . with high probability (whp). Formally, (8) is
true only for a < 8. The parameter § can be estimated in the algorithm by using the fact
that P2 < T < P32 (cf. [16], [20]). We also note that even in the case & > 3 the estimate
(8) gives a good approximation (see Section 4).

The above algorithm in O(m 4 n) time provides the right answer (whp) to our problem
even in the presence of unknown probabilities of symbol occurrences. The assumption of
a very large n that we make in the analysis is not overly restrictive, since extremely large
values of n can arise in many of the application areas of this problem, notably, in text
processing, speech recognition, machine vision and, last but not least, molecular sequence
comparison. For example, in the human genome project one estimates that n can be as
large as 10% (7). Surprisingly enough, our computer experiments indicate that our estimate
works well even for moderate values of n, namely n close to 100 (see Section 4 for more
details).

3. ANALYSIS

In this Section we prove our main theorem (Theorem 2). In the course of proving it
we establish some interesting combinatorial properties of pattern matching that have some
similarities with the work of Guibas and Odlyzko [12, 13} (see also [15]). The proof itself
consists of two parts: upper bound (easy) and lower bound (difficult).

We start with the upper bound. Although it is easy to derive, in order to illustrate
the technique that we adopt for the (much harder) lower bound, we present one result that

directly implies the upper bound for Theorem 2. The following lemma suffices.

Lemma 3. When m and r both tend to infinity with v = O(logm), then

6



Proof: According to (1) C; is binomially distributed, that is, Pr{C, = r} = (T)P7(1 -
P)™-7. Introducing the generating function C(u) = 3, Pr{C) = r}u" for u complex, we
easily get the formula C(u) = (1 4+ P(u — 1))™. Then, by the Cauchy’s celebrated formula
(14] . .
Pr{C1 2 1} = 5= $(1+Plu-1)) oI

where the integration is along a path encircling the unit disk for u complex. The problem

du , (10)

is how to evaluate this integral for large m. In this case the best suited method seems to
be a simplified saddle point method (see also the Laplace’s method) [14, 9]. This method
applies to integrals of the following form

I(m) = /F d(z)e" ™M= dz | (11)

where T is a closed curve, and ¢(z) and h(z) are analytical functions inside I', and we
evaluate I(m) for large m. It is noticed that the main contribution to this integral comes
from the point where h(z) is minimum, that is h'(z) = 0 (some additional assumptions are
necessary; for details see [14]). To apply this idea to our integral (10) we represent it in
the form of (11) and find the minimum of the exponent. Define u = 1 + h, and then the
exponent in our integral can be expended as

log((1 + P(u—1))"/u") = mlog(l+ hP) - rlog(l + h)

=  (Pm-r)h—1/2(P*m - 1)h* + O(m + r)h3)
= _1/21%;;;i +(r - sz)ih—_g—Qz— + O(m + 7)h?)

with hg = (r = mP)/(r — mP?). Let r = mP + /mz, with z > 0. Changing the scale of
the variable under the integrand: h = hq + it/\/m(P — P?), we obtain

Pr{Ci > mP + y/mz} = exp[—1/2P_ P;i x/ﬁ]%/%dt (1+0(1/v/m)) .
VP-F?

Therefore, when z — oo (like vIogm) we get

[ EHELL g YE L gty = VL)
ﬁ ? X —00 T

where the last integral can be computed from the error function [2]. This completes the

proof of our lemma. ®



The rest of this section is devoted to the lower bound. We attack the problem through
the second moment method. We will use a form due to Chung and Erdés [6], which states
that for events {C; > r}, the following holds

— " ) (3 Pr{C; > "})2
Pr{Mmn > 1} = PHUC > )} 2 e Sy Ty PG S 75 G 5 ) - 02

i=1
Thus, one needs to estimate, unfortunately, the joint distribution Pr{C; > r & C; > r}, and

prove that the right-hand side of (12) goes to one when r = mP +/m2(P — P?)logn(1—¢)
for any € > 0. Define Fy, o(r) = SiZ3 Pr{C; > r & C; > r}. Then, the following lemma

1=2

summarizes what we have already said.

Lemma 4. For every € > 0 we have limpoo Pr{My, , > mP + /ma,(1 —€)} = 1 provided
that the following is fulfilled

..m Fun(mP + /may(1 —¢€)) _
A (e s mPrvmad— om0 =0 (13)

where a,, is a solution of nPr{Cy > mP + \/ma,} = 1, that is, a, ~ (P — P?)logn for large

values of n.

Proof. Note that p'(b) and p/(b) do not overlap when |i — j| > m, and therefore cor-
responding C; and C; are mutually independent. Applying this to (12) one immediately
obtains

n2(Pr{C, > r})?

PriMnn > 1} 2 Ga nln ¥ UDYPHCr > 1) + nPHCy > 71+ 28Fmnr)

Thus
Pr{Mp » 2 mP + /may(1 -¢)} 2

Fm,n(mP + \/FnTn(l — 5)) _ 1)]—1
m(Pr{Cy > mP + /ma,(1 - ¢)})? .

where gn(¢) = nPr{Cy > mP + /Man(1 +¢)} and a, ~ 2(P — P?)logn. From Lemma 3
we easily see that a, ~ (P — P?)logn, and g(-¢) — oo as n — o0, hence (13) follows. ®

[1+1/n+ 1/ga(~) + 2m/n(

According to Lemma 4 our problem reduces to a sharp estimate of the joint distribu-
tion of Cy and C,. We achieve it by first evaluating the generating function Hy, ¢(u,v) =
Yo rs Pr{C1 = 11 & C¢ = r2}u"v"2, and then computing the probability Pr{C, = r & C, =
r2} through the Cauchy integral as it was done in Lemma 3. Let x and y be column vectors

of dimension V, that is, x = {2;}), and y = {y;}).,. We define the scalar product (x,y)



by z1y1 + - -+ + zvyv. Then, the next crucial theorem captures some important combina-
torial properties of {C;,C¢} that allow to estimate the generating function H,, 2(u,v) for
£ =2, and finally H,, ¢(u,v) for any £ (cf. Theorem 6).

Now we are ready to establish a closed-form formula for the generating function Hp, 2(u, v).
This is achieved by showing a recurrence relationship between the distributions of {C(b), C2(b)}
and {C,(b'),Cs(b’')} where b’ is the suffix of b of length m — 1. In the above we write
Ci(b) instead of C; in order to show explicitly a dependency of C; on the string ba. With
this in mind, we can proceed to the following key theorem.

Theorem 5. We have the identity H,, 2(u,v) = (x(u), A™"(u,v)y(v)), where A(u,v) is

a V x V square matriz whose generic element a;;(u,v) satisfies the following
a;;(u,v) = pi(1+ pi(v = 1) + pj(u - 1))

when i # j, and
aii(u, v) = pi(1 + pi(uv - 1))

for i = j. The row vectors x(u) and y(v) are defined as x(u) = {1 + pi(u - 1)}}_, and
y(v) = {pi(1 + pilv - DL,

Proof: Let us define a random variable T'; as the number of matches between string a
and p‘(b) without counting the eventual first matching at position i (recall that p'(b) is
the shifted version of b by ¢ positions on the cycle). For example, I'; = C; if there is no
matching at position 1, and I'y = C; — 1 otherwise. Define next the generating function

P; m(u,v) as

Pim(u,v) = Z Pr{l'y = ry & C; = ro & string b starts with symbol i}u™v™ |
1,72
and P,,(u,v) denote the row vector {P:m(u,v)}),,. Note that Py(u,v) = y(v) and
Hon2(u,9) = T2 (1 + pi(u — 1)) P (u,v), thus Moy o(2,v) = (x(u), Pm(y, v)).

The most interesting fact that we prove next is the following relationship Pp(u,v) =
A(u,v)P,,_1(u,v) when m > 1. A proof of this relies on building a recurrence relationship
between {C(b),Cz(b)} and {Ca(b’),C3(b’)}, as explained above. Let i and j be the two
first symbols of string b and let k be the second symbol of string a. When ¢ # j we have
I'1(b) = T2(b") + 1 and Cy(b) = C3(b") if k = j, I'1(b) = I'2(b’) and Co(b) = C3(b’) +1
il k = 4, and T'y(b) = Ty(b’) and C2(b) = C3(b’) otherwise. When i = j, we have
T1(b) = T2(b’) + 1 and Ca(b) = C3(b’) + 1 if k = 1, and T1(b) = T2(b’) and Cz(b) =



C3(b’) otherwise. Since the ['¢(b)’s and Cy(b)’s are stationary random variables, hence the

following identity follows

P (v

Banl) = (14 piu = D)Pimos(19) + S0+ 5(v= 1+ By = D)Pims(3,9)
! i#i

which proves our theorem. m

The next theorem extends Theorem 5 and give an ultimate formula for the generating

function Hy, ¢(u,v), which is of its own interest.

Theorem 8. For all ¢ < m the following holds Hy, 144(u,v) = (Hp2(u, )1 Hpp1 2(u, v))%,
where h = %] and £ = m - hq.

Proof. For i < g define b(;) as a subsequence of string b obtained by selecting the ith
symbol of b, then the ¢ + gth, then i + 2qth, and so forth. For 1 < ¢ < ¢, strings b(;) are of
length A+ 1, for £+ 1 <7 < g, strings by;) are of length A. We can do the same with string
a and obtain subsequences a(),...,a().

Let (a, p'(b), p?(b)) be a new notation for the two dimensional row vector [C;, C;], that
is, it represents the number of matches between a and simultaneously p*(b) and p?(b). It is
easy to see that [C1, Ci4q) = (apy, p'(b(1)), P2(b(1))) + - - + (a(g), £ (b(q)), p2(b(y))), Where
the (agy, o' (b)), p(bi))) are absolutely independent. Note that (a(y, p'(b(;)), p2(b(y))’s
has the same distribution as [Cy,C,] when b is of length A + 1 for ¢ < ¢, and the same
distribution as [Cy, Co] when by;) is of length A for £ < i < ¢. This finally establishes the

theorem. B

Theorem 6 establishes a closed form formula for the generating function of the joint
distribution Pr{C, = r,C¢ = r,}. Therefore, in principle we can recover the probabilities
Pr{Cy = r1,C¢ = r2} from Hp, ¢(u,v) by the Cauchy’s formula, as we did in Lemma 3. The
difficulty is that the generating function H,, ¢(u,v) is expressed in terms of matrix A(u,v),
so we need some tools from the linear algebra to apply the saddle point method. Before,
however, we plunge into this, we should treat the uniform case (i.e., py = 1/V) separately

since , as the next lemma shows, it possesses very special property.

Lemma 7. In the uniform case, for all i # j, the random variables C; and C; are mutually

independent.

Proof: It suffices to prove that C, is independent of Cj44 forall 1 < ¢ < m. In the uniform
case the a;;(u,v)’s are all identical and equal to §(1+ (v — 1+ v— 1)) except when i = j

10



where ai(4,v) = {(1 + $(uv — 1)). Note that y(v) coincides with an eigenvector of the
matrix A and A(w,v)y(v) = (1+ y(v — 1))(1 + p(v = 1))y(v) and therefore Hp 2(u,v) =
(1+ $(u = 1))™(1 + (v — 1))™. This last formula shows that C; and C; are mutually
independent. Applying Theorem 6 one concludes that also Hp144(u,v) = (1 + $(u -
1))™(1 + (v — 1))™. Therefore Cy and Cy4, are also mutually independent. B

This lemma completes the proof of the lower bound in the uniform case by the second
moment method. Therefore, in the rest of this section we concentrate on the non-uniform
case.

Let A(u,v) be the principal eigenvalue of the matrix A(u,v). Let &(u,v) (resp. II(u,v))
be the corresponding right (resp. left) eigenvector of A(u,v)such that (II(u,v),£(u,v)) = 1,
that is, A(u,v)é(u,v) = Au,v)é(u,v) and AT(u,v)1I(u,v) = Mu,v)(x,v) (cf. [19, 18].
We note the following three cases.

1. Whenu=v=1,X(1,1)=1, £1,1) = y(1) and II(1,1) = x(1), the other eigenvalues

are null.

2. When v = 1, A(y,1) = 14 P(u—1), &u,1) = £(1,1) = y(1) and M(u,1) =
1/A(u, 1) x(u), the other eigenvalues are null.

3. When u = 1, A(1,v) = A(v,1) = 14 P(v - 1), é(1,v) = y(v) and II(1,v) =
1/A(1,v)x(1), the other eigenvalues are null.

It follows that the other eigenvalues are O((u — 1)(v — 1)), and therefore we immediately

prove the following fact.

Corollary 8. We have Hy,2(u,v)/A™ " (u,v) = (x(u),&(u,v)) (II(u,v),y(v)) + O((u -
)™(v - 1)™).

Proof: This is a classical property of the principal eigenvalue and follows from the Perron-

Frobenius theorem (the interested reader is referred to (3, 18, 19] for details). m

As a consequence of Corollary 8 we have the following important expansion of the
generating function Hp, ¢(u,v).
Corollary 9. Let F,,(u,v) = Z:;;" Hy i(u,v). We have

Fr(u,v) _ a(u,v) — a™(u,v)
(Mu,v))m 1 - a(u,v)

with a(u,v) = (x(w), (v, 0)) (T(x, v), ¥(v))/A(u, )

+0((u-1)(v-1)). (14)

11



Proof: From Corollary 8 and Theorem 6 we have the estimate
Ho144(u,) = (Mx, v))"a(, v))? + O((u - 1)"“(1; _ 1)h+1)] .

Therefore

———F'"("’vzn- = mzil(a(u,v))" + i O((u - )"} (v - 1",
(Mu,v)) =1 h=2

which completes the proof by summing the geometric series in the last expression. ®

The following two lemmas present more detailed Taylor’s expansions of the principal
eigenvalue of A(u,v) defined in Corollary 9. These expansions are next used (cf. Theorem

12) in the saddle point method to obtain a sharp estimate of F,; »(r) around r = mP +

v2mP(1 — P)logn necessary to prove our lower bound (see Lemma 4 for details).

Lemma 10. The Taylor ezpansion of A(u,v) to the second order is 1 + (u — 1)P + (v —
DP+(u-1)(v=1)2T - P?), with T = p3 + --- + p}.

Proof. We know that AMu,v) =14+ (v - 1)P+ (v —-1)P + O((v — 1)(v — 1)). We adopt
the following notation. If f(u,v) is a function of two variables u and v, then we denote
by fu(n,v) (resp. fy(u,v)) the partial derivative of f(u,v) with respect to u (resp. to v).
We have A = (1T, A€), where the variables (u,v) have been dropped in the last expression
for some simplifications of the presentation. Thus, A, = (II,, A&) + (I, A €) + (II, A&,).
Since Af = A, ATII = Al and the fact that (II,, &) 4+ (I,£,) = O (because we assume
(I, &) = 1), we get A, = (I, A,€). Substituting u = 1 in the last expression we obtain the
identity M1,v) = (P +2T(v - 1)+ T!=7 p¥(v — 1)%)/(1 + P(v — 1)), and after some simple
algebra this completes the proof. m

Lemma 11. The Taylor ezpansion of a(u,v) defined in Corollary 9 to the second order is
1-(u-1)(v-1)T - P?.

Proof. Easy computations give a(u,1) = a(1,v) = 1, therefore a(u,v)—1is O((u—1)(v-1)).
Differentiating twice a(u,v) and setting u = v = 1 leads to a formula beginning with
(MMyy, &) + (I1,€,,) and ending with a linear combination of scalar products involving first
partial derivatives of II, £, x and y. These first derivatives are already known since I and
& are completely determined when u = 1 or v = 1. For (Il4y, &) + (I, &y ), we differentiate
twice (II,£€) = 1 in order to get (I, €) + (I, &uo) + (I, &) + (I, €4) = 0,which leads to

a complete determination of a,,(1,1). ®

Lemma 10 and 11 are crucial to apply the Cauchy’s formula in order to estimate F,, ,(r)

for r > mP and complete the proof of our main result (Theorem 2), by the virtue of Lemma

12



4. To do that we can use double Cauchy formula (sce also Section 4 for more details

regarding this method)

1 dudv
Fon(r)= W‘ffpm(“’?)ur(u -Dor(v-1)"

This kind of integration is rather unusual. Since Pr{C; > r,C; > r} < Pr{C; + C, > 2r}

we can estimate Fy, .(7) = 3%, Pr{C1 + C; > 2r} which leads to a single integration
Fo(r) = pr (1, 4) = du
MmN T 9 ST (- 1)
So finally we can prove the following asymptotics for the tail of Fi, (7).

Theorem 12. When m and T both tend to infinity with r = O(logm), then

. m(P — 3P% + 2T)%/? T
FrnmP 4 vimm) ~ = o 7oy Pl pgpryar) (15)
Proof. We parallel the proof of Lemma 4. By Cauchy and (12) we have
. 1 M (u,u)(a(u,w) — a™(u,u)) du
Fan(m) 2iw f u?(1 — a(u,u)) u—1" (16)

the integration path encircling the unit disk. Let 1 + kA = u, then using Lemmas 10 and 11

we can expand as follows
log(A™(u,u)/u?") = mlog(l + 2hP + h?(2T — P?) + O(h®)) — 2rlog(1l + h)
= ~2(r — mP)h + (r + 2mT — 3mP?)h? + O((m + r)h3)
= ___Jﬂ;%’ﬂ_m + (r = 3mP? + 2mT)(h — ho)? + O((m + r)h3) ,

with kg = (r —=mP)/(r —3mP2+2mT). Let 1 = mP+/mz. Substituting h = ho +it/\/m,
and using 1 — a(1 + h,1+ h) = h%(T — P?) + O(h®) we get the first estimate

1 A™(u, u)a(u, u)du
Qz—nf u?(u - 1)(1 - a(u,u))

z? m exp{—(P — 3P? 4 2T)t?]
= Pl B gpTy oT (T~ Py / (rafrmay F i U1+ 00/Vm).
Since = = O(y/logn) — oo, we obtain
L}{ A™(u, u)a(u, u)du m(P — 3P? 4 2T)5/2 [ z? 17
2ir J u?(u-1)(1 - a(u,u)) 2(T - P?)\/ma3 PLmp T 3pr 1 2T] ' (17)

13



It remains to evaluate the second term in (16), that is,

Lf‘ A™(u, u)a™(u, u)du (18
2ir S u?(u - 1)1 - a(u,u)) )
Using the estimates from Lemmas 10 and 11 we find
log(A™ (u, u)a™(u, u)/u*") = —(r — mP)h + (r + mT — 2mP*)h? 4 O((m + r)h3) ,

hence (18) becomes

1 A™(u, u)a™(u, u)du m(P — 2P? 4+ T)%/2 z?

e I (1)
it J u?(u - 1)(1 ~ a(u,u)) 2z P-2P?4T

Since P —2P?2 + T < P — 3P? + 2T in the non-uniform case, the exponent in (19) is larger
than in (17), so the latter is the leading term in the asymptotic expansion of Fy; /(7). This

concludes the proof.

The rest is easy. For an ultimate proof of Theorem 2 we need only to put together all the
estimates we have obtained so far. In particular, Lemma 4 requires to verify the following

(cf. (13))
lim 1:—1/,1(6) =0 (20)

n—00

where v,(¢) is defined as

_ Fua(mP+ Jaw(1-¢)
vn(€) = m(Pr{C1 > mP + /man(1 —¢)})?

Our previous estimates provided in Lemma 3 and Theorem 12 suggest the following bound

(P — 3P? + 2T)5/%(P - P?) 2an(T — P?)
1-e)(T - P?Y) \/—e"p[ P—P2)(P TZETialk

Vn(s) <

with a, ~ 2logn(P — P?). After some additional algebra one shows

(P - 3P% 4+ 2T)3/%(P - P2)1/2 T a(1-e) g Izf
< .
vn(€) < T - P)(1-2) V 2Togn " T (21)

Therefore, for m = O(n®) (20) and (21) imply

-Tgl/n(s) = O(l/logn)nm_lﬂ(l ~&)psptyar

and this tends to zero provided @ < 1—4(T — P?)/(P — 3P? 4 2T) as required in Theorem
2(ii). Part (iii) of Theorem 2 follows from the above too. This completes the proof of our

main result.
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Table 1: Simulation and theoretical results for uniform alphabet.

V || n=1000, m=300 || n=2000, m=1000 || n=4000, m=2000 || n=8000, m=4000

Exact J Estimate || Exact | Estimate || Exact | Estimate || Exact | Estimate
10 49 49.3 132 136.9 243 254.6 477 480.4
20 27 29.0 73 76.8 141 139.7 245 258.4
30 25 21.5 57 55.1 100 98.7 191 181.1
40 17 171 42 44.2 78 784 139 141.8
50 15 15.0 35 37.2 64 65.5 118 117.5
55 13 13.2 32 34.4 58 60.3 108 107.8

4, FURTHER REMARKS

Our analysis assumes a large n, however we were pleasantly surprised, when experiment-
ing with the method, that the algorithm gives a good estimate of M, , even for moderate
values of n. This is illustrated in the table below which compares our theoretical estimate
from Theorem 2 with results obtained in a computer simulation for uniform alphabet. We
note that for n in the hundreds, the estimate is typically within 5% of the true value. Very
large values of n do arise in many of the application areas of this problem, notably, in text
processing, speech recognition, machine vision and, last but not least, molecular sequence
comparison. Furthermore, our results indicate that the estimate improves with higher val-
ues of V which is a particularly desired property (cf. [1}). Finally, the reader may conclude
from the table that b is very unlikely to "almost occur” in a in the case of uniform alphabet,
and this is in fact apparent if we set p; = 1/V in Theorem 2. However, in the nonuniform
case one can draw no such conclusion (in fact if the alphabet is English and p, = 1if o = 2
and zero otherwise, then b occurs everywhere in a !).

The answer returned by the algorithm can be interpreted as a rough measure of the
extent to which the pattern occurs in the text, but it does not tell us where it occurs. To
find out where, one would have to use the O(n/mpolylog(m)) time (worst-case) algorithm
of Abrahamson [1]. There are also practical situations where one only needs to know whether
the pattern occurs, not where it occurs. Finally, when a pattern matching is performed on
a huge database, then our algorithm can quickly rule out places in the database where the
pattern is unlikely to occur.

Regarding future work, one may investigate when Theorem 2 can be extended to the
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case where « is in the region of the interval [0, 1] not covered by the current statement of
Theorem 2 (cf. [5]). In particular, one might be interested in finding the matching upper
bound in Theorem 2(iii). Another problem worth investigating is how much our result
relies on the assumption m = O(n®). In particular, one should consider m = f(n) for
some function f(-) and see how this modifies our result (see [5] and [4] for examples of such

functions f).
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