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Abstract

The present paper deals with the Davidson method which computes a few of the
extreme cigenvalues of a symmetric matrix and their corresponding eigenvectors. A
general convergence result for methods based on projection technics is given and
can be applicd to the Lanczos method as well. The efficiency of the preconditioner
involved in the method is discusscd. Finally, by means of numerical experiments,
the Lanczos and Davidson methods are compared and a procedure for a dynamic
restarting process is described.

Keywords : method of Davidson, method of Lanczos, Krylov space, precondi-
tioner.

Résumé

Cet article étudic la méthode de IDavidson qui permet de calculer un petit nombre
de valeurs propres extrémales d’unce matrice symétrique ainsi que leurs vecteurs
propres correspondants. La convergence qui est prouvée dans un cadre général de
méthodes de sous - espaces s’applique aussi a la méthode de Lanczos. La qualité
du préconditionnement dc la méthode est étudiée. Enfin, les méthodes de Lanczos
ct de Davidson sont comparées par des expériences numériques ; une procédure
dynamique de redémarrage est définic,
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1 Introduction

To compute a few of the extreme eigenvalues and the corresponding eigenvectors of a large,
sparse and symmetric matrix, two classes of iterative methods are usually considered.
Their common characteristic is to build a sequence of subspaces which contains in the
limit the desired eigenvectors. The subspaces of the first class are of constant dimension;
this class includes simultaneous iteration [1] and the trace minimization method [9]. In
the second class of methods, the sequence is increasing, at least piecewise since there often
exists a restarting process which limits the dimension of the subspaces to a feasible size;
the class includes the well known Lanczos method which is based on Krylov subspaces [4].
This paper deals with another method of the same class, namely the Davidson method.

Davidson published his algorithm in the quantum chemistry field (2] as an efficient
way to compute the lowest energy levels and the corresponding wave functions of the
Schrodinger operator. The original algorithm which computes the largest (or the small-
est) eigenvalue of the matrix A can be expressed by:

Choose an initial unit vector vy; V; := [v] ;
for k=1, ...do
Compute the interaction matrix Hy := V{}AVj;
Compute the largest (or the smallest) eigenpair (Ag, yx) of Hy;



Compute the corresponding Ritz vector =4 := Viyx ;
Compute the residual ry := (A ] — A)xy ;
if convergence then exit ;
Compute the new direction to be incorporated txiq1 := (Al — D)71ry ;
Orthogonalize the system [Vi;t441) into Vigr;
end for

where D stands for the diagonal of the matrix A. This algorithm looks like an algo-
rithm of the Lanczos type with a diagonal preconditioning . When the dimension of the
basis Vi becomes too large, the process restarts with the last Ritz vector as initial vector.
We consider in this paper a more general method in the sense that

e several eigenpairs are sought at the same time;

¢ several vectors are incorporated in the basis at every step, leading to a block imple-
mentation;

e a general preconditioner is considered.

The block adaptation is important with supercomputers since it allows parallelism and
efficient use of local memory.

Before analyzing the Davidson method, we formulate in Section 2 a general conver-
gence result for methods based on projection techniques; it can be applied to the Lanczos
process as well. Consequences for the Davidson method are described in Section 3. Sec-
tions 4 and 5 are devoted to a discussion on selecting the preconditioner and on the class
of matrices on which the algorithm is the method of choice. In Section 6, numerical ex-
periments illustrate the study and an improvement for the restarting process is proposed.

Notations and general assumptions

A = (aij)1<i, j<n is a symmetric matrix supposedly large and sparse; py > -+ > pn are
its eigenvalues and u,,---,u, a corresponding set of eigenvectors such that ufu; = §;
(Kronecker’s symbol) for 1 <7, j < n. The goal consists in computing the ! (I < n)
largest (or smallest) eigenpairs of A.

Throughout this paper, the symbol || . || denotes the Euclidean norm and MGS stands
for the Modified Gram Schmidt procedure. The orthogonal complement of the subspace

spanned by the vectors z,, ...,k is denoted by {z;,...,zx}* .

t . .
p(z) = '””;‘Ij’ is the Rayleigh quotient of the vector z # 0 and R(z) = maXzespan(z;, - zi) P(T)
is the maximum of the Rayleigh quotient over the space spanned by the vectors z;, ..., zk.

{Vi} is a sequence of subspaces of R™ of dimension ny > ! and V} is a matrix whose
column set is an orthonormal basis of Vx. The matrix Hy = VAV, is called the Rayleigh

or interaction matrix; it is of order n, and its [ largest eigenvalues are Ag; > -+ > Ay
with the corresponding eigenvectors yi,,- - -, yxs which constitute an orthonormal set of
vectors in R™. The corresponding Ritz vectors zi,,- -+, Zx, are defined by zx; = Viys,i
for i =1,...,l. The reals Ax,,: -+, Ax,; are called the Ritz values of A over V.



We assume that the preconditioning matrices Cy; for i = 1,-.-,1, are | uniformly
bounded symmetric matrices.

2 Proof of convergence
‘Theorem 2.1 Under the assumption:
ki € Vg1, for i=1,---,1 and k€N

the sequences {Ari},.n are non decreasing and convergent.
Moreover, if

1. for any i = 1,---,1 the set of matrices {Ci;}reN ts uniformly positive definite on
Vi (i.e. there exists a real a such that for anyi=1,---,l and k € N and for any
- vector v € Vir: v!'Criv > allv|?)
2. foranyi=1,---,l and k € N, the vector (I — Vi V{)Ci,i(A — Al )xr; belongs to
Vi1

then the limit \; = limg_oo Ak is an eigenvalue of A and the accumulation points of
{zk;}reN are corresponding eigenvectors.

Proof The first statement is a straight application of the well known Courant-Fischer
theorem [4] which characterizes the eigenvalues of a symmetric operator. Let X ; be the
subspace Span(zk,1,Zkz2,--.,Zki). Then

. T'Ar
Ak = min 7 -
e [z |
Therefore
3 . ztAz
k41,4 = max min 7 2 Ak
XCVk+1,dlm X=i z€X ” T ”
and from
rtAz . ztAz
Aki = i

max min 7 < max min 7 =
xcvdim X=i #€X ||z || 7 xcRe,dim X=i 7€X || z ||

it becomes clear that the sequence {Ak;}xeN is non decreasing and bounded. Let ); be
its limit.

The second statement is more difficult to prove. Let ri; = (Mgl — A)zi,; and wy,; =
(I-ViVECyirk ;. Since the Ritz vectors are unit vectors and since ry; = —(I -V, Vi) Az, ,
the residuals r,; belong to Vit and are uniformly bounded by || A|| ; hence the vectors wy,;
are uniformly bounded as well. Moreover, since

t t
wi ;Azg; = 1) Criri,i (1)
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and since the matrix Ci; is assumed to be positive definite on Vi, we may ensure that
wi,i = 0 1f and only if r¢s = 0.

When wy; # 0, let us denote vy ; = II%:‘:T and Iy = [zk1,. - Thyi, Uk) Ik isanx(i+1)
matrix whose columns are orthonormal. Consequently, the matrix IIII{ corresponds to
the orthogonal projection onto a subspace of Viy;.

The matrix Hi; = I, All; , has the following pattern

/\k,l Q1
Aki Qg
k1 ... ki B

where oy j = 24 ;Avi s for j =1,...,% and Bi = v} ;Avs,.
Let pry > pr2 = ... 2> pri = Bkis1 be the eigenvalues of H; ;. Cauchy’s interlace
theorem and the optimality of the Rayleigh-Ritz procedure [4] ensure that

Ak Sk S Mgy J=1,000,0.
The Frobenius norm of the matrix Hy,; is
i i i
2
> /‘Z,j +hpin =2 ai,j +8i+Y Ak
1=1 1=1 =1

therefore
2) ai; = D (ki — Mi)(Brs + Aks) + (Brivr — Be)(rivr + B)-
ij=1 =1

Evaluating the trace of the matrix M, by E;-=1 Mj+ Br = Z;i‘l k.5, we obtain

2Y ol = ) (pks— i) (e + ki — Brier — Bi)
i=1

=1

< 4ANY (e — Awi)

ij=1
which implies
aim < 2 “ A II ;(Ak-n,j - /\k,j) for p= 1,...,i .
J=

This last bound proves that limg .. ax, = 0 for p = 1,---,i. Therefore, since from (1),
we have the relation

T iCriThi = Wi || ok
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so that limg_ o ri,,-Ck’;rk,; = 0. From the assumption of uniform positive definitness of
Ck,; over Vi, and since rx; € Vi, we may conclude that limg_. r¢; = 0 and that J; is
an eigenvalue of A.

Let z; be an accumulation point of the sequence {zx}; then || z; || = 1. From the
. definition of rg;, we obtain by continuity that A; z; — Az; = 0. a

A straightforward application of the theorem may be obtained for a well-known version
of the Lanczos method, namely the block version with restarting process as defined in (6].
From an initial block S of [ vectors which constitute an orthonormal set, the matrix Vj is
recursively built in such a way that its columns form an orthonormal basis of the Krylov
space which is spanned by the columns of S, AS, ..., AF~1S; this is done while kI < m
where m is a fixed maximum dimension. The Rayleigh matrix Hy, which is built from
Vi, is a block tridiagonal matrix. When k! is larger than m, the process restarts with a
new block S which corresponds to the Ritz vectors found with the last matrix Vj. Then,
we claim

Corollary 2.1 The block version of the Lanczos method used with restarting satisfies the
assumptions of Theorem 2.1.

Proof The Lanczos method corresponds to the situation where Cy; is the identity
matrix and where Vi is the Krylov subspace generated from the block V;. Therefore
Theorem 2.1 may be applied. O

3 Generalized Davidson’s method

3.1 Algorithm

The following algorithm computes the ! largest (or smallest) eigenpairs of the matrix A;
m is a given integer which limits the dimension of the basis.

Choose an initial orthonormal matrix W; := [v1,---,v] € R™¥
fork=1,---do

1. Compute the matrix Wy := AV},

2. Compute the Rayleigh matrix Hy := V}W,;

3. Compute the ! largest (or smallest) eigenpairs (A, Y&,i)1<i<t of Hy;

4. Compute the Ritz vectors zx; 1= Viyg;, fori=1,.--,1;

5. Compute the residuals ri; := Mg izei — Wiyk, for i =1, 1;

if convergence then exit;
6. Compute the new directions t; := Cy vy, fori =1,--+,1;



7. if dim(V;) <m
then ‘/k-f-l = MGS(‘/]" tk,l, o ,tk’[);
else Viy, := MGS(:L’k,l, RN 79 TR PERE ,t/,,-'l);
end if

end for

Steps (1) to (5) correspond to the classical Rayleigh Ritz procedure [4]. We point out
that only the last columns of W, and Hj have to be computed at iteration k. At each
iteration, the vectors ¢;; are incorporated into the previous subspace. Unlike the Lanczos
method, the Rayleigh matrix is dense.

Since a full orthogonalization is performed at every iteration, too large a dimension
for the basis implies prohibitive complexity. This is the reason for setting a maximum
size for the basis. In Section 6, a dynamic choice for the restart point is described. It is
based on an index of efficiency for the iteration.

The selection of efficient preconditioners Cy; is studied in Section 4. As remarked in
Corollary 2.1, the method becomes equivalent to the Lanczos method when the matrices
Ck,i are proportional to the identity matrix I. However, since in Davidson’s method it
is necessary to compute the Ritz vectors explicitly at every iteration, this version of the
Lanczos algorithm has a much more expensive complexity than the regular version.

In the classical Davidson method, the preconditioners are built from the diagonal D of
the matrix A: Ci; = (Ar;I — D)™, which exists when )i is not a diagonal entry of A. As
it will be seen in Section 5, this choice is efficient when D is a good approximation of the
matrix A in the sense that the matrix of eigenvectors of A is close to the identity matrix.
More general preconditioners Ci; = (Ars] — M)™? have already been studied [3]; as for
any preconditioning process, the tradeoff consists in finding a matrix M which speeds
up the convergence and keeps the complexity of the preconditioning step at a reasonable
level.

Remark
It can be proved [8] that the accumulation points H of the sequence {H}} are of the form
0, o

H =
0

0 E

where 8, > .-+ > 0, are the [ largest eigenvalues of H. Therefore, under the assumption
that none of the 6;, ¢ = 1,---,[ is an eigenvalue of the matrix E, the components of the
sought eigenvectors are zero along the second block. As pointed out by Davidson [2], this
fact can be used in practice to measure the convergence.

3.2 Convergence

We assume in this section that a diagonal preconditioner is used, i.e. Cx; = (Ari — D)™?
for i =1,.--,1 where D is the diagonal of A. We assume also that we require the largest
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eigenpair of A. The situation is analyzed in two different ways depending on the number
of eigenpairs needed. The end of the section is devoted to an example of non-convergence
when the hypotheses of Theorem 2.1 are not satisfied.

3.2.1 Classical algorithm (I =1)
Theorem 2.1 ensures the convergence of Davidson’s method when (Ax,; — D)™! is positive
‘definite. Since the sequence {1} is non decreasing it is sufficient to start with a vector

vy such that (A1, — D)7! is positive definite. This can be ensured in the following way:

o Let i, be the index of the largest diagonal entry of D. If the problem is not reducible
into two smaller problems, there exists an index j, such that a;_j, # 0.
e Let V) be the system [e;,, ¢;,] built from the corresponding canonical vectors.

Since the matrix H, = VAV, is the matrix

Qioio Qigjo )
aiOvjo ajovjo

we have Ay; > a;,i, = maXi<i<xs @ii. In conclusion, the following bounds are obtained:
1

Ay — Qioiio

ICrall <
1

t 2 wi
v'"Crav 2 afv||* with a= .
1 [l ma,xls,'Sn(/\l,l - a;;)

Hence, Theorem 2.1 can be applied.

3.2.2 Block version ({ # 1)

The technique which has been defined in the previous case can be used here to ensure
that (Ar; — D)~} is positive definite; therefore the convergence is certain for the first
eigenpair but not for the others. However, it is possible to redefine another preconditioner
Cki = diag(frity, s Mkin) bY pei; = min(|Ai; — a;;]™t, M) where M is some large
constant. With this preconditioning procedure, convergence is guaranteed for any initial
system V4.

3.2.3 Example of possible non-convergence

The following example shows the importance of the assumption of positive definitness for
the preconditioning matrices. Let us assume that we look for the two largest eigenpairs
(I = 2) of the matrix

4 0 0 0 O
0 -40 0 O
A=]10 0 1 0 1
0 0 0 -10
0 01 0 0



and that the process is initialized by V; = [vy, v,] where
t
v1=(\/§’ \/%_a 0, 010)
( 0. 0 /3(5—\/5) v/3v5-5 3(5-2v/5) )t_
) ’ 20 L) 2 ’ 10

A straightforward computation shows that (Ag1,zk1) = (3,v1) and (Ag2, Zk2) = (%,vg)
for all k, although neither 3 nor % are eigenvalues of A. Of course, it is clear that the
assumption of positive definitness of the preconditioning matrices is violated.

I

U2

Remark

Even when the sequence {r} of the residuals converges to 0, it is not clear that the
limit A; = limg_,oc Ak is the ¢-th eigenvalue of A, since we may create situations where
the subspaces V. remain orthogonal to a required eigenvector. However, it can be proved
[8] that this situation would be unstable and hence cannot happen in finite arithmetic; it
may only increase the number of iterations significantly.

4 Quality of the preconditioner

In this section, we restrict the study to the case | = 1. We assume also that the precon-
ditioning matrix satisfies a Lipschitz condition with respect to a parameter A at all the
eigenvalues of A and that Ci; = C(A;). This is the situation when C(A) = (A — M)™!
with M symmetric with eigenvalues smaller than the largest eigenvalue of A.

Since | = 1 we replace the index (k,1) by k in the algorithm. To simplify the notations,
we denote by A, A’ and Amin the first, second and last eigenvalue of A respectively. Let
z be the eigenvector corresponding to A (A > Ay > A is assumed). Let 6, be the angle
L(z,zr). We may write z; = axz + SBiyx where ax = cos(bk), Br = sin(8i) and where yi
is a unit vector orthogonal to z. The first lemma relates the convergence of the sequences

{Ae}, {84} and {fim]}.

Lemma 4.1 The following relations are true

A=Ak ) A=)
—_— < < 2
frs <ls@l <35 2
2 ||r«ll : firell
—_— < [sin(f < —— 3
\/S(A“Amm) _[Sl (k)‘ _(’\k_A) ()
Proof Since Az = arAz + BiAyx with z1 Ay,, then A\ = zt Az, = i) + Bip(yx)
with Amin < p(yi) < X' ; therefore the first part of the lemma is proved.
In the same way the residual may be expressed by ry = ax(A — Ax)z + Be(Aed — A)ys.
Then |Irill> = a(A — M) + BEI(AeI — A)yell®. Since (A = X) < (Al = A)yill <
(M — Amin) £ (A = Amin), we have

BRI = A)yal|? < lirell® < of(A = X)* + BE(A = Amin)”
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and from (2) and
1+ cos? 8, sin? 6, < g-,

the second assertion of the lemma is obtained. O

The second lemma provides an estimate for the effect of the preconditioning process
within one iteration. We may define a unit vector zi such that the system (z,yx, z¢) is
orthonormal and such that ¢, = v,z + bxyx + ox2i for some scalars 4x, 6; and oy.

Lemma 4.2 The preconditioning process implies that

te = BC(AN)(M — A)yx + up where  |ui]| = O(BE) (4)
and
0<A— Q1 < K1 (A=X) (5)
lSiIl 0k+1| S 1(2 ISiIl 0k| (6)
where
ok ? A— A
K, = S n (7)
(o — B)" 4 (Ber)” A=A
%k _ .
K, = = - 4 ) A’;,"‘ (8)
o = 252"+ (2g)

Proof Since ty = C(Ag)(Al — A)zi, we may write
te = k(A — A)C( M)z + BC (A )(Ard — Ay

and therefore the Lipschitz condition on C()) implies (4).

By definition, Ax41 = p(zk41) = R(v1,...,Vk, k). Let us consider the vector sx =
Tk — E‘tk which belongs to the subspace spanned by Vi41. From the optimality of the
Raylelgh Ritz procedure, we have the following bounds.

p(Tk41) 2 R(zi,tx) 2 p(sk)- (9)
Since
sk = (o — ﬂ;:k)z - ﬂ"s:”‘ 2% (10)
we obtain from (9)
2 oer2
o) > L) ) s
(o — B520)" 4 (&)
oxr2
> A - (E%g‘) 2(/\ /\min)
(oo — B0)" 4 (S%)



which implies
A= Mg < BEKG(A = X)),
Since p(zx) = a} A + B} yiAyx, we also have
pz) S A = BE (A = X).

The relation (5) with (7) is obtained from the last two bounds.
From (2) and (5) we obtain

A= A1
A=X

A— A

ey

A— ’\min .
_AT Sln2 01:

sin® 0y <

IN

IN

K,

which proves the relation (6) with (8).

The best situation, which cannot be obtained in practice, would be to find a C(A)
which admits z as an eigenvector and therefore {z}! as an invariant subspace. If we

assume
I CYAM = Ay — Il = €<
then
Itk — Bryill = O(B(Bx + ¢€))
which implies

Y = O(Br(Br + ¢))
ok O(Bi(Br + €))
6k = PBx+ O(Bx(Bk +€))

and therefore

A OBk + ¢)
%
-;—’5 = OBk +¢).
%

From (7) and (8), we obtain the estimate

ko= (2) (550) a+omus+a)

Tk

K2= 6_];

(5252 a+obs+ .
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Note that if € = 0, convergence is obtained after one step, since in this case ox = 0 and
thus z belongs to the subspace spanned by (z, k).

The usual way to define the preconditioning matrix, is to consider a matrix M which
approximates A and hence the matrix C(A) = (AI — M)~!. Let us consider two extreme
situations: M = I or M = A. In the former case, the method becomes equivalent to the
Lanczos method as has been pointed out, while in the latter case, the method fails since
tr = zx and w; = 0. Therefore, M has to be an approximation of A but with its largest
eigenvalue smaller than A to ensure the positive definitness of the matrix (A — M)~1.
With such a matrix we have

(MI = M) Y(\I — A) =1+ (Md — M) Y(M - A).
We expect to have an efficient preconditioner when the matrix

(I — zz')(Md — M)™ (M — A)

{=}+

has a small norm.

In order to have an easy-to-invert matrix, the appropriate choice for M may be the
main diagonal of A or its tridiagonal part when A is strongly diagonally dominant in the
sense that its eigenvectors are close to the vectors of the canonical basis.

5 Diagonal preconditioning

We turn back to the general situation where more than one eigenvector is sought (I > 1)
but for a strongly diagonally dominant matrix. We consider the eigendecomposition of
the matrix A = QAQ* with @ orthogonal and A diagonal, and the diagonal D of A. We
assume that

ayj) = - 2 ay > G4l = = G

Definition 5.1 The gap between A and its diagonalization is the quantity
e=min(|Q—1I||; QQ=1 and Q'AQ=A4).
The matriz A is strongly diagonally dominant when € < 1.

Lemma 5.1

A = Dj| = O(€?) (11)

Proof For any : = 1,.--,l we consider the eigenvector z; = e; + 2; where ¢; stands
for the ¢-th canonical vector ; then ||zi|| = O(¢). Since z; is a unit vector, we obtain that
z{z; = O(€®) and therefore y; — a;; = O(€?). O

Lemma 5.2 If we assume that, for a given iteration k,

11



® A\ii > Gipripr, fori=1,--.,1,

® Tk = Z;:l aﬁ'}e,- + 25 fori=1,---,1,
with ||zxill = O(e) and zi; € {xk1,- -, i}t

then, fori =1,.--,1, the matriz Ci; = (A ;]—D)™! is positive definite on {zrq, -, s} L.

Proof The vectors {zx;} and {z;} are the columns of two matrices X; and Z
respectively. The assumptions of the lemma may be expressed by

Xk=<B;'°)+Zk and z,:<1(3)")=0

where By = (a{'z) € R'*! and || Z,|| = O(¢). From the orthonormality of X}, we get

BiB,=1- 2,7 .
Since this last matrix is positive definite when ¢ is small enough, the matrix

U = B(I - Z:2,)"'/*

is orthogonal. Therefore

By =U+0(é) . (12)

Let us consider a unit vector s = (71,---,7,)! in the orthogonal complement of the

-subspace spanned by the vectors {zx;} ; hence Xjs = 0. By denoting s; = (1, --,71)"
we have

s1 = —B;'Z}s.

From (12), we obtain ||s;|] = O(¢). Therefore

syl = D)s = Ay — Z t2a; + O(€?)
i=l41
> At — Gipri41 + O(€%)
which implies, for a sufficiently small € and for ¢ = 1,-.-,1 that s!(A\¢;] — D)s >0. O

Theorem 2.1 implies the convergence of the method when the assumptions of Lemma
5.2 are satisfied.
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6 Experimental results and implementation

6.1 Efficiency of the preconditioner

: The usual experience is to consider that the better the preconditioner approximates the
matrix, the faster is the convergence. The diagonal preconditioner is the easiest to use,
but often a larger part of the matrix, as for example the tridiagonal part, brings a better
efficiency. The following example illustrates an extreme case of the benefit which may be
obtain from a good preconditioner.

Example 6.1 A is the matriz of order n = 30 such that:

i if 1=
Lo )05 if j=i+1 or j=i-1
W=19 05 if (i,5) € {(1,n),(n,1)}

0 otherwise

Table 1 displays the sequence of the residuals corresponding to the largest eigenvalue for
Lanczos method and for Davidson with diagonal and tridiagonal preconditioning.

iter Lanczos Davidson Davidson
Diagonal Tridiagonal

1 || 0.5000000e+00 || 0.5000000e+00 {l 0.5000000e+00
2 || 0.2587566e+400 || 0.1903375e+00 {f 0.2066855e+00
3 || 0.2398753e+00 || 0.4548047e-01 || 0.8574510e-04
4 0.6751775e-01 [ 0.7299598e-02 || 0.9895190e-10
5 0.4269169¢-01 {f 0.8790536e-03 | 0.3950563e-13
6 0.1620573e-01 || 0.8497183e-04 :
7 0.4745619e-02 || 0.6870503e-05
8 0.2306424e-02 || 0.4776255¢-06

Table 1: Sequence of residuals depending on the preconditioner (Example 6.1).

Unfortunately, this rule of thumb may fail when the evaluation of the quality of a
preconditioner is limited to only the consideration of the norm of its difference with the
original matrix. It is well known that, when two matrices are close their spectrum are
also close but not necessarily their eigenvectors. We illustrate such a situation by the

following example.

Example 6.2 A is the matriz of order n = 30 such that:

4 if

i=j
@ -1 if j=t+1l or j=1-1
W -1 if j=t+2 o0r 3=t1-2

0 otherwise
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The diagonal preconditioner is not considered since, as already stated, a constant diagonal
is equivalent to no preconditioning and therefore Lanczos and Davidson’s method become
equivalent. Table 2 displays the sequence of the residuals corresponding to the largest
eigenvalue for Lanczos method and for Davidson with tridiagonal preconditioning. The
poor performance of the preconditioner may be ezplained by the near orthogonality of the
~ eigenvectors corresponding to the largest eigenvalue of A and the largest eigenvalue of its
tridiagonal part (angle =~ 0.4995~ ).

iter Lanczos Davidson (Tridiagonal)
1 || 0.5416026e+00 0.5416026e+00
2 1 0.1499668e+01 0.1443112e+01
3 | 0.1069298e+01 0.8727821e+00
4 | 0.7652074e+00 0.3362850e+-00
5 | 0.5635817e+00 0.3130116e+00
6 || 0.4348702e+00 0.2746764e+00
7 || 0.3389445e+00 0.2557626e+00
8 | 0.2351623e+00 0.2576515e+00
9 0.9712444e-01 0.3789814e+00
10 || 0.8007923e-01 0.2349359e+00
11 }| 0.1171786e+00 0.2229828e+00
12 || 0.7952803e-01 0.2824065e+00
13 }| 0.1069201e+00 0.8516665e-01
14 || 0.3614983e-01 0.1681754e-01
15 || 0.1843160e-08 0.3355165e-02

Table 2: Example of a non-efficient preconditioner (Example 6.2).

Example 6.3 In the next ezample, Figure 1, we compare the Davidson method using
diagonal preconditioning, with the Lanczos method. The matriz dealt with is of order
1000 and is generated randomly by setting its density of nonzero elements at 0.01. The
nonzero off-diagonal entries are in the range [—1,+1]; the full diagonal entries are in
range [0,diagscal], where diagscal is a diagonal scaling factor to be varied. The five
smallest eigenpairs are sought. Experiments were run on a CRAY X-MP. Note that the
two methods have opposite behaviour with respect to diagonal dominance. '
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Figure 1: Davidson and Lanczos runtime comparison (Example 6.3).

6.2 Effect of the maximum size for the basis on the conver-
gence

The easiest implementation for the restarting process consists in defining a fixed maximum
size for the basis. The selection of an efficient value for m is difficult : too small a value
increases the number of steps needed for convergence whereas too large a value increases
complexity and causes numerical problem also.

The next example illustrates that the larger m is, the lower is the number of steps
necessary to reach convergence.

"Example 6.4 A is the matriz of order n = 5000 such that:

if i=j random in [-10,+10]
;=9 i £ j with probability «a : random in [—1, +1]
nryd with probability (1-a) : 0
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where a = 2 x 1073, There is an average of 11 nonzero entries per row. The eight largest
eigenvalues which are sought lie in the range [10.89,11.57]. Convergence is obtained when

" the mazimum of the L, norm of the residuals is smaller than 5. 1071°, Ezrperiments were
run on an Alliant FX/80.

y = - log (residual)
10 v

0 100 200 300 400 500 600

Number of iterations

Figure 2: Influence of m on the convergence (Example 6.4).

However, the value of m needs to be limited for three reasons :

1. the memory requirement is roughly proportional to nm and this introduces a limit
on m for large matrices;

2. the orthogonality of Vi is poorly maintained when the number of vectors in Vj is
high (a loss of orthogonality plagues the convergence) ;

3. the complexity of the computation which is involved in one iteration increases with
the number of vectors in V; ; therefore it may become too high compared to the
benefit obtained from the decrease of the residual norms.

Actually, to be efficient, it is necessary to decide dynamically when to restart the
process. The first reason implies a maximum for the size of the basis, but it can be more
useful to restart before that limit. The second reason concerns a loss of orthogonality
which is detected by an increasing sequence of the norms of the residuals ; that may
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signal a necessary restarting. Let us now consider the detail of the computation involved
in one iteration in order to define some index of efficiency which should indicate when it
_is worthwhile to restart.

| The k-th step since the last restart involves ! multiplications by A and ! applica-
tions of the preconditioning process which are of constant complexity. It involves also :

for the computation of Hj . ki*n flops,
for the diagonalization of H : O(K*PB) flops,
for the computation of the Ritz vectors : kl*n flops,
for the computation of the residuals . ki*n flops,
for the orthogonalization process : 2kl’n  flops.

The diagonalization may be estlmated as involving approximately 2k31® flops . Let
us denote by C(k) the complexity involved at each iteration and by 7, = ||Rk||/|| Rk-1l|
the local rate of convergence, where Ry stands for the matrix [ry1,...,7%;]. The index of
efficiency may be defined as

1
& = —.
*T G
By incorporating within the code a procedure which checks the variation of £, the process
can be restarted as soon as the index decreases significantly.

Example 6.5 The matriz under consideration is the same as in Ezample 6.4. In Table 3,
the run with a dynamic restarting procedure is compared to the runs with a static restarting
procedure for siz values of the mazimum block size (20, 40, 60, 80, 100, 120). The eight
largest eigenvalues of A and their corresponding eigenvectors were sought.

Running times(s) with fixed
with dynamic restarting

restarting m | Times(s)

20 | 1015.94

40 549.09

277.64 60 334.07

80 345.13

100 277.83

120 2817.70

Table 3: Comparing static or dynamic restarting procedure (Example 6.4).

The efficiency of the dynamic restarting process is clearly seen in that example, since
it corresponds to obtaining the optimum size of the basis automatically.
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7 Conclusion

The Davidson method can be regarded as a preconditioned version of the Lanczos method.
It appears to be the preferred method for some special classes of matrices, especially those
where the matrix of eigenvectors is close to the identity . Although when used with a
~ poor preconditioner, it converges slowly, the Davidson method may overcome the Lanczos
i method tremendously.
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