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abstract

In recent years, many researchers have investigated the use of Markov Random Fields
(MRF)for early vision. This type of modelization can be applied to several problems such
as edge detection, image restoration, stereo vision, long-range motion and so on.

In this paper. we present a new model using line-processes in 4 directions in order to
have a better detection of diagonal lines and curves. A deterministic relaxation algorithm
using Mean Field Annealing (MFA) is derived which gives the mean values of the intensity
fields and the 4 direction line-processes. Finally, a winner-take-all scheme is proposed to
select the edges. Furthermore, we show how we propagate the lines at low temperatures
including an additional constraint in the cost (or energy) function. Then, we present sim-
ulation results obtained on real images with a connection machine CM2 using an optimal
step descent technique to minimize the cost. We compare these results to those obtained
with an algorithm previously proposed and which only deals with horizontal and vertical
line-processes.

résumé

Derniérement. de nombreux chercheurs ont utilisé des champs de Markov en vision
bas-niveau. Ce tyvpe de modélisation peut étre appliqué a divers problémes tels que la
détection de contours. la restauration d’image, la vision stéréoscopique, le mouveinent
etc...

Dans ce papier, nous présentons un nouveau modéle qui utilise des processus de ligne
dans 4 directions afin d’obtenir une meilleure détection des diagonales et des courbes.
Un algorithme déterministe de relaxation faisant appel au recuit par champs moyens est
proposé. Il donne la valeur moyenne du champ intensité et des processus de ligne dans les
4 directions. Enfin, un algorithme de type “winner-take-all” est proposé pour détecter les
contours. De plus, nous montrons comment effectuer une propagation des lignes a basse
température grace a I’addition d’une contrainte dans la fonction cotit (ou énergie). Puis,
nous présentons des résultats de simulation obtenus a partir d'images réelles sur une ma-
chine a connections CM2 avec un algorithme de descente optimale pour minimiser le coit.
Nous comparons ces résultats a ceux obtenus par un algorithme proposé précédemment et
qui ne fait appel qu’a des processus de ligne horizontaux et verticaux.
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1 Introduction :

In early vision, Markov Random Field (MRF) modelization [15] and regularization
theory [24] has received a great deal of attention in the last few years (9],{17],(21],[28].
Usually-two fields are coupled to represent the image : one is dedicated to the intensity
values, the other one is used to model the discontinuities through the line-processes. This
type of modelization, originally introduced in vision by Geman and Geman [11], has been
widely used for edge detection [25],{26],[27],{36],[37], image restoration [10],{11],[14], stere-
ovision [33], surface reconstruction [3],{4].[7],[8], long range motion {32] and so on.

For all these early vision processes, the problem is posed as one of minimizing a cost
function which is derived from the negative logarithm of an appropriate posterior proba-
blity density function, which can be tought as the length of encoding. The cost function ob-
tained is non-convex due to the line-processes and several relaxation techniques have heen
proposed to reach the global minimum. The first group of methods deals with stochastic
relaxation and is based on simulated annealing [11],[14],{16],{30]. These algorithns con-
verge asymptotically towards the global minimum but require a great deal of computation.
The second group of methods is related to deterministic relaxation. These techniques are
suboptimal but require less computational time than the previous ones. This is why so
many deterministic relaxation algorithms have been recently investigated (Graduated Non
Convexity (GNC) [3].[4].[25].[27]. Iterated Conditional Mode (ICM) (1],{14], Mean Field
Annealing (MFA) [6].[8].[20].[33].[34].[36]. [37])

In this paper, we present a model based on MRF using line-processes in 4 directions in
order to have a better detection of diagonal lines and curves. A deterministic relaxation
algorithm using MFA is derived which gives the mean values of the intensity fields and
the 4 direction line-processes. Finally, a winner-take-all scheme is proposed to select the
edges. Furthermore, we show Lhow we propagate the lines at low temperatures including
an additional constraint in the energy function.

The plan of this paper is as follows : in Section 2, we review the two line-process (hor-
izontal and vertical line-process) model and the use of the mean field techniques including
the winner-take-all scheme. The case of an anisotropic model is also considered [36].[37].
Section 3 is dedicated to the new model with 4 direction line-processes and gives a set
of iterative equations to get the mean values of the fields. In Section 4, we propose an
extension of the model to propagate lines. In Section 5, we present the simulation results
obtained with a connection machine CM2 on real images using an optimal step descent
method to minimize the cost function. Finally, we compare these results to those obtained
with the previous model and conclude.
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2 Two line-process model and mean field techniques:

2.1 Previous model with horizontal and vertical line-processes :

The weak membrane model can be derived from Bayes theory considering the model
for the noise to be Gaussian and a prior distribution for the image to be a piecewise smooth
function. In two dimension. it is represented by the following cost function (or energy)

[ah(11] :

E(y,h,v) = Z[(yx,.z DA 1= i)+ ALAL = v ) + (ki )] (1)

where (d; ;) are the observed data, o is a smoothing parameter, v is a penalty param-
eter to create an edge, h; ; is the horizontal line-process which connects the site(i.j} to the
site(i,j-1) and v; ; the vertical one which connects the site(i,j) to the site(i-1,j) (see Fig.
1), and Aﬁj and AY; are the gradient in each direction given by :

Aﬁj =Yi; - Yio1y (2)
AV =Yg = V-1 (3)

The first term in the energy enforces closeness to the data, the second one corresponds
to the regularization term which results in a smoothing, the third one takes into account
the price to be paid to create an edge.

Through Hammersley-Clifford theorem, this energy function is related to the proba-
bility of a given solution for the fields by the Gibbs distribution [22}:

exp -BE(y.])

P(y,l): Z

()

which means that every state of the system has a finite probability to occur (the more
likely states being those with the lowest energy). In this case the fields y and ! are coupled
Markov Random Fields. As the temperature goes to zero (i.e. [ tends to infinity). the
solution converges to the most probable one.
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®e—o0—6o e intensity field
| | | — horizontal and vertical line-processes
Figure 1: MRF model with horizontal and vertical line-processes

2.2 Mean Field approximation :

Using results from statistical mechanics [22],(23], it can be shown [7],(8] that it is pos-
sible, under some conditions. to compute a good approximate solution from the partition
function Z defined by :

N
—

Z = > exp —BE(y, ) (;

all con figurations

using Mean Field (MF) approximation. This approximation consists of replacing the
stochastic interaction among the fields at different locations by the interaction of the field
at each site with the mean field values at different locations. Once the partition function
Z is known, it is easy to derive a set of deterministic equations for the mean field values j
and [ of the intensity and the line-process [7],[8]. These values are the minimum variance
estimators for the fields and converge to a minimum at zero temperature [6],[32].

MF approximation has also been widely used in other fields such as neural networks for
instance because it gives a good approximation of the solution and reaches an equilibrium
state at a given temperature much faster than simulated annealing [2].[5].[12].

2.3 Mean Field and the two line-processes :

Using MF approximation, the following set of deterministic equations is derived (see {7]
and [8] for more details) :
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9ij = dij-aAli(1-9;)+aAl; (1 - 8ij41) (6)
- el (1 - hij) + @Al (1 - hisyy)

’—l,"j = ag(aA,}sz -7) (7)
vy = ogladl?—19) (8)
Al =g, - i 9

[ 3/:.] - yt—l,] ( )
ﬁf:, =ij = iy (10)

where o is the sigmoid function :

1
1 4+ exp -fu

ap(u) = (11)
In order to enforce the smoothness of the discontinuity field (i.e. the line-process),

an additional constraint can be incorporated in the model by adding a new term in the
energy function :

+ hij+1

i1t Ui+1.j]
2

E™%(y,h.v) = E(y.hv) - e 3 [hiy it + v

ij

(12)

so that the presence of a discontinuity at a site makes more likely the presence of a
discontinuity at a neighboring site (see [8] for more details).

Another possibility is to use an anisotropic MRF [36],{37] instead of the isotropic model
presented above. This model is better for image restoration eventhough it involves more
computation to estimate the MRF parameters (see [36] for more details). But when the
goal is only edge detection. the isotropic model is sufficient.

2.4 Winner-take-all :

The winner-take-all scheme can be defined as follows : given a set of N inputs to a sys-
tem, we want to get the maximum input and suppress the others. To solve this problem,
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o — o ° e intensity field

line-process
SW

Figure 2: A model with 4 direction line-processes

two methods are available (see [6], [32] for more details) : the constraint of having only
one winner is imposed either by adding a term in the energy function to bias towards final
states with a single winner using mean field approximation, or by evaluating the partition
function for the system only over configurations with a single winner which gives an ex-
act solution. The winner-take-all scheme can be used in vision to perform non-maximum
suppression : given an image and a small neihborhood, the winner-take-all scheme can
be applied to select the edges [6]. We will use the winner-take-all in order to select the
direction of the line-process as we discuss in section 4.

3 Four line-process model :

The main drawback of all these models is to favor the detection of horizontal and
vertical lines. This could be a problem according to the type of images to be analysed
: if the goal is the detection of buildings or roads in an aerial image it can be sufficient
(cf [35),(36]); but if the images are presenting diagonals or curves together with horizontal
and vertical lines. it is better to use another model.

Now, we introduce line-processes in 4 directions. Calling [7'; the line-process which
connects the site(i,j) to the site(i-1,j), I’} the one which connects the site(i,j) to the
site(i-1,j-1), {}’;the one which connects the site(i,j) to the site(i,j-1) and [J% the one which
connects the site(i,j) to the site(i+1,j-1) (see Fig.2), an energy can be defined as follows :

Ev = Dl —diyP + oA (1= 1BY)+ AT - I7Y) + (13)
oo

AT = I7) + AL = B+ (58 + 18 + 105 + 1)



4 LINE-PROCESS PROPAGATION : ‘ 10

where :

Al = ¥ij = Vit (14)
AT =Yg = Yie1-1 (15)
Al = Yy = Yie1g (16)
AP = Y =Yg (17)

As previously, the energy is composed of 3 terms which stand for enforcing the close-
ness to the data, for smoothing the image and for a penalty cost to create an edge.

Using MF approximation, we get after some algebraic manipulations the following
equations:

Gij = dij—alAN(1=1T0) = AL (=10 5) + (18)
AL =15 = A0 00 - 150 + A= 0F) -

(U= )+ A= BY) = AT (1= B2 500)

. = a3adl? - 1) (19)
¥ = o30A8% — ) (20)
I = gslad? ) (21)
Y = osladld? ) (22)

Once the convergence of the algorithm has been obtained, a winner-take-all scheme is
used to select the edges. Basically, this is equivalent to have an additional layer above the
lattice presented in Fig.2 where an edge at site(i,j) is defined by a scalar line-process I, ;
given by :

o= ! if maa (I, 19,009, 159) > 0.5
" 0 otherwise
4 Line-process propagation :

Furthermore, one can think to add a constraint in the energy function in order to prop-
agate the lines. The idea is to use the original model (13) within the statistical and mean
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field approach and lower the temperature to obtain a finer solution for the line-processes.
However at low temperatures, i.e. after a first segmentation has been obtained, we start
propagating the lines depending upon the line-process configuration. At this stage, the
image y has already been stabilized. We propose to add to the model (13) the cost :

E, = £Z[Intu (1- lsw _ lsw1 _]+1)( w]J-H +I:‘_;”]] ])+ (23)

Lo - 1 DL =B )+ 8500 +
= ")(1“ B ) + 520 +
lw (1 1 - lu+l,J)(l:‘-)+-l WJ + l:” 1 J)]

Then, the price to be paid to create an edge at site(i,j) in the North-West direction,
for example, will be :

Bl = €00 = 00 = B2 (72 + 135,20 (24)

The term (1Y ;1 + {[{ ;_,) enforces the propagation of the line, whereas the term
((1 =171 = 1% ;41)) avoids line propagation in the case of already existing perpendic-
ular lines. § is a parameter which is equal to zero at high temperatures (i.e. low ) and
which can be increased gently when the temperature goes to zero (£ € [0,1]) in order to
propagate the lines only when one has a good confidence in the created lines.

Applying again the mean field techniques, we obtain the following mean field equations

T, = opladl?+£01 —1'*‘* (1= ) + 8520 = 7) (25)
I = op(aAPE+ €01 =) =Ty )T, + 120 ) =) (26)
ln;” = UB(‘”—““2 +&(1 - 1;‘5,1;‘)(1 - I Y1) i g+t [x+l,] 1) =) (27)
Y = op(@AR?+ €1 -1 =T o D@ o+ B0 = 1) (2%)

and for the image y the mean field equation is the same as (18).

We point out that other line propagation schemes have been suggested in [6], [7], for
example. In [7] the problem is that they propagate horizontal lines if there are already
horizontal lines and analogously for the vertical lines, but there is no mechanism to stop the
propagation in the perpendicular direction. Therefore each diagonal line will propagate in
both directions (horizontal and vertical) creating crosses!. The scheme in [6] will propagate
lines in all the directions and again does not have a mechanism to stop the formation of
crosses.
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[igure 3: CM-2 architecture

5 Simulation :

5.1 Implementation on the CM2 :

In this section. we briefly describe the architecture of the Connection Machine (see
Fig. 3), a more detailed description can be found in [13},[29].The Connection Machine is
a single instruction multiple data (SIMD) parallel computer with 8K to 64K processors.
Each processor is a 1-bit serial processor, with 32K bytes of local memory and a &MHz
clock. For a given application, the user can dynamically define a particular geometry for
the set of physical processors that has been attached.

The processor resource can be virtualized when the number of data elements to be
processed is greater than the number of physical processors. In such a case, several data
elements are processed on a single physical processor. Such a data parallelism model
architecture is well suited to computer vision as shown in (18], [31].

For the deterministic relaxation algorithms described in this paper, we use the data
parallelism (one pixel per virtual processor) and the fast local communications (NEWS).
For global operations like computing the energy value over the whole image, we use the
reduce primitives.

Without entering into all the details of the algorithm implementation, we should men-
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tion that the minimization of the energy for a given temperature has been done with an
optimal step descent method for §. A conjugate gradient algorithm (see [19] and [26] for
more details about the Polak and Ribiere extension) has been chosen because this tech-
nique is known to be robust to noise [27],{37].

5.2 Choice of the parameters :

The parameters a, v, £ and the annealing on 8 have to be chosen in order to develop
an algorithm which detects the discontinuities of a given data field :

e o corresponds to the regularization term which reflects the confidence we have in
the data. therefore if the data are noisy, « is set high because of the low confidence
in the data and it effects a great deal of smoothing.

e v is the penalty to be paid to create an edge. When £ = 0, a threshold h for creating
the discontinuities can he exhibited :

ho= \ﬁ (29)
Q

This threshold defines the resolution of the system : when the gradient in one direc-
tion is greater than this threshold, a discontinuity is detected in this direction.

e £ stands for the propagation parameter, it has to be zero at high temperatures and
to increase gently when the detection is nearly sure (£ € [0,1]). We have chosen the
following schedule :

§=§+ A6 (30)

starting with £ = 0.
e [ is proportional to the inverse of a temperature. We have tried different schedules
for annealing. We have found that the quality of the edge map is very dependent

on this schedule : the slower it is, the better are the results. We currently use the
following one :

B=ped | (31)



6 CONCLUSION : : 14

starting with 8 = 0,00005 and doing 7 iterations for the annealing.

5.3 Simulation results :

For all the images, we have worked with free boundaries and have used the following initial
conditions for a given temperature : the first time (3 = 0.00005). we initialize § as the
noisy data and the line-processes to zero. Then, we take as initial conditions the values of

.. n . Jw. Jnw Jsw H - cor . H
URTLHTTE .‘Il‘.j obtained after convergence at the previous temperature.

First, we have tested the algorithm with very simple synthetic images (checkerboard,
diagonal). Then. we have applied the method to real noisy images. We present the results
obtained with two of them at the end of this paper. The first picture (256,236) is an
Infra-Red aerial image (see Fig. 4). The edge map presented in Fig. 5 has been obtained
with the following parameters : a = 2.0,y = 30.0, A = 0.0. The convergence has been
obtained after 181 iterations. This result can be compared to the edge map obtained with
the previous model with horizontal and vertical line-processes (see Fig. 6) with a = 6.0,
¥ = 180 which are the most suitable parameters we have found for this algorithm. The
curves of the road and some buildings are better detected with the proposed model. The
second image (256.256) is a medical one (some fibers of a muscle, see Fig. 7), the result
shown in Fig. 8 has been obtained with o = 2.0,v = 150.0,A€f = 4.0 after 23R iterations
and can be compared with Fig. 9 given by the previous model with a = 6.0. ~ = 300.
The contours of the fibers are more closed in Fig. 8 than in Fig. 9.

Finally, Table 1 gives the computational time necessary on the connection machine
CM2 (using onlv ® [Kprocessors).

VPR | CA time (s) | Total time (s) | Nber of it. | CM time per It.
Infra-Red ] 176.59 202.25 181 0.97
Muscle S 228.20 237.56 238 0.96

Table 1 : Performances of the proposed algorithm on the CM?2

6 Conclusion :

In this paper. we have proposed a new model using line-processes in 4 directions and
a winner-take-all scheme in order to have a better detection of diagonal lines and curves.
A deterministic relaxation algorithm using Mean Field Annealing has been derived. The
results obtained on different tvpes of images are improved compared to those got with the
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previous model using only horizontal and vertical line-processes.

L T

®The authors would like to thank Florimond Ployette for his help in testing the algorithms on the
connection machine and the GdR 134 TdSI for providing the pictures presented in this paper.
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Edge map using horizontal and vertical
linc-processes
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Fig 8: Edge map using 4 dir. line-processes
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Fig 9: Edge map using horizontal and vertical
line-processes
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