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Résumé :

Lorsqu'on utilise des schémas d'ordre élevé pour I'équation des ondes, d'ordre quatre par
exemple, le traitement des conditions aux limites pose une difficulté spécifique puisqu'il nécessite
plusieurs équations supplémentaires (pour les noeuds proches de la frontiére) alors qu'on ne
dispose que d'une condition aux limites scalaire. Dans le cas de bords parfaitement réfléchissants,
c'est-a-dire pour les conditions de Neumann ou Dirichlet homogenes, cette difficulté peut €wre
résolue par l'utilisation du principe bien connu des images qui permet d'étendre 1'équation a
I'extérieur du domaine de calcul par une symétrisation appropri€e des données. Nous proposons
dans ce papier une généralisation de ce principe au cas des conditions aux limites absorbantes. A
l'aide d'un procédé de symétrisation nous sommes amenés a introduire une équation des ondes
amortie avec un terme d'amortissement ponctuel. Le traitement de la condition aux limites est
alors remplacé par celui d'une nouvelle équation dans tout l'espace. La justification théorique de
cette approche est fondée sur de nouvelles estimations d'énergie vérifiées par la solution de
I'équation des ondes avec conditions aux limites absorbantes d'ordre €levé et constitue une
alternative au célebre critere de Kreiss pour démontrer la stabilité du probleme aux limites associé.

Abstract :

When one uses high order finite difference schemes for the wave equation, for instance
fourth order schemes, the treatment of boundary conditions poses a real difficulty since one needs
several additional equations (for the nodes close to the boundary), while only one single scalar
boundary condition is available. In the case of perfectly reflecting boundary conditions, namely
the homogeneous Neumann or Dirichlet conditions, this difficulty can be overcomed by the use of
the well-known image principle which permits to extend the equation outside of the domain of
calculation by an appropriate symmetrization of the data. We propose in this paper a
generalization of this principle to the absorbing boundary conditions. Through a symmetrization
process, we are led to introduce a damped wave equation with a damping term supported by the
boundary. The treatment of the boundary condition is then replaced by the approximation of this
new damped wave equation in the whole space. The theoretical justification of our approach is
based on new energy estimates for the wave equation (when high order absorbing boundary
conditions are used), and constitutes an alternative to the use of the well-known Kreiss criterion
to prove the stability of the associated initial boundary value problem.

Mots-Clés :

Conditions aux limites absorbantes, principe des images, schémas d'ordre quatre.

Key Words :
Absorbing boundary conditions, principle of images, fourth order schemes.



0. INTRODUCTION - MOTIVATION

When one 1s interested in the simulation of wave propagation, especially acoustic waves, with
the help of classical methods in numerical analysis - we think in particular of finite differences - one
of the main drawbacks comes from the numerical dispersion which induces an error in the
propagation velocities. To minimize these effects, a natural idea consists of using high accuracy
numerical schemes, for instance fourth order schemes in space and time. Such schemes have already
been treated extensively in the literature ([1], [2], [4], [12]) and their stability and dispersion
properties are now very well known. The major obstacle to the use of these schemes is the treatment
of boundary conditions. Indeed, one is led, in order to get a high accuracy, to use finite difference
operators using more mesh points than it is a priori necessary to be consistent. For instance, if we
consider the wave equation in dimension 1 :

2 2
(0.1) du 0% _
o2 ox?

We shall use 5 points to approximate the second derivative in space :

(().2) —_— (Xj,[) = 3—:—2— (llj+1- 2llj+ UJ'_1)- 1—1— (uj+2-2uj+uj_2)

2h?
If the equation (0.1) is set in a segment [0,L] and if this segment is discretized in N space steps :

N-1

(()3) [(),L:' = [xj,xj+]] Xj =jh ,h=
j=0

ZI-

The difference equation obtained in (0.2) can be used only for N-3 discretization nodes, as
illustrated below :

i—i—o—o-o-o—o-o—o-oo—o—o—o-oh

One needs a priori 4 additional equations while one has only two boundary conditions, one at x =0
and one at x =L.

When one considers Dirichlet or Neumann boundary conditions, this difficulty can be handled with
the help of the well known image principle [3] which express that the initial boundary value problem
is equivalent to a pure initial value problem on the whole line through a principle of multiple reflexion.



Thanks to this idea, even the points close to the boundary can be seen as interior points, the value at
the extra fictive nodes being obtained by symmetry or antisymmetry depending on whether one

considers Neumann or Dirichlet boundary conditions.

The situation is not so clear if one considers absorbing boundary conditions which are very
important in practical situations. One possible approach consists of using extrapolation methods (see
[1D. However the theoretical aspects of such an approach do not appear to us as completely under
control and it seems that it remains a great part of arbitrariness in the precise use of such methods.
Our purpose in this article is to propose an alternative to this approach based on the generalization to
absorbing boundary conditions of the principle of images. Our article is organized as follows. In
section 1, we describe the main idea in the case of the 1D wave equation. In section 2, we present the
formal generalization of this idea to the wave equation in the half space for a general class of
absorbing boundary conditions. Sections 3 and 4 are devoted to the complete mathematical
justification of our approach for respectvely first order and second order absorbing boundary
conditions. Finally, in section 5 we show how to use our new principle of images for the construction
of stable approximations of absorbing boundary conditions coupled with fourth order schemes for the

interior wave equation. Conclusions and perspectives of the present work are given in section 6.



1. THE BASIC PRINCIPLE IN THE 1D CASE

We consider the simple model problem of the wave equation on the half-line with the
transparent boundary condition at x =0

2. 32
(1.1) ofu % _ x<0,t>0
o2 0Jx?
Jdu Jdu
(12) —aT+§;—0 X—O,[>0

If’ we prescribe initial conditions

‘u(x,O) = ug(x)

1.3
(13) l%—f(x,O) = uy(x)

the initial boundary value problem ((1.1),(1.2),(1.3)) is well posed. More precisely the energy of the

solution u is decreasing. Indeed one has the identity :

(1.4) g?{é—L 2dx+é—L_

From (1.4), it is easy to deduce that, under the assumptions :

du |2

ox

du

X dX‘ +

I

du 2
5{ (O,I)\ =0

(1.5) (ug,u;)e HY{R)x LYR")
Then the unique "weak" solution u of ((1.1),(1.2),(1.3)) satisfies :
(1.6) ue CIR*;LAR) n COR* s HI(R"))

Let us now consider the following question : can we define a problem set on the whole real line

whose restriction to the half line R- would coincide with the solution u of our model problem ?

If we replace the boundary condition (1.2) by either the Neumann or Dirichlet condition, the
answer is very simple : it suffices to extend the initial conditions uy and u, by symmetry (for
Neumann) or antisymmetry (for Dirichlet) and to solve the corresponding Cauchy problem for the

wave equation. This is the classical principle of images.



We shall see that, with the transparent boundary condition (1.2), the answer to our question is
still very simple except that we cannot keep exactly the wave equation. Let us make our assertion :

THEOREM I
Let We C{R*;LAR))} N COR*;LAR)) the unique weak solution of the following problem :

0% % o _
(17) ﬁ-é_)(_Z+28(X)§_O
~ ~ au ~
(1.8) (x,0) = Tg(x) E—(x,0)= Uy(x)

where &x) is the Dirac distribution and where Uy and U, are deduced from vy and u; by
symmetry :

T{x)=ufx) if x<0 j=0,1

(1.9) Ufx)=uf-x) if x>0 j=0.1

then the restriction u of U to the half line x < 0 coincides with the solution of

((1.1),(1.2),(1.3)).

Proof
It is simple and we omit the details :

(1)  Let us first precise what we understand of weak solution of ((1.7),(1.8)). By definition, it is a
function ¥ in CYR*: HYR)) ~ CH{R*;L4R)) such that :

(1.10) j‘v’ vV E HI(R) (—;j[% ('ﬁ(t),v) +c%- b(ﬁ(t),v)+a(ﬁ(t),v):0

\H(O) =ug % (0) =w

where we have set, for (u,v) € HI(R)?:
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(u,v) =f uv dx
R

du dv
(1.11) a(u,v)=fR a—x—a—;dx

b{u,v) =2 u(0) v(0)

It is easy to derive a formal a priori estimate for u by multiplying equation (1.7) by %% and
integrating over R which leads to :
1 d ’ du |2 [dul? ‘ du ‘2
1.12 ~ = - 5= 2| = =
( ) T \f o dx +I ™ dxf + o (0,1) 0
R R

Such an identity can be justified by the use of the Galerkin's method (see [9]) which leads to a

uniqueness and existence result.
(i) Letus assume that :
(1.13) (up,uy) e HER)x HYR")

Thus (Tp,d,) belongs to the space HAR)x HYR) and it is easy to derive the following regularity

result for the solution U :

[ie cor; HR* UR'))
\Tl' e CIR;H'(R))

A priori, at each time t, the solution u(t) does not belong to the space HZ(R). In fact, one can see

~

ou . . . )
that — 1is discontinuous at x = (). Indeed, one has at each time :

ox
7~ 2
(1.14) a_u_a_u:o it x <0 or x>0
o2 ox?

Using a regular test function v we have :



[ [ 2
a2 u(t) vdx|- —a——ledx=0
d[2 JR+ JR* ax2
(1.15) : .
E | wyvax]-| Tyax=0
d* | Jx: Jr: 9%

By an integration by parts we have :

0% r ol ,,o0v ol .,
_L* a_x2_ (t)vdx =JJR+ E—)—)Z (t)§;dx+—a;(0 ,t) V(O)
(1.16) .

2% [ 0w . ov . ou,.
-L. e (t) v dx _JR- 3% (t)-a—x-dx+3;(0 1) v(0)

Plugging (1.16) in (1.15), we obtain, after summation

I (v - g—f 0.9 v0) =0

(1.17) fz' (@(0hv) + afi()v) + 5

Identifying this equality with (1.10) we deduce that :

au Ju ou
1.18 = (0*,1) - =— (0",t) =2 — {O,t
(1.18) S 0m-SE 0 =25 (0.
(iil) As the initial data U{x) and U)(x) are by construction even functions, it is clear that u(x,t) is

even with respect to x. Indeed it is easy to see that the function :
a(x,t) = u{-x,t)

is another weak solution of ((1.7),(1.8)). It is then sufficient to use the uniqueness result to conclude.

As T(x,t) = - U(-x,t), we easily deduce that :

o, . o,
(1.19) 0 =-22(0%

With (1.18), we deduce that

ou

)=-a
Sog=-5 09

(1.20) %3“0“) _.



Now let us consider u =T|g-. We have proved that :

2 2
Q—E-Q—u=0 x<0,t>0
o2 ox?
du Jdu
(1.21) §r—+5;_0 x=0,t>0

u(x,0)=ug(x) x<0

laa—l:(x,O) =uyx) x<0

which shows that u is the unique solution of our model problem (1.1). The theorem is thus proved
under the regularity assumption (1.13). In fact it is easy to extend the proof to the general case
corresponding to assumptions (1.5) by means of density and continuity arguments. |

Theorem 1.1 gives us an "algorithm" to solve our model problem ((1.1),(1.2),(1.3)) which consists
of :

« extending the data by symmetry
+ solve the corresponding Cauchy problem on the line associated with equation (1.7)
+ take the restriction to the half line x <.

Before going to the generalization to higher space dimensions, let us make some comments :

- our image principle is of course extendable to the case of variable coefficients. It suffices to extend
them by evenness, as we did for the initial data. The same observation holds in the case of the
presence of a right hand side member in equation (1.1) ;

- by symmetry, it is clear that the restriction of U to the half line Rt = {x | x >0} the solution of

. . .. du Odu
the wave equation in R* with the transparent boundary condition F T 0 at x=0;
- equation (1.7) appears as a damped wave equation with a punctual damping term at x = 0. This
observation permits us to make a link between the transparent boundary condition and an absorbing
layer approach (see [1],[4] for instance). Indeed, consider a smooth approximation of the Dirac
distribution 8(x) by 8¢(x) such that:



« 3¢x)e Cy(R) ., 8¢(x)=20

o supp 8¢ C[-€,€]

. f ddx)dx =1
R
R

: L >
=< T » X

—-£ €

Figure 1.1 : Graph of the function 8.(x)

The solution T of (1.7) can be approximated by the solution U® of the damped wave equation

LT ot
(1.23) o2 - AU +264x)7—0

(we keep the same initial data as for U). By restriction to the half line x < 0, it is clear that u,
solution of ((1.1),(1.2),(1.3)) can be approximated by uf = 'ﬁflg- which is characterized by the
following set of equations :

o%ue out _
y—AuEwkZSg(x)T—() x<0,t>0
a‘_"E: 0

(1.24) ox
ug(x,0) = ug(x)
a €
= (x,0)= wifx)

Thus v naturally appears as the limit of the solution of the wave equation on the half line R-, with
an absorbing layer of thickness € in the interval [-€,0] and a Neumann boundary condition at x =0
(see fig.1.2)

Figure 1.2 : Graphical interpretation of (1.24) +——>
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* because of the link between equation (1.7) and transparent boundary conditions in both domains
R- and R*, itis clear that the damping term at x =0 plays the role of a "black hole" which absorbs
all the energy of the solution. For instance if the initial data of problem ((1.7),(1.8)) are even and
compactly supported, the solution is equal to O in a finite time.

2. A FORMAL GENERALIZATION TO THE HIGHER DIMENSIONAL CASE
We consider the wave equation in a half-space of dimension d

d%u d
(2.1) 57-Au=f for (x,t)e RExR,
t

We shall denote the spatial variable X by
X =(x,y)  with x<0,yeRY d'=d-1,
and the boundary hyperplane of RY by
r={oy;ye "

The trace of u on I' xR, will be written up or simply u if no confusion can occur.

We consider on I' a general transparent (or absorbing) boundary condition

Ju

(2.2) S

+ B(Ur) =0
r

where the operator B is given by :

K
Bur)= 20 Y g 2% ()
(2.3) k=1

d ..
——g’Tk- ok Ar ¢x = Ar up (ii)

with mutually distinct constants oy,By. In (2.3,ii) Ap denote the tangential laplacian.
The condition (2.2) is obtained if one substitutes to the dispersion relation
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& =-141-|n|*/2

of the exact transparent condition , an approximate dispersion relation

é=-«;(1 v B (In1%/) )

K 1-o([n|%/e)

where &n,t designate the dual (Fourier) variables of x,y,t respectively, and the rational function

B s2
k l-ak 32

is a rational approximation of the function r{s) = Y1-s2. In [13], one can find all details about and
historic of the boundary conditions of the type (2.2). In particular, if B is given in (2.3), an
application of the Theorem 2 of this paper yields the following necessary and sufficient condition for
the strong well-posedness of the initial boundary value problem associated to (2.1-2.2) :

’Bk>0 , 0O0<og<l,

12 Pr <1

(2.4)

1-o0y

In the following sections, we shall restrict ourselves to the two cases of the so-called first order (K =
0, no necessity of ¢,) and second order (K =1, a; =0) absorbing boundary conditions [6]. But
now, let us show, for all conditions of the type (2.2), how to generalize the principle of images to the
associated initial boundary value problem (IBVP).

THEQREM 2
a) Let u be a classical solution of the IBVP (2.1,2.2 and 2.5), where

u(X,0) =uyX)
(2.5) \%%(X,O) = uy(X)

andlet U, f, Uo, Uy be the extensions of u, f, ug, u; over RY by symmetry, then U is solution of
the following initial value problem
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325' N - .
(2.6) —-Au+25r®B(ur)=f
ot?

TJ'(X,()) = ’ﬁo(X)
(27) |5 (200 =0

where 8 is the Dirac distribution on T.

b)  Conversely, if the problem (2.6-2.7) has a unique solution for f, T, Uy, then its restriction
to the half space R is a solution of the IBVP (2.1,2.2, 2.5).

Proof
It is a simple application of the well known jump formula (cf. e.g. [ ). If ve C{RY @l(Rfj), or

more generally if v e 2{RY and (v, g—l)e @(§ Q)'(Rd')), then the extension by 0 of v over RY

is a distribution v of RY satisfying the formula :

d0tvg (0% av 0

On the other side, there is no jump for the tangential derivatives of v so that :
v 38r )

2.9 Avp =\Av), - |19r ® =—(0,y) + 5=— ® v(0,

(2.9) vo (v)O(r S (0y)+ ST O v0,)

Now, if ve @'(RY) and ve C (R, D'RYY), g}e R, 2 RY)~CR., D(RY)), we have

(2.10) Av =(Av)e-8re [a_v] (y)

ox
where [g] = g(0_.y) - g(0,.y) is the jump of g over I, and (Av)p is the sum of A(v|gd) extended
by 0 in RY and A(vlry) extended by 0 in R This is the "function part” of Av, because if Av

is equal to a locally summable function w on RIURY then

<(AV)F,¢>=j wX)X)dX  Voe D(rRY.

Rfu R4
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Applying (2.10) to the function U, which is even in the variable x, one gets (2.6). The other part of
the theorem is obvious. W

Now, our "generalized principle of images", that is, the equivalence of (2.1, 2.2 and 2.5) and
(2.6, 2.7 with even data f, Ty, §;), will be entirely proved if a uniqueness result for the last problem
can be obtained. For the first order absorbing boundary condition, this can be made with an
analogous procedure as in section 1. In section 3, we propose however another approach, valid also
for the second order condition. For later referencing, we shall call the equation (2.6) the "equation of

images".

3. A MATHEMATICAL ANALYSIS OF THE EQUATION OF IMAGES FOR THE
FIRST ORDER ABSORBING BOUNDARY CONDITION

In this case, our equation of images can be written compactly :

aZU aur
- ® .
(3]) -—‘—atz Au+2 6[ _at =f

We have dropped the tilde sign in (2.6), and we shall not suppose the evenness with respect to x of
neither the source function f nor the Cauchy data uy, u.

We propose in this section an adaptation of the Hille-Yosida theory (cf. e.g. [11]) to solve the
Cauchy problem of (3.1). For that, we consider u as a function of t, with values in some spaces of

distributions on R4, Denoting by v the time derivative du of u, and by U(t) the vectorial

ot

function (u(t), v(t)T, we can write (3.1) as an evolution equation of first order :
(3.2) % +AU=F

where F=(0,/NT and A the matrix operator defined by

(3.3) A

0 -1
-A 28F®Y

y designates the trace operator defined for sufficiently regular distributions on € = RY URY More

precisely, we denote by y,u (resp. y.u) the limit (when it exists) of u(x,y) when x tendsto 0
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with positive (resp. negative) values, and we shall use the notation yu when y,u=vyu.

We consider A in (3.3) as a unbounded operator on the Sobolev space
% = H(RY) x LYRY)
with domain
D(A)= {U =(u,v)T ; ue HZ(Q) N HI(Rd);

ve HI(RY) :
du

ox

(3.4)

such that

+27v=0}

Our main result is ;

THEOREM 3
The operator - (A+%~ I) is the infinitesimal generator of a semi-group of contractions of class C°

on L.

Proof
We divide the proof into 3 parts :

a) A_maps £D(A) into F
From u e HZ(Q) M H‘(Rd) and v € H!(RY), the condition (3.4) has a precise sense in HV2(I'). On
the other side, the jump formula (2.10) is valid for u, with (Au)g € L2(R%). Then

(3.5) AU = =("’ )e %

- (Au)f + 51 ® ( B_i + 2'yv) - (Bu)r

I
2
For Ue D(A), by (3.5) and the formula of the integrations by parts :

b) The operator A+--_is monotone
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{(AU,U)gz =f ( uv - Vu.VV) dx +j (- (Au)p .V) dx

R R?

N . au)

—fd (—uv)dx-f [g]vdy
R r

Then, by (3.4)

(AU, U)ge = f

uvdx + 2[ Iv{0,y)|% dy
”d R

while

(U, U)g = f [(l u|2+‘Vu|2)+lv|2] dx
R

The conclusion follows immediately. One has even the more precise inequality :

(3.6) (A+pl) UU)ze 20 YV Ue D(A) and vuz;—.

¢) For A >0, the range R(AI+A) of AI+A is F

We have to prove that for all (f,f;)e H! x L2 (we drop the domain of the Sobolev space when it is

the whole space RY), there exists U e £(A) such that

flu-v =f,

(3.7) v - (Awp =1 .

With the condition between u and v in (3.4), and the jump formula (2.10), one can eliminate v in
(3.7) to obtain the following problem for u:

(3.8) “Au+ A%+ 2 A8 ®(yu) = Afy + £y + 2800,

The vartational formulation of (3.8) is:
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To find u € H! such that:

(3.9) f (Vu.Vw +A2uw)dX + 24 f (yw)(yw)dy

- f (M +E2)wdX +2 f (f)@w)dy  YweH!

It is clear that, as soon as A>0, one can apply Lax-Milgram's theorem to solve (3.9). Now, setting
v=Au+f}] and reinterpreting (3.9) in the sense of distributions, one easily checks that U=(u,v)
satisfies (3.7) and belongs to D(A). Part ¢/ is proved.

The conclusion of the theorem follows then the (direct part of the) Lumer-Philipps theorem[11] B

Coming back to the initial boundary value problem of the wave equation with the first order

absorbing boundary condition, and its equivalent equation of images, we have :

THEQREM 4
a) For f e @1([(),T] ;Lz), up € HZ(Q)m H' and u; € HY satisfying the condition

(3.10) M2y =0 on T

[auo
ox

The Cauchy problem for equation (3.1) with initial data (ug,uy) admits a unique solution with

G.11)  we CloThEAQ) A MY due Clo,THY) ; ((ii—zlzle ([0,T};L2)
t

Moreover, if =0, the solution u satisfies the following energy identity :

(3.12) ad?(% L(lvulul%%ﬁdx)-rzfr

b) For fe @]([(),T];L7<Rfl)), up € HZ(R“') and uj € Hl(Rfj) such that the following condition

is satisfied :

dul?

dy=0
ot Y

P)
(3.13) -%+yul=0 on T

The IBVP (2.1-2.2-2.3 with K =0) is well-posed and its solution equal to the restriction of the
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Cauchy problem (3.1) with f, ug, u, extended by symmetry to RS .
Moreover, if £ =0, one has the following energy identity :

(3.14) (% (% Ld (l Vu| 2+ 2)dx)+£

Proof
The well-posedness parts of the theorem are a mere translation of the general theory of linear

du
ot

evolution theory to our case.
The energy identities (3.12) and (3.14) are obtained by the classical technique.” B

Remarks

(i) The condition (3.10) and (3.13) are obviously satisfied if upe H3(Q) u;e H2(Q) (resp.
ug € H%(]R.f’) and uj € H(l)(Rf’)), or more simply, if the supports of uy and u; do not touch I.
That is the case in problems where the boundary I' is artificial and can be placed as we like.

(i1) When the initial data (ug,u;) belongs to F only, notto D (A), one can consider U(t) =
T(t)Ug, where T(t) is the semi-group of operators associated to (-A), as a weak solution of the
Cauchy problem for (3.2). That yields a weak solution of (3.1) with instead of (3.11) :

du
ot
In this case, the energy identity (3.12) cannot be written as such, however by standard density

(3.15) ue C0,1:HY ; £ e C(0,1];L2)

arguments, it is easy to show that the energy of u is still well defined and remains a decrease function
of t.

4. THE CASE OF THE SECOND ORDER ABSORBING BOUNDARY CONDITION

We study in this section the "second order equation of images" :

o%u
(4.1) Y Au+28r®Blug)=f
or?

where ur=+vyu and



(4.2)

de
lg = Ar{u)
Denoting by v =%—l: , we can write (4.1) as an evolution equation like (3.2) but with now U =
(u,v,@)T and
0 -1 0
(4.3) A=l A 28r®y-2B5r
- Aro'Y 0 0

For reasons which will appear further, we shall consider A as a unbounded operator on the

following space

FL ={U=(u,v,(p) e FLx FyxFs such that (4.4) holds}

where
¢, = H{Q) A H!
FLy = H!
¢4 = H'/AT)
and
(4.4 22«2l -Bo)=0

with the domain defined by

D(A) HU=(u,v,0) € D x D2xD1 such that (4.4) and (4.5) hold)

where
Dy = {u € H3(Q)m H'; Y+(Au) = y.(Au)}
Doy = F,
24 =HAr)

and

(4.5) g—;’- +2{y(Au)- B Aq{w))=0

Thus, the boundary condition for u is now put in the space £ while in D(A) we have taken into

account both the boundary conditions for u and v.
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However, these (usual) tricks are not sufficient for our purpose, and later calculations lead us to
define on £, and F, other norms than the usual ones, to control the behavior of the ‘normal

. . ,du ov . . . . )
derivatives' =— and =— in the interior of the domain, according to the following lemma:

ox ox

LEMMA |

For 6> 0, the following norms are equivalent to the classical ones in the concerned spaces :

2 1/2
o
2 1/2
o

(4.6) Hullzfel=U |u|2+|Vu\2+|Au|2+eiv(g_i)
Q

(4.7) Hvll:-je.‘,:,_=t£2 (IV|2+IVV‘2+ 9'(3—;)

Proof
The FE- part is obvious. For €1, we note first that HZ(Q) M H! is a closed subspace of H2(Q)
defined by '

HAQ) A H! ={ue B2Q) ; Tau=yu

and its natural norm is then the one inheritated from H2(Q) :

112
H“HH?(sz)nH‘=£ > f |D“U|2dx]

al<2
which is clearly greater than the second member of (4.6).

“For the inverse inequality, we can use the following lemma :

LEMMA 2
The space

V={u e HI(RY); Aue Lz(iRi),ng‘;e L?(Ri)}

is algebraically and topologically identical 1o Hz(Ri‘) .
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Proof

Let T =pu where p is the extension operator by reflexions from IR.‘E to R4 (cf. [9]) :

’u(x,y) x>0
t(x,y)=1/ 2

aju(-jx,y) x<0
1

where the a; are defined by

(-1)ijioy=1 i=0,1.
1

2
J:
Thus oy =3, 0y =-2.

It is easy to verify that U e H](Rd) and Al e LZ(Rd). A Fourier calculus proves then U e HZ{Rd),
s that u = @|g¢ belongs to HYRY).

Moreover, for x <0,

2
AU (x,y) = oy Au(-x,y)+ 03 z o (-2x,y)
2<k<d OYk
0%u
+4 oy — (-2x,
5 2%Y)

2

The hypothesis concerning Z—% in V permits to conclude the lemma. |
X

Finally, it is clear that J€ is a closed subspace of Fyx FLyx FL3, isomorphic to

F, x F,, and we can equip it with the normof &, x £, :

172
(4.8) 10l = (lull g, +11vIi%e)

which shows up the auxiliary character of the function @.

The reason of our choice of the norms (4.6, 4.7) appears now in the following

LEMMA 3

If 0<B<1, and 6 = —B— the operator 1+A is monotone on F .
1-B
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Proof
Let Ue 9D(A). By the condition (4.4) and the jump formula (2.10), we have

-(Au)p
-Ar{y)

It is easy then to verify that AU e 2.
Now, by (4.8)

(AU, U)ge = (-v,u)gg, + (-(Au)p,v)ggzg2

where, conforming to (4.6):

(-v,u)ge,= - j (uv+Vu.Vv + Au.AV +9V(g—::).V(g—::))dX

For -(Au)g,v)g¢, , by integrations by parts, we obtain:

(-(Au)p,v)ggz j Vu.Vy dx-j [@—} dy

f Amdx-ﬂ
vof V)oY f m o3

B

Taking into account the conditions (4.5), and 8 = —, one gets :

1

(4.9)

The last term in (4.9) is positive, the other terms easily absorbed by the terms in (U,U)4. Thus the
lemma is proved. B

Now, we can prove for A the same result as in the first order case :
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THEQREM

For 0<B <1, the operator -(A+l) is the infinitesimal generator of a semi-group of contractions
of class CO in $L.

Proof

After lemma 3, what is left to prove is that for some A > 1, AI+A is a surjective operator from
2D(A) to F. In fact, this is true for all A >0, and the proof follows the same path as in part ¢) of
theorem 3.

We have to solve the system

U=(u v,(p)e 2D(A) such that

(4.10) f - ‘f‘
o

with F = (f],f2,f3) € %

The same approach as in part ¢) of theorem 3 will give us ue H{Q)A H', ve H!, ¢ e H¥{T)
satisfying the condition (4.4), for F e ¢, x #,x 3. Moreover, by (4.10,ii), (Au)g belongs to
H!, so that y,(Au) =Yy.(Au). The condition (4.4) satisfied by F yields then the condition (4.5)
for U. n

Returning to the equation of images (4.1) and the IBVP for the wave equation with the second
order absorbing boundary condition, one gets

THEQREM 6
Suppose that : 0 <P < 1. Then

a For fe @1([0,T] ; H})(Q)), ugp € H%(Q), u € H%(Q) and @y =0, the problem for equation

(4.1) with initial data (uy,u,,Qy) admits a unique solution with

@11)  ue C(0,7]; D1)n & (0,1]; ;) " ([0,T]; Hy)

and the boundary relation :

(4.12) [;{(;;}+2(7(Au) BY(Ar up))=0

Moreover, if f=0, u satisfies the following energy identity
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Moreover, if £=0, u satisfies the following energy identity

2
+{V — )dx +P f (
Q
92y ||?
+ ————
r axat
by For te C(0,1]; HYRY), uoe HI(RY), u e HE(RY and gy =0, the IBVP for the wave
equation with boundary condition defined by (2.2) and (4.2) is well-posed.Its solution satisfies

82

o {(1 B)[ ( 2

o o

oxdt

au
ax

x|

dy=0

(4.18)  ue C[0.1]; H3RY) A C ([0,T]; HZRY) A ([0, T]; HI(RY)
and the relation

9%u

oxot

(4.15)

+¥(Au) - BAru=0 on T

Moreover, if £=0, u satisfies the following energy identity :

d ou au\ o2y |? _
(4.16) 4 (1[3) E( ) E(—axl+ fr Sl dy=0
where
_1 2 |du 2)
Blu) =1 Lf’(lvu| +|%5| | dx

is the classical energy of .

Proof

Part b) 1s a simple application of part a), which is, except for the energy identity (4.13), merely a
translation to our problem of the general theory of semi-groups of operators. We note that our
assumption for f, ug, u;, @, are only a simplified version of the general hypothesis
Fe CY[0,T]; #) and Uye D(A), with F = (0.£,0) here.

All we have to prove is (4.13) when f=0.

Consider the evolution equation ddU + AU = 0. Taking the scalar productin F with U, one gets :
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(dll JU|_+(AU,U)g =0

dt :
Using (4.9), the fact that (ddltl ,U)ﬁ:2 =—é— d% HUIL%g, and the relation v =‘-jd%, one obtains :
2 |92y
1—51—’ lu|2+|Vu|2+a~u +£’- ) Ou|?
2 dt \ o ot or2 o
2. 12
+L ——a d +‘ du|? dx
(4.17) 1-B \|axat ox

dy =0

o du) o 1 9% |2
- u—dx - dy
L o I [3"} - B) j {axat}

Doing the time derivation tor the first three terms in the brackets { }, and using a Green formula,

L . 9%
taking into account the relation 5—2— = Au, one finds that these terms are compensated exactly by the
{

two terms with the minus sign in (4.17). Consequently, (4.13) is proved.Formula (4.16) is a
consequence of (4.13) and theorem 2. [ ]

Finally, to conclude this section, we note that, like the first order problem, the IBVP for the wave
equation with the second order absorbing boundary condition can have a weak solution with

decreasing 'second order energy":
Ei(u) =P E( ) +(1-B) E(—)
when weaker assumptions on the data (uo,ul,(po,f) are made.

This energy estimate does correspond to a strong stability result in the sense of Kreiss (see e.g.|5))
since it enables us to estimate all second order derivatives of the solution (in L2 norms, at any t>0)
with the help of the same quantities at t=0. The condition 0 < 3 < 1 corresponds to the particular case
of the conditions (2.4). In 6], we obtain similar energy formulas for the general absorbing boundary

conditions (2.2,2.3) when the well-posedness conditions (2.4) are satisfied.
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S. APPLICATIONS TO STABLE APPROXIMATIONS OF ABSORBING
BOUNDARY CONDITIONS COUPLED WITH FOURTH ORDER ACCURATE
FINITE DIFFERENCE SCHEMES FOR THE WAVE EQUATION

5.1. The 1-d case.

With our image principle we are now able to give a solution to the problem set up in the

introduction, i.e. the construction of discrete absorbing conditions for the 1D wave equation :

2 2
(5.1) Fu Ny
o2 oJx?

when one uses the following fourth order space discretization (uj(t) approximating u(xj,t), x; = jh):

azllj
ot?

Uje - 205+ uj L1 Ujs2 - 205 + uj2 -

5.2
(5.2) h2 3 4h2

0

.4
3

The problem was to find two equations to write for j =0 and j = -1 while one only has one
boundary condition. With the image principle, this problem disappears since the concept of interior
point has no sense any longer : any node can be seen as an interior node ! We have simply to give a

discretization for the "extended"” problem

2N 02y ~
I 9T 5x) 98 =

o o oY

—
h
(%)

P

This implies some approximation of the 8-function. The simplest one corresponds to the following

choice :

{5.4) §(x) = n(x)



= |r—

>» X
.h h
2 2
This leads to the following set of the equations :
IdZJ 4 Uj+1 - 20 + Uj l_fl'j+2-2fl'j+'ﬁj.2 0 %0
j#
(5.5) d2 3 h? "3 4h?
ld2u0_4 Do+, 1 B2t _g i,
de? 3 h? 3 an? .

Note that the discrete variational formulation of this problem can be written :

U -0 Vi1 -V, Ujs1 - Uj1 Vier - Vo
h-+ h

(5.6) +2§ (Tio Vo) =
V¥ =(%)/ D, V1 h < +eo
)

Comparing (5.6) with the continuous variational formulation (1.10) we gave in section 1, we see that:

- the bilinear form a(u,v)=j 3—2 g—\—/dx has been approximated by :
R
_4 Ul - Uj Vil - Vi 1 Uj+1 - Uj-1 Viel - Vil
(5.7) an(un ) =3 2 = ey 2 TR

J ]
while te bilinear form b(u,v) = 2 u(0) v(0) has been replaced by :

(58) bh(uh,vh) =2 up vo

It is easy to derive the discrete energy identity :
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+bh—h‘ F[h-

(5.9) | { l dup “ an( up,up )

which is the equivalent of (1.12) (we have set ||uy||? = 2 [uj~(2 h). As by(.,.) 1is positive, this
J
means that the discrete energy :

(5.10) Ext) ‘duhH 1 ay(up,up)

is a decreasing function of time. This proves the L2-stability of the semi discrete problem (5;5), since

one has the discrete coerciveness inequality (see [2] for instance) :

v - up |2
(5.11) ap{up,up) 2 Z lmh—ﬂ’ h
J

Now to get our discrete problem in the half line x <0 we use that U, is even with respect to the
index j and that the approximate solution uy, we are looking for is the restriction of U, to the

negative indices, according to the "algorithm” defined in section 1. This means that we take :

=% j<0
(5.12) | =1
ug =1up

The resulting set of equations for the functions {u;,j <0} is the following one :

dzuj 4 Ujsq - 2Uj + Uj.] +_1— U2 - 2uj + 1.2 -0 _] <2
diz 3 h2 3 4h2
(5.13) d%u, 4 ug-2uq +ug 4l u3-uq g j=-1
o a2 3 h? 3 om?
d?up § ug-ug, 2 ug-ug, 2 dug _ ,
ol + £ + = =()
diz 3 2 3 4n2  hod -0 .

Of course, the L2-stability of problem (5.13) stems up from the one of problem (5.5).

Let us go now to the time discretization. When the wave equation is posed in the whole space, a
fourth order scheme in space and time is given by ([2],[12]) :

1 1
l;H- 2U + Un 4 J+1 2U j-l + 1 U}‘.,,Z - 2!.];1 + U?_Z
(5.14) Al 3 h2 3 ah?
' A2 Uo - 4ulyy + 60U - AU+l _

12 h4
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where ul is the approximation of u(x;t"), x; = jh, t" = nAt. In (5.14), the last term is added to
achieve the fourth order accuracy with respect to time. The L2-stability of (5.14) derives from the
conservation of the discrete energy :

2
un+1 -ul
Er}:+l/2 =% __h__A_.__ll +% ah(uplﬂ,uﬂ)
t
(5.15)
ap y 2 20 e
12 h? h?

which is proved to be a positive quadratic form (see [2]) under the stability condition % < 1.
The simplest way to construct a stable approximation for the modified problem (5.3) in & which

coincides with the fourth order scheme (5.14) when j # 0, consists in considering the following

equations :
~n+} ~n , ~n-1 ~n+l ~ o N ~n ~ o
up - 207 + 4 g U - 2u5 + 10y, L1 o 207 + 1),
NG 3 h? 3 4h?
A2 Ujag - 4T, + 6] - 407, + 0, 0 20
12 hd B )=
5.16
S A R AP R RS N B R
A2 3 h? 3 4h?
+;1~146+1_a%-1'_A_t3u’2‘-4u'1‘+6u‘(‘)-4u‘_‘1+u'_‘2 —0 j=0
h IAL 12 h4
It is easy to see that the solution U}, satisfies the following identity :
~nsl  =n a«wl _a/n-l 2
(5.17) SIS DAY I A
At At
This proves the decay of the discrete energy Eﬂ”/z with respect to n, E’}',”/z being defined as

EE”Q by replacing ull by T, and therefore the L2-stability of problem (5.16) is obtained as soon

as one satisfies the stability condition :

3 JAY QP
(5.18) " <1

To write now the scheme for the approximate solution ufl in the half-line x <0, we adopt the same
approach as in the semi-discrete case. We obtain the following equations :
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u}‘” - 2uft + uj“'1 4 ul,) - 2uf +uf, L1 ufl, - 2ul +ufl,
A2 3 h? 3 4h?
i & U?+2 - 4ujr"+1 + 6[1;1 - 4[1}1_1 + an_'z
12 h4
uttl - 20 +ul! 4 uf-2uf +ud +1 ul - uly
(5.19) At 3 h? 3 2w
_A2 7ul) -4ug-4uh +uly 0
12 h¢
uf*t! - 2uf + ug! g uly-uj +2 u® - uj
A2 3 R? 3 4p?
L2 W upt AR Gu-Su by _
hooar 12 h

We obtain a numerical scheme which has the following properties :

it is completely explicit (and thus very easy to implement)

it is L2-stable under the stability condition % <1

it gives a fourth order approximation of the wave equation
in the interior domain x <0

boundary condition at x = 0.

It is a fact that using this scheme, we loose the fourth order accuracy at the boundary. Nevertheless,
such a drawback is not really troublesome since the higher order error term will affect a part of the
solution, namely the reflected wave, which is supposed to be itself very small. This prevision 1is,
anyway, confirmed by the numerical results we are going to present. Of course, it should be possible
to get an higher accuracy first by taking a best space approximation of the 8-function than the one we
get with the function 8;(x) we have chosen here. Unfortunately, such an approximation would
require an approximate function of 8(x) with a non constant sign (in order that the different moments
of this approximate function vanish up to a certain order) so that the similar energy arguments would
be more involved. We prefer to delay this question later and to conclude this section by showing

some numerical results made with the scheme (5.19). Let us consider the following 1-d Cauchy

problem:

it is consistent, via the image principle, with the transparent

j<-2
j=-1
j=0
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Fig. 3-1. : The initial data u;.
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5.2 The second order condition in the higher dimensional case.

There is no difference in the discretization problem due to the dimension as far as the first order
absorbing boundary condition is concerned. So, in the multidimensional case, we deal directly with
the sccond order condition. Moreover, we shall restrict ourselves to the case of dimension d=2, the
difterences with the higher dimension case are only minor .

As in the 1-d case, let us consider first the spatial discretization. With a one-point discrete Dirac, the

second order equation of images (4.1) 1s discretized as:

Y
d=u

(5.20) ———}'-'i' - (Apup)i jt —3—61,Ri =0
= Toh :

where

(521) ey {.“i‘:"\i‘_,,n'-'/,"'

Apuy = Ax,llllll+Ay.11“h

SIREN

” _ A D20 ] U220 U
(.t'kx.hllh)i.j = 3

: he 4h?

Pi‘_i.*_'l '2“i.j+_‘_[‘j_-_1__ 1 lli‘j+2-2lli_j+u;,j_2
h? 2 4h?

(Aynunlij = %

and bi\ the Kronecker symbol.
The term Rj should be an approximation of Bu(o,jh) where B is given by (4.2). Thus, we should

look for an approximation of the form:

‘dll()‘j v
((522) { RJ - dt - l)(pkl

(P] — (/_\y_hilh:)().j

where Ay j, is an approximation of Ar . which can naturally be equal to Ay gy as defined by (5.21). In

this case, eliminating @; in (5.22) by using (5.20). one geis:

(5.23) Rj = (Axnun)o + (1-B)(Aynuis e - ‘—PJ

This corresponds to the following discretization of the operator-valued matrix A of (4.3):
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0 -I 0
AZAn=| -, %52) _:Zhﬁab

where (yup); = ug,; .
However, we are not able to obtain, from this discretization of the boundary term Bu, a discrete

equivalent of the energy formula (4.16). The reason of this defect lies in an extra term that can not be

avoided when one tries to establish a discrete Green formula for the fourth order discrete laplacian Ay,.

An alternate strategy, which arises from the above analysis, is to deal with Rj directly, instead of

. . dZug;
going through @; We are then not restricted to use (5.20) to calculate choj
de*

Actually, we shall substitute (5.23) by

u_z‘j-2u04+u2,j

(5.24) R;j = (1-B)(Ax hun)o,j+B
4h?

+ (1-B)(Ay hun)y,j - ’}2“Rj

Note that, if the variable U= (u,v,R) is used in the place of U = (u,v,¢), than we can write (4.1) as

an evolution equation, with the following operator valued matrix A instead of A in (4.3):

0 -1 0
(5.25) A= A 0 281
az
Y((1-B)A+B—) 0 ¥(26r)
ax2 /

Then (5.20 and 5.24) correspond to the following, clearly consistent discretization of A
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0 -1 0
(526)  An= A, 0 %88
- Y((1-B)Ap+BDy 2n) 0 _ﬁ_

where

ui_l,j-2ui‘j+ui+1 J
h2

(Dy,nun)ij=

With this discretization, we get the following energy formula:

ad{ {B [Eh(Wh) - Lli'Z(W—l.j)2 + Z(RJ+%W'1'j)2]

(5.27)

+(1-B)En(vp)} = -2Zh R?

u

ox

where (wp) is the central finite differencing of

o Uiyt Uiy
YT

It is easy to show that the difference Ejp(wy,) - % Zw?l i remains a sum of positive terms,
representing an energy of wp. On the other hand, since R; represente in ( 5.20)) an approximation of
Bu(0,jh), the formula (5.27) is what we are looking for : a discrete equivalent of (4.16).

Finally, the time discretization of (5.20) and (5.24) follows the same ideas as in the 1-d case, and we

get a stable scheme under the CFL condition (%)2 <% . Details of these calculations, as well as

numerical experiments with the second order absorbing boundary condition will be reported later.

6. CONCLUSIONS AND PERSPECTIVES

We have developed in this paper a very simple and rather general theory which allows one to treat
absorbing boundary conditions for the acoustic wave equation by means of a reflection principle

analogous to the classical principle of images for Neumann or Dirichlet boundary conditions. This
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technique permits us to treat the discretization of the problem in a very natural way which does not
depend on the order of the scheme one considers for the interior equation. Moreover, it guaratees the
stability of the resulting numerical method The weakness of our approach is that it seems difficult to
keep the same accuracy for the approximation of the boundary conditions as for the interior equation.
It would be interesting to investigate this open question. Let us mention that our approach establishes
a quantitative link between the theory of absorbing boundary conditions and the method of absorbing
layers, which gives a possible direction for further improvements of the present study.

The main property of the wave equation used for establishing our generalized principle of images
is its invariance under the change of variables x --> -x. Therfore, our approach is generalizable to
hyperbolic equations or systems possesing this property, as do Maxwell's equations for instance. For
the elastodynamic equations, the situation is not so clear since one knows that even with the classical
Dirichlet or free boundary conditions, no simiple theory of images is available. Nevertheless, we think

that it would be possibe to generalize the ideas developed in this paper to elastic waves.
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