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Numerical study of an intrinsic component mode
synthesis method

Abstract.

Component mode synthesis belongs to the class of Galerkin methods and enables to
compute the normal modes of linearly elastic structures that can be divided into sev-
eral substructures whose lowest eigenfrequencies and corresponding normal modes are
known. Energy transfer between substructures is achieved thanks to the introduction
in the Ritz procedure of mode shapes defined on the whole structure and usually called
“static modes” or “constraint modes”. A new fixed interface method is presented in
a continuous framework: it is based on a non-conventional choice of constraint modes
tied to the normal modes of the Poincaré-Steklov operator associated with the interface
between the substructures. Error bounds are given in the case of three-dimensional
elasticity. An efficient domain decomposition algorithm is presented in details as well
as various tests.

Etude numérique d’une méthode intrinséque de
synthese modale

Résumé.

La synthese modale est une méthode de Galerkin qui permet de calculer les modes
propres de structures élastiques qui peuvent étre décomposées en plusieurs sous struc-
tures dont les fréquences propres et les modes propres associés sont connus. Le couplage
entre les sous structures est pris en compte dans la procédure de Ritz par 'introduction
de modes de vibration définis sur toute la structure et communément appelés “modes
statiques” ou “modes contraints”. Une nouvelle méthode a interface fixe est présentée:
elle est basée sur le choix d’un nouveau type de modes statiques, liés aux modes pro-
pres de 'opérateur de Poincaré-Steklov associé a |'interface entre les sous structures.
Des estimations d’erreurs sont données dans le cadre de 1’élasticité tridimensionnelle.
Un algorithme de décomposition de domaine est décrit en détail et différents tests
numériques sont présentés.



1 Introduction.

The dynamics of a structure behaving linearly and undergoing an arbitrary variable
load is entirely determined by its free vibrations and its initial state thanks to the modal
superposition principle. But the computation of the needed normal modes gives rise to
a number of practical difficulties, especially if repeated analyses are required, or when
the structure is made of a large number of components connected together, which may
differ among themselves, as far as mechanical or geometrical properties are concerned.
For example, space vehicules can be viewed as a set of interconnected substructures, like
launchers, payloads and appendages that are usually much smaller and lighter than the
main body. In the same way, off-shore oil extraction facilities, as well as satellites, are
composed of trusses, plates... The same can be said about cars, ships or modern slender
bridges, that in addition make a essential use of cables. Moreover, the mechanical
description of such multi-structures by means of partial differential equations often
leads to somewhat mathematically complicated models (see Aufranc [1990a,1990b],
Bernadou & Fayolle & Léné [1988], Bourquin & Ciarlet [1989)], Ciarlet[1990], Ciarlet
& Le Dret & Nzengwa [1989], Le Dret [1989]...). Their often clear decomposition
in much simpler components suggests to start to analyze the latter under static or
dynamic load, and then to take into account in the analysis of the entire structure the
behaviour of each component considered as isolated from the other ones. Component
mode synthesis takes advantage of this idea, and therefore belongs to the wide class of
domain decomposition techniques.

Component mode synthesis has become a very popular numerical tool in aerospace
engineering in the last two decades because it usually meets high standards of compu-
tational efficiency and versatility. For example, it allows to perform cheap parametric
studies such as structural optimization against vibrations, since geometrical or ther-
momechanical perturbations of one substructure do not affect the free vibrations of the
other ones, thus it makes recomputations very easy. Versatility can also be illustrated
by the possibility to include experimental tests performed on several of the substruc-
tures. Therefore, the technique fits in the framework of large aerospace projects for
which industrial substructuring is naturally imposed by the multiplicity of contractors
in charge of realizing the different parts of the whole structure.

Of course, dynamic substructuring is not restricted to the field of linear structural
analysis, and various applications can be thought of, such as fluid-structure interaction
(see Morand & Ohayon [1979], Valid & Ohayon [1974]), soil-structure interaction, music
synthesis, optimization against buckling (see Valid [1982]).

From a purely numerical point of view, significant cost savings can be realized
when remeshing is needed, since this task can be done locally, i.e. on each substructure
separately. But substructuring may also lead to an impressive computer cost reduction
at the stage where the global normal modes are computed, as well as to memory savings.
Furthermore, the method obviously inherits “coarse grain” parallelizability and may
recover increased attractivity with current rapid development of parallel computer
architectures.

There exists a lot of methods based on the idea sketched above. They essentially
depend on the boundary conditions that are imposed on the interface to define the
normal modes of each substructure, and on the way to couple the latter.



The first one, proposed by Hurty [1965], Craig & Bampton [1968], is based on
“fixed interface modes”: the normal modes of the different substructures are considered
as clamped on the interface. Dynamic coupling is achieved by taking into account
static mode shapes of the whole structure undergoing no exterior load but matching
prescribed values on the interface. For example, in a finite element setting, one can
choose the mode shapes corresponding to successive unit displacement at the interface
nodes, all other interface nodes being totally constraint. Moreover, this method, which
is referred to as the “fixed interface method”, remains one of the most widely used
in industrial environment, because it easily fits in existing finite element codes, and
because of its accuracy.

Goldman[1969], Mac Neal[1971], Rubin[1975] and many others introduced the so-
called “free interface method” and its numerous variants. They are all based on the use
of local normal modes defined with a free edge boundary condition on the interface. Al-
though this kind of modes are more prone to measurement than the fixed interface ones,
the resulting methods suffer from a certain lack of accuracy or from implementation
complexity due to the necessary introduction of residual mass or flexibility correction
matrices.

Gladwell{1964], Jézéquel {1985] and Destuynder [1989] among others presented dif-
ferent methods, referred to as “branch mode synthesis” or “component mode substitu-
tion” methods, that work well especially when one of the substructures is much larger
than the other ones. They quite often amount to seek for normal modes associated
with boundary stiffness or mass distributions that are strongly related to the mechanics
of the appendages.

In order to save computer time, Hale & Heirovitch [1980], and Wang & Chen [1990]
proposed to use a set of (possibly orthogonal) easy to generate mode shapes of each
substructure, which a priori do not coincide with normal modes.

Since this paper does not aim to review this subject, we refer to Craig [1985], Gib-
ert [1988], Imbert [1979], Jézéquel [1985], Meirovitch [1980], Morand [1977] and Valid
[1977] for detailed analyses on this topic.

Surprisingly, the convergence analysis of those methods by mathematical consider-
ations has not received the attention it seems to deserve. In this direction, Jézéquel
[1985] showed the convergence of any kind of component mode synthesis method in a
totally abstract framework. Meirovitch {1980] stressed the property that component
mode synthesis should converge just as any consistent Rayleigh-Ritz method does.
But deriving a priori error bounds and sharp convergence rates requires to take into
account very carefully the partial differential equation underlying the evolution of the
structure. To our knowledge, the first ones are given in Bourquin [1990a], where fixed
and free interface methods applied to second- and fourth-order self-adjoint differential
operators on one-dimensional domains are considered.

The endeavour to generalize those results to higher-dimensional problems led the
first author (see Bourquin {1989]) to introduce, in a continuous setting, a new compo-
nent mode synthesis method that extends, once discretized, the classical Hurty [1965],
Craig & Bampton [1968] one. It differs from the latter by the choice of the static
modes. They are chosen as the eigenfunctions of the Poincaré-Steklov operator, which
is well-known as a coupling operator in domain decomposition methods (see for ex-
ample Agoshkov [1988]). For this reason, they will be called “coupling modes” in the



sequel. They coincide with the normal modes of the whole structure whose mass den-
sity would be lumped on the interface. Robust error bounds for this method are proved
in details in Bourquin [1990b] for the heat equation on a domain partitioned in two
subdomains and with arbitrary boundary conditions. The finite element discretization
of the method is analyzed in Bourquin [1990c], and compared with the Hurty [1965],
Craig & Bampton {1968] one. We refer to Bourquin [1990d] for an analysis of the
method applied to second-order operators in the case of p substructures, where p may
be large.

It should be emphasized that the computation of the coupling modes uses a Lanczos
algorithm related to the Poincaré-Steklov operator, and is amenable to an efficient
substructuring algorithm that relies on the ideas developed by Bourgat & Glowinski
& Le Tallec [1987] (see also Bourgat et al. [1988]). In particular, the assembly and
factorization of the global stiffness and mass matrices are never necessary.

One of the most striking features of the proposed strategy is that the definition
and the number of component modes to take into account to get some given degree
of accuracy do not depend on the number of unknowns on the interface in the prac-
tical computation. This property allows for example to treat large three-dimensional
elasticity problems, where the number of unknowns on the interface is far from being
negligible, whereas the classical fixed interface method cannot be used at a reasonable
cost in that case ( see Imbert [1979], and also Bourquin [1990c]).

From the mechanical point of view, an intrinsic representation of the interface
displacements corresponding to low-frequency vibrations of the whole structure is pro-
vided thanks to the superposition of a few specific coupling modes shapes.

This paper is organized as follows: section 2 is devoted to the mathematical and
mechanical setting of the problem we shall consider. The method is presented in a
continuous framework for three-dimensional elasticity. New error bounds are given
without proof. The finite element discretization is indicated in section 3. Then the
algorithm is thoroughly presented in section 4. Finally, various numerical results re-
garding the above mechanical problems are discussed in section 5.

2 Presentation of the method.

Consider the problem of finding the normal modes (A, u) of a piecewise isotropic
homogeneous linearly elastic body of material occupying a domain € subdivided in
two subregions ; and Q, by a flat (or smooth) interface I', according to figure 1.

Let (A, 1) and p* denote respectively the Lamé constants and mass density of the
material occupying the region §;, i = 1,2. Let A' denote the fourth-order elasticity
tensor corresponding to the substructure §;, i.e.

kim = A 6ikbim + (1 (6516km + 65mbit),

and define the tensor

A= 3 x(Q)A,

[,



Figure 1: Decomposition of ) in Q; and §2; along I'.

where x(B) denotes the characteristic function of the set B. In the same way, we set
2 .
p =0 x(t%).
=1

Furthermore, let V (respectively V°, i = 1,2) denote the set of admissible dis-
placements of the whole structure (respectively of the substructure ; clamped along
the interface I', 7 = 1,2). Typically, V = Hj(Q) for pure displacement problems, but
this definition slightly changes for problems where a traction is imposed on part of the
boundary.

1
In what follows, e;x(v) = =(0;vi + Okv;) stands for the linearized strain tensor asso-

ciated with the displacement field v = (vy, v3,v;) defined at any point of the structure,
and o(v) denotes the linearized stress tensor resulting from this displacement. We
recall that Hooke’s law leads to the constitutive equations

o(v) = A:e(v).

We seek for the solutions (A, u) € IR x V to the problem

(1) ~divo(u) = Apu  in Q,
u=20 on d9,

where the pure displacement boundary condition is chosen in order to simplify the
exposition and can be replaced by more realistic ones. Taking advantage of IKorn’s
inequality and the theory of self-adjoint compact operators (see Taylor [1958]), prob-
lem (1) can be shown to admit a sequence (A, )33 € R x V of solutions arranged

. .1 . .
in such a way that the frequencies —1/ A form an increasing sequence that tends to

infinity with k. Only the first jo ones are of interest.
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The fixed interface modes (', u') of the substructure §; solve the equations

(2)

—divo(u') = M p'u' in Q;,
uw=0 on 9Q); DT,

in addition to the constitutive equations. Thanks to the same classical argument as
above, problem (2) admits a sequence (A}, u})% € R* x V; of solutions arranged so
that the eigenvalues A} form an increasing sequence.

Since a superposition of fixed interface modes cannot enable to reconstruct a mode
shape that a priori does not vanish identically on the interface I', it is necessary to add
some coupling modes in the final Ritz procedure.

To this end, let us introduce the space V- of admissible interfacial displacements.
For any such interfacial displacement v, we define © € V as the resulting mode shape
when no exterior load is applied, that is the solution of the boundary value problem

divo(t) =0 in §2; and Qy,
(3) =0 on 09,
v on I,

<
il

in addition to the constitutive equations.
Now the sum of the interfacial reactions of each substructure to this boundary
displacement depends linearly on the latter, so that one can write

2

(4) Z (U(ﬁ/ﬂi)'ni)/r = Tu,

i=1
where the linear operator T is by definition the Poincaré-Steklov operator associated
with the interface I' and the differential operator of three-dimensional elasticity. It
inherits the elegant properties of (anti)compact self-adjoint operators, and thus ad-
mits a sequence of normal modes (Ar, um)Es € RY x Vr that will be called “coupling -
modes”, and that satisfy

(3)

Tur; = A\ppurgon T y Vil e IV,
0< /\[‘1 S /\[‘2 S ey lhinoo /\[‘[ = +00.

It follows from definitions (3), (4), and (5), that those modes satisfy in particular
the variational equation

(6) /Qa(ﬂn) ce(v)dr = /\m/run.v dl’ YveV.

This equation expresses the principle of virtual works applied to the elastic structure

. 1 o
2 that vibrates at the frequency 7 Ari, and whose mass density is totally concen-
s



trated on the interface I'.

Remark. For the sake of clarity, we have adopted a classical formulation while
introducing the different modes of interest. Of course, a variational (weak) formulation
can be used in order to set the rigorous mathematical framework in which above defi-
nitions, especially (4), make sense. However, we shall not enter into the relevant math-
ematical details, which can be found elsewhere ( see for example Bourquin{1990b]). O

We now choose three numbers N = (N,, N,, Nr) and define the space of trial
displacements

(M) Vv = Span{®((u})}&))i, & (ir)ih },

which is composed of the linear superpositions of the N; first fixed interface modes
of each substructure ); and of the Ny first coupling modes. Then, component mode
synthesis consists in seeking for the successive critical points of the Rayleigh quotient

La(vN):e(vN)dx

NoVpd
/av vipazx

over the space V. Of course, the critical values and displacements (A}, u} ) solve the
variational equation

(8) Q) =

/Qo(uf):e(vN)dxz)\iV/(;uiv.vada: Vol € Vn.

The method is shown to yield exact results when all the fixed interface modes and
coupling modes are taken into account, that is A\J® = Ay, uf® = u; (with a suitable
normalization). The question of deriving error bounds of the quantities AY — A; and

O'(uiv - uy) : e(uLV — ui)dz has been answered for the Laplace operator, but we

now indicate how to extend the error estimates if further reasonable assumptions are
made as explained below: consider the auxiliary source problem posed in each of the
substructures

9) —divo(w') = f* in Q;,
w' =0 on J;,

where f* denotes any square integrable force field in ;. According to Leguillon &
Sanchez Palencia [1987], the displacement field w' may exhibit in the vicinity of each
edge and vertex of the substructure ; a singularity of the type r?, if  stands for the
distance between the current point and the edge or vertex considered. In what follows,
we only consider those of the latter that are part of, or adjacent to, the interface I.
Since the only singularities of w' are of that type (see the general theory of Kon-
dratiev [1967] as well as Dauge [1988] and Grisvard [1985]), there exists a maximal

singularity corresponding to @ =  min_ (3) > 0. Let us recall that a singularity
edges,vertices

of the type r!/? develops in a crack, in such a way that, in most cases of interest

8



for component mode synthesis, we have a > 1/2. But in any case, the value of o de-
pends on the geometry and Lamé constants of the substructures, that is on the domain
decomposition and on the operator considered.

In this setting, the following convergence rates can be established, when the first

order moments / ug.ugdz and / up .uf dz are normalized:
Q Q

2, &i(s, N N,
(10) A = Mt i - wi? < C(k) [Z M) ot F)] :
i=1 iN; I'Np
and
2 i ’Ni N
(11) AV — N+ [l — wil® < C(k) [25(3 o) el 2]
i=1 C,‘Nin C[‘Nr -1

for every real number s < 1.5, where we have set
Iloll? = / o(v):e(v)dzVv €V,
Q

and where n stands for the dimension of the structure: here n = 3. The quantities
€i(s, N;) and er(Nr) go to zero when N; or N tends to infinity. Notice that the
information on the geometry of the domain decomposition is entirely contained in the
parameter «, that is not directly related to the possible singularities of the solution
ug. Therefore, this error bound seems quite insensitive to the regularity of the latter.

The error bound (11) is a consequence of (10) and of a priori lower bounds regard-
ing in a first place the eigenvalues J;;, and in a second place the eigenvalues Ar;. The
lower bounds of the first kind appeal to the classical Weyl formula but the other ones
have to be proved (see Bourquin [1990b]).

For various reasons, the convergence rates (10) and (11) cannot be essentially bet-
tered although they look rough if one thinks of spectral or finite element methods that
converge at comparable speed, but require a lot of easy to generate basis functions.
However, it will be shown numerically that very few fized interface and coupling modes
need be computed to yield a 1% accuracy regarding the five lowest computed global
eigenfrequencies. This feature appears as a key point of the proposed component
mode synthesis strategy, and expresses that the low-frequency global normal modes
are very well represented by some low-frequency normal modes of the substructures
and some normal modes of the coupling Poincaré-Steklov operator. In the same spirit,
let us recall that modal superposition does also work very well when the external load
varies smoothly in time.

The second ingredient that makes the method efficient is the domain decomposition
method used to compute the coupling modes, as explained in §4.



Remarks.

(1) The case where a (possibly large) number p of substructures is chosen to partition
the original structure can be addressed in the same way, except that establishing error
bounds depending explicitly on the parameter p requires extra mathematical tricks
(see Bourquin[1990d]). Anyway, the following error estimates can be derived under
regularity assumptions regarding the domain decomposition, the details of which we
shall not go into:

12) A — e+ e —wl? < Ck) |( )stv) win Vo) |

N

p
where s, Ze;, er and C do not depend on the parameter p. Therefore, increasing the

1=1
number of subdomains allows a priori to take into account in the space Vy the same
total number of fixed interface modes, but more coupling modes, as will be shown in §5.

(i) The error estimates (10), (11), and (12) hold in fact for a wide class of physical
phenomena modeled by elliptic operators on n-dimensional domains.

(iii) The quantities ¢; and er also depend on the Lamé constants and mass density
of the material in a way that is thoroughly discussed in Bourquin [1990b]. In particular,
it is proved that a rigid or light or small substructure will influence the evolution of the
whole structure through its static behavior only, and possibly through its lowermost
normal modes. O

Let us now express the method in a finite element setting:

3 Finite element approximation.

In the sequel,  denotes a small parameter, and (V)50 a family of finite-dimen-
sional spaces such that V* C V. We assume that P*v — v if A — 0, where P" stands
for the orthogonal projection mapping onto the space V* with respect to the energy
scalar product. For the sake of simplicity, we exclude non-conforming methods, and
we do not worry about numerical integration, but those difficulties could be tackled
also.

Thus, the global normal modes (A}, u}) solve the variational equation

(13) /ﬂa(uﬁ) ce(vh)dz = /\',:/Quf:.vh dr Vo' e VA

Let V* (Vo resp.) denote the space of the restrictions to the subdomain Q; of the
trial functions v* € V* (that vanish on the interface I' resp.), let Vi denote the set
of the traces on I' of all the trial functlons of the space V", and set N}t = dim V.
Then, the fixed interface modes (/\J ,u' "y € R* x V% solve the variational equation

M ]

i,h — i,h 1Ah h V. th
(14) /(;'J(u) e(v") de = A" [ pdz Vo' €

10



On the other hand, for every interfacial displacement v € Vi, we define the re-

sulting global displacement R*v" = #** as the solution to the equations

(15)
ohh = ot onT,

{/na(f)h"):e(wh)dmzo Vb € VO 1<i<2,

which appear to be the discrete analogous of (3).

Let us now define the symmetric coercive bilinear form

(16) ba(v", wh) = /Qa(thh) ce(RhuM) dz Wb, wh € VL.

By Riesz’s representation theorem, there exists a linear operator T, over the space
Vi, such that

(17 bh(vh,wh) = /I‘(Thvh).whdf.

The operator T}, is the discrete Poincaré-Steklov operator, the Np lowest eigenpairs
(MR, ul)r of which we may seek for. They coincide with the critical points of the
Rayleigh quotient
b h ,h

(19) Q) = ),
/ v o*dT
r

over the space V. Of course, we assume that dim V{* > Np.

oh € Vi,

We now define the set of trial displacements

(19) Vi = Span{@®((u}")N))2, ® (R*up)n ).

Then the real life component mode synthesis consists in computing the first critical

points of the Rayleigh quotient (8) over the space V), that we denote by (/\,[cv'h, uiv’h).

This amounts to solve the eigenvalue problem

(20) KX =MMX, (\,X)€e R* x RNi+N+Nr

where the stiffness and mass matrices K and M can be expressed as follows:

- r \h 1 -
/\ll

(21) K

I
o

| 0 )‘lllNr ]

11



and

(22) M= 1 [t )] ,

((aph, ut)] |catt, )] |

where (u,v) = / v.udz is the scalar product on L%(Q2). Note that the stiffness matrix

1s diagonal, whereas the mass matrix possesses off-diagonal terms.

For the sake of completness, we recall the corresponding error bounds whose proof
can be found in Bourquin [1990c]. Let P : V — V% denote the orthogonal pro-
jection mapping with respect to the energy scalar product on ;. Then the following
inequality holds

2 i )Ni N
)\Lv'h — X+ ||uiv'h — wi||? < C(k) Z ils = ) + er(IVr)

23 i=1  N;» le‘sz
( ) 2 N; ) Nr
+ 32 CillI = PP + Y- Cill(I = PMyardf?,
i=1 j=1 =1

for some constants C;; and Cj, with s < 1.5, and where the functions €; and er are the
same as in (11).

Notice that mode truncation error and discretization error add to one another and
remain coupled. Therefore, the number of modes to take into account should suit the
mesh size, and not exceed a specific value depending on the latter. Such a constraint
has been observed by Dorr [1989] for a similar interdomain coupling technique. In this
direction, let us recall that the error bound (23) can be enhanced, in the sense that
both sources of error can be partly decoupled. Of course, loss of stability due to an
excess number of component modes should not be worried about, since the accuracy
of a Rayleigh-Ritz procedure does not decrease with respect to the number of trial
functions.

12



4 Algorithms.

4.1 Global algorithm.

In the case where we consider a structure decomposed into p substructures, the
algorithm of the component mode synthesis method consists basically of five parts:

(i) once the control parameters N = (N, ..., N,, Nr) and h are set up, compute the

fixed interface modes (A;",u;")ﬁ‘l on each subdomain;

(ii) compute the coupling modes;

(iii) form the stiffness and mass matrices K and M defined as in (21) and (22),
associated with the global problem and with our choice of basis functions computed in
steps (i) and (ii);

(iv) solve the small-scale eigenvalue problem (20), of size N = N;+N,+...+N,+ Nr,
which yields the global eigenvalues AY"* and the associated eigenfunctions on the basis
of fixed interface and coupling modes;

(v) restore the global solution everywhere in .
Steps (i), (iii), (iv) and (v) appeal to standard finite element techniques.

Once the number of coupling modes to compute is given, the speed of the algo-
rithm mainly depends on step (ii) which appeals to a Lanczos algorithm and makes an
essential use of domain decomposition techniques that will be outlined.

4.2 The interface eigenvalue problem.

The coupling modes (A%, ul,)rT, € R x Vi are the solutions associated with the
lowest eigenvalues of the discretized problem (cf. §3):

find (A%, u*) € R x Vi such that,
(24) b (uh,vt) = /\h/l:uh.vhdl‘ Yot € V.

In the following we use the same notation for a function v € V{# and for the
corresponding vector v € RM of its components in the canonical basis for a given
finite element interpolation.

We also note B and C the linear operators over R™F such that for every u,v in V4,

vITBu = ba(u,v)

(25) = ‘/F(Thu).vdl",

and

13



T —
(26) v'Cu = /Fu.vdl".

Thus we can write (24) as the eigenvalue problem

27) find (A, u) € R x V{# such that,
Bu = \Cu.

There exists several methods to solve equation (27) from the data of the matrices of
B and C. The computation of the matrix of C is classical once the basis functions on
the interface are defined. The latter are the traces over I of the basis functions defined
on the whole domain € in the finite element discretization of the global problem.

The originality of the method comes from the matrix of B that we do not want to
form directly, otherwise we would present a variant of the classical Hurty [1965], Craig
& Bampton [1968] method indeed ! We assume that we can only compute the product
Bu for a given u € Vi%. Let us see how it can be done.

From (25) and (16) we have, for every v in Vit

TBu = R'u) : e(R™) d:
v' Bu /‘;o( u) : e(R")dx
= /F (Tyu).vdl,

So, from the definition of the lifting operator R* we have:

+(w)TBu = /ﬂ o(RMu): e(w)de  Vw € V*,
p
- Z/ o(RM) : e(w)dz  Vw € V*,
i=1 7%k
p
= S (RM)T Kw; Vw € Vh,

i=1

where the mapping v is the trace operator on the interface I' , v; is the restriction of
v to ;, and K; is the stiffness matrix over §2;.

This shows that for the computation of Bu one has to solve p independent Dirichlet
problems to determine R*u; , ¢ = 1, ..., p, and to compute, on the nodes of the interface
I' N 8%, the products Rul K.

Then it is possible to solve a linear system associated with the matrix of B thanks
to a preconditioned conjugate gradient - P.C.G - method, like the one used in Bourgat
& Glowinski & Le Tallec [1988] (cf §4.4). Then problem (27) will be solved thanks to
a Lanczos method that we now explain.
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Remark. It is clear that the cost of the computation of the matrix of B (that is
necessary in a classical fixed interface method) directly depends on the number of inter-
face unknowns N} since the product Bu has to be done for all the (u = ey, e, ..., eN#)

vectors of the canonical basis of JR™F. 0

4.3 The Lanczos method.

We will now ide'{ltify the space of linear operators over RM and the space of
matrices IR"T x IR™M" so that the following equations make sense.
As we explicitly know the matrix of C, we can consider its Cholesky decomposition:

C=LL"
Then, for (A,u) € R x R " solution of (27), we have

Bu = Mu=ALL .

If we set
_ LT
v=L"u,

we have:

1
LTB'Lv = TV

The problem (27) is then equivalent to find the Ny largest eigenvalues and associ-
ated eigenvectors of the linear operator:

A: RNt — RN

with
A=LTB™'L.

We now recall the Lanczos method which is known to be efficient to compute few
of the biggest eigenvalues of a given operator.

Initialization:

choose p;, an initial unit vector,

T A
compute g = Ap; — aypy with oy = plT - )
Pi
1 .
and p; = —¢a with v, = ||¢2f|.
v
Step k:
compute
(28) Qk+1 = Apg — oxpk — Brpi-1,
with



_BeAB g P

k — .
Pk Pi_1Pk-1
If gk+1 = 0 choose pr41 a unit vector in {py,...., px }+,
otherwise set
1
Pea1 = ——qk41 5 Vi1 = [|qr4a]|.
Vi1

From (28), after k steps we have:

(29) Alp1y s P) = [p1y s i) T + [0, .., 0, 1],
where,
o B
v, az P 0
T, =
0 Vk-1 k-1 Pr
Vi (273

The coefficients o and fi are chosen so that {pi,...,pr} is an orthonormal se-
quence ; in fact the coefficients v that normalize the vectors {pi,...,px} are equal to

B:

Bk = pr_1Apx = (qk + ako1Pro1 + Br-1Pk—2) Pk = G Pk = ViPrPr = Vi,

then the matrix T} is symmetric.

The Lanczos iterations give rise to a subspace with an orthonormal basis {p,, ..., px},
in which the “Galerkin projection” of the linear operator A is a three-diagonal symmet-
ric matrix T;. Then one can compute at a low cost the eigenvalues and corresponding
eigenvectors of Ty which approximate the eigenvalues and eigenvectors of A. In fact,
numerical tests show that, if & > 2 x Nr +4, the Nr biggest eigenvalues of T} coincide
with the Nr biggest eigenvalues of A.

Unfortunately, if the algorithm is carried out as described, the last p, may be far
from being orthogonal to the previous ones. This occurs when there is a good deal of
cancellation when computing gx41 from Apy — axpr — Brpr-1. In order to make sure
to obtain the full set of eigenvalues and eigenvectors, it is necessary to ensure that
the computed p; are orthogonal to working accuracy. The conventional way of doing
this reads as follows: after computing gx4; via (28), this vector is reorthogonalized
with respect to py, ..., pr. Golub & Underwood & Wilkinson [1972] propose to use the

16



orthogonality of the canonical basis e}, €3, .....ex through an orthogonal transformation;
at step k, they determine a transformation Oy such that pryy = Okqr€x41.

Then, once {p1,...,Px-1}, H1,-.., H; are determined, the iteration k becomes:
compute '

Qes1 = Apr — cupr — BiPr-1,
with
ak = pf Apk Br = pi— Aps.
Form
Geyr = Hy. . Higpys.

Compute the Housholder matrix
Hypr =T - 2u{+1uk+1
such that Hy;,gi4; has its Nt — (k + 2) last components equal to zero. Then, set

Pey1 = HyHipepqa.

It is proved in Golub & Underwood & Wilkinson, [1972] that the p, obtained in
this way are orthogonal to working accuracy. ,
This variant also avoids to restart the algorithm if gx4; is equal to zero before

k=Nt
Remarks.

(i) The number N;; of iterations necessary in the algorithm, N;; > 2 x Np + 4,
remains small compared to the order of B which is equal to N}. Indeed, as expected
the number of coupling modes N we have to take into account is small (see numerical
tests in §5).

(ii) For a two-dimensional problem, N{ increases like 1/h when the number of
unknowns in each subdomain increases like 1/h2? ( 1/h? and 1/h° respectively in three-
dimensional problems). Then the storage of the & Housholder matrices used in the
reorthogonalization process is almost free of charge.

(iii) In practice, more than 95% of the CPU time is spent by the C.G. procedure
that solves the linear system associated with B at each iteration. This shows that the
performance of the algorithm strongly depends on the preconditioner used in this C.G.
procedure and not on the method used to get the orthogonality of the p;. In fact, the
preconditioner used here gives “good” results in the sense that the number of iterations
of C.G. algorithm does not depend on the number N} of unknowns on the interface
['. In addition, it proves robust and adapts to any kind of domain decomposition.

Nevertheless, other algorithms may run faster and could be used as well (see d’Hennezel
[1990)). fu]
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4.4 The preconditioned conjugate gradient algorithm.

At each iteration of the Lanczos method, the most important step is to compute
the product Ap; in (28). Since A = LTB~'L, One has to solve:

(30) { find z € Vi* such that:

Bz =15

with b= LT p;.
Using an operator By as preconditioner consists in rewriting problem (30) in the
following way

ByBzr = Byb,
where By is chosen such that the condition number of the operator ByB is close to 1.

The motivation of Bourgat et al. [1988] is to give an efficient substructuring al-
gorithm for static problems. In their approach, they reduce the global problem in a
problem whose unknowns are located on the interface. The corresponding interface
operator is nothing but the Poincaré-Steklov operator T}, associated with the bilinear
form B. Then a static substructuring problem is solved with one resolution of (30)
by a P.C.G. algorithm; the preconditioner By is a sum of discrete Neumann lifting
operators as explained below.

We recall that at each iteration of the P.C.G. algorithm the two main steps are the
computations of Bz and Bgy for two given functions z et y in V{* (see for example
Lascaux & Théodor [1987] for more details). A

In section 4.2, we have shown how to compute Bz. Consider now y in V{, the
computation of Byy is done as follows:

find z; € V* i = 1,.., p such that:
(31)

/ a(zi):e(zi)d:v=/r(a,~y).z,- dl Vz € VP
Q

where the mappings

are such that:

Then »
Boy = )_ ay(zi),

=1

where v is the trace operator on I'.
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Remarks.

(i) In the case where the interface I' is composed of only “one” interface between

. . 1
two subdomains, one can simply choose «; = -2-Id.

(ii) In some cases, if no external Dirichlet boundary condition is imposed, the prob-
lems (31) cannot be solved. To avoid this difficulty, Bourgat et al. [1988] propose to

“increase” the energy associated with / o(z;) : e(2;)dz. This means that some pos-
Q

itive terms are added to the diagonal of the corresponding matrix so that the latter
becomes invertible.

(iii) The Neumann problems (31) are independent of each other. As we have seen
in (§4.2), the computation of Bz can be done independently on each subdomain. This

shows that the two main steps of the P.C.G. algorithm can be performed in parallel.
0 .

5 Numerical tests.

The two- and three-dimensional coding of the algorithm described in section 4 has
been done in the finite element library MODULEF in a multi-element, multi-problem
and multi-tasking framework.

In Bourquin [1990c], several numerical tests regarding the heat equation have been
performed in special cases where the global normal modes and all component modes are
explicitly computable. They confirmed the sharpness of the predicted convergence rates
as well as the accuracy of the method with respect to the number of component modes
that have to be taken into account. Here, we aim on the one hand to prove numerically
robustness properties of the method with respect to the domain decomposition, the
physical problem considered, and the discretization, and on the other hand to assess the
efficiency of the algorithm that computes the low-frequency spectrum of the Poincaré-
Steklov operator.

5.1 Test 1.

We first consider the case where the number of subdomains goes from p = 4 to 9
and 16; we study the convergence rate with respect to the number of coupling modes
Nr and fixed interface modes Ny, ..., N, taken into account in the approximation of the
global problem.

Let us consider the eigenvalue problem,

—Au= M in{,
u=0 on 09,

where 2 is the unit square.

19



This problem has a sequence of analytical solutions (A, ug)f3], with:

)‘k = (kl + k2)7l'2, )
{ u, = sin kywx sin kymy, (K1, k2) € IN*.

We define over (1 a finite element discretization of piecewise linear polynomial
functions on a uniform triangulation. In order to neglect the discretization error in
inequality (23), we solve the problem on a fine mesh composed of 14112 P1-Lagrange
finite elements. The mesh is also chosen so that Q can be partitioned in 4, 9 and 16
equal squares along its edges.

For this test, we fix M = Ny = ... = N, and we analyze the convergence of the
method with respect to Np, M, p. The following figures show the decay of the relative
error on the computed eigenvalues Ay™"* defined by:

AiVF.M'P — Ak

errk(Nr,M,p) = 3
Ak

for k=1 (4),k =2 (%) and k =5 (o).
Figures 2 and 3 give the error for p = 4, figures 4 and 5 for p = 9, and figures 6
and 7 for p = 16.

Let us first notice that these plots show the numbers M and Nr one has to choose
to get a given accuracy; indeed, inequality (12) says that the error with respect to
M and Nr are not coupled and add to one another (as far as discretization error is
neglected). This is one of the reasons why the error does not go under a limit value.
Consider for instance figure 2; as M varies, Nr is fixed to 12 and thus remains finite.

. . . A
Note also that the relative error on the frequencies v, with v? = 17 s half the error
m
given here on the eigenvalues.

p | 4]9]16

Nr| 8 116131
Mi10|l 716
Table 1.

Table 1 gives the number of fixed interface modes M and coupling modes Nr used to
get a relative error on the first five eigenvalues under 1% (0.5% on the eigenfrequencies).
We see that, as predicted by inequality (12), the number of fixed interface modes per
subdomain tends to decrease and the number of coupling modes to increase when p goes
from 4 to 16 to get a given accuracy. So it is clear that, as the number of subdomains
becomes large, the step (ii) of the algorithm (computation of the coupling modes) is
extremely time consuming. Indeed the number of Lanczos iterations is much larger for
P = 16 than for p = 4 to get all the necessary coupling modes. Moreover, the number
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Figure 2: Error for the Laplace operator on four subdomains with N = 12 and M
increasing.
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Figure 3: Error for the Laplace operator on four subdomains with M = 12 and Np
increasing.
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Figure 4: Error for the Laplace operator on nine subdomains with Ny = 16 and M
increasing.

10-1 error I

1 L1111l
.
.
.
.
-

10

O 00000

10

T 7 Illllll T T T TTT77T

10

Figure 5: Error for the Laplace operator on nine subdomains with M = 12 and Np
increasing.
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of P.C.G iterations to solve the interface aperator at each iteration goes from 5 to 18
when p goes from 4 to 16.

Those results show in particular that simple decompositions as considered here,
are, even in a parallel environment, not a so good strategy when the number of sub-
domains becomes large. The problem is the same for static substructuring problems
using the Poincaré-Steklov operator to couple subdomains (see De Roeck & Le Tallec
& Vidrascu (1990] and Bourgat et al. [1988}). We guess that our algorithm works
similarly on identical problems.

Remark. It is noteworthy that high-frequency coupling mode shapes concentrate
in the vicinity of the interface (figure 9), as if they would represent some sort of “short
range interaction” between the substructures, whereas the low-frequency ones do not
vanish identically anywhere in the structure (figure 8), and thus the latter seem to take
care of the “long range interaction” between the substructures. A deeper insight into
this phenomenon may be of interest. o

Figure 8: The first (left) and second (right) coupling modes.

The following tests will show the efficiency of the method on some different elliptic
problems.
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Figure 9: The eighth (left) and twelfth (right) coupling modes.

5.2 Test 2.

As an example of a nonsmooth problem we consider the following:

—Au=Au inQ,
u=0 on df,

where () is a L-shaped domain. Figure 10 shows how it is decomposed in two subdo-
mains.

Here we shall see how the method behaves for different discretizations of the prob-
lem. Since we do not know analytical solutions for the global problem, we plot the
component mode synthesis error given by:

AN’h _ Ah
err®(Ny, Ny, Np, h) = kA—hk
k

where the solutions (A}, uf) are computed thanks to a classical global method.

Consider first a regular uniform triangulation of . On this mesh, we use piecewise
linear functions on each triangle for the discretization of the problem. Figures 11, 12
and 13 give the error err*(Ny, Na, Nr, k) for the eigenvalues k = 1 (+), k = 2 () and
k=15 (o).

The finite element approximation of the problem on this type of domain can be
greatly improved by refinement techniques near the singularity thanks to the (h,p)-
version of the finite element method, treated for example in Babuska & Dorr [1981].
We do not try here to reach an optimal approximation, but the following tests show
that the number of modes is stable under local refinement: consider indeed a refined
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Figure 10: The L-shaped domain and its decomposition.

[ ereer ]
4o* [srroe ]
3
1@ o
] oo
7 O 0
-2
107 s, %00
3 <t
N .,
107 .
3
»
1e T T lllllll T ¥ T T TTT
12°

Figure 11: Error for the Laplace operator on a L-shaped domain with regular mesh.
Nr =17, N, = 14 and N, increasing.
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Figure 12: Error for the Laplace operator on a L-shaped domain with regular mesh.
Nr =1, N, = 14 and N, increasing.
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unstructured triangulation with “small” elements around the reentrant corner. The
problem is approximated by piecewise polynomial functions of degree two on each
element (P2-Lagrange). Figure 14 gives here again the error err*(N,, N,, Nr, k) for
eigenvalues k =1 (+), k =2 (x) and k = 5 (o) with N; = N, = 14.
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Figure 14: Error for the Laplace operator on a L-shaped domain with refined mesh.
N = 14, N, = 14 and Nr increasing.

As expected, we get similar results as before with a discretization of the interface
which is different. A difference in the approximation of the fifth eigenvalue can be
noticed. This can be explained by the fact that we have a good approximation of the
fixed interface modes and coupling modes of “high energy” with polynomial discretiza-
tion.

It is noteworthy that component mode synthesis more or less captures the singu-
larity of the global normal modes, thanks to the coupling modes only. As a matter of
fact, fixed interface modes are smooth up to the boundary. However, the computed
singularity depends on the geometry of the domain decomposition and therefore can-
not represent exactly the singularity of the global modes.

It is interesting to compare the number of fixed interface modes to take into account
in each subdomain. Since subdomain 1 is larger than subdomain 2, the corresponding
fixed interface eigenvalues are smaller on subdomain 1 than on subdomain 2. Then
the decay of the error regarding the corresponding modes tends to confirm the error
boynds (10) that holds for the Laplace operator also.
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5.3 Test 3.

Here the method is applied to a problem of flexural vibrations of a Kirchhoff-Love
plate clamped on one side. The decomposition in two subdomains is done as on figure
15, such that subdomain 2 is nowhere clamped.

The reader may be surprised not to find in this paper the relevant mechanical set-
ting nor the formulation of our component mode synthesis method either. The careful
analysis of plate-like problems will be developed elsewhere. Nevertheless, the method
works also in this case. The following tests are given for the sake of completness and
show its versatility.

NN

Figure 15: The clamped plate and its decomposition.

On a regular uniform triangulation we use a conforming finite element of low degree
called reduced-HCT element (see Ciarlet [1978]), with an order of convergence in O(h)
in energy norm.

As in test 2, we give the relative error err*( Ny, Ny, Nr, h) for eigenpairs k = 1 (+),

k =2 (%), and k = 5 (o), where the eigenpairs (A}, u}) are computed with a classical
global method. Figures 16, 17 and 18 give the error decay when N;, Ny and Nr increase.
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5.4 Test 4.

We finally consider a problem in three-dimensional linearized elasticity: a square-
shaped beam of section 1 and length 4 is clamped at one end (see figure 19). It can
be decomposed in four unit cubes with only one having external clamping boundary
condition. The problem is discretized with piecewise linear functions over a uniform
mesh composed with tetrahedra (P1-Lagrange).

We have 648 degrees of freedom per subdomain and 324 degrees of freedom on the
interface. Table 2 gives here again the error between the eigenvalues computed by a
global method and by modal synthesis with:

N1=N2=N3=N4=3, N[‘=5

k | 1 | 2 | 3
err® | 3.46107 | 3.62107° | 8.021073

Table 2.

The figures 20 and 21, display respectively the first and third global normal mode
shapes computed with the global finite element method and the first and third coupling
mode shapes. If we compare those figures, it is difficult to see any difference. This
illustrates the fact that our choice of coupling modes gives a good representation of
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Figure 19: The square-shaped beam and its mesh.
the global solution.

Remark. Based on our experience, it is worthy to note that mass lumping mod-
ifies the spectrum of the Poincaré-Steklov operator, but leaves the component mode
synthesis solutions (AN* ul"*) unchanged. For this test, the matrix C (§4.3) is taken
equal to identity. This insensitivity makes the method easier to implement in existing

finite element codes. O
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Figure 20: The first (left) and third (right) normal modes for a three-dimensional
elastic beam by a global method.
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Figure 21: The first (left) and third (right) coupling modes for a three-dimensional
elastic beam.
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6 Concluding remarks.

This paper reports on a new fixed interface component mode synthesis that has been
presented both in a continuous and in a discretized framework. A non-conventional
intrinsic choice of constraint (coupling) modes is proposed, and leads to a robust and ac-
curate substructuring strategy. Let us now comment on specific aspects of this method.

(i) When a very coarse mesh is used in the vicinity of the interface, that is when
the latter is represented by a small number of degrees of freedom, the classical fixed
interface method should be preferred. However, as soon as reasonably large three-
dimensional finite element problems are considered, forming the stiffness matrix of
Hurty’s method may become impossible (see §4.2). In our algorithm, the number of
iteration steps is not sensitive to the discretization; CPU time and storage requirement
only depend on the number of unknowns in each subdomain. This makes the method
of great interest for large three-dimensional problems having a lot of unknowns on the
interface.

(i) Let us emphasize that the method presented here does not depend on the choice
of the algorithm that solves for the coupling modes. The Lanczos procedure is not the
only one possible, and although we think that it is the most suitable one here, subspace
iterations could be thought of as well. In the same way, the algorithm that inverts the
interfacial stiffness matrix (§4.4) may be replaced by a more efficient one. The algo-
rithm proposed by Bramble & Pasciak & Schatz [1986], or Bjorstad & Widlund [1986]
may work faster but cannot be used in every case. On the other hand, d’Hennezel [1990]
has recently proposed a new efficient preconditioner that works for a lot of realistic de-
compositions. The current development of such domain decomposition algorithms for
source problems warranties the potential efficiency of our component mode synthesis
method in the near future.

(iii) Let us recall that the most time consuming step of industrial scientific com-
puting is by far geometry and mesh generation. Since linear static analysis is usually
performed before modal analysis, using the “static” (fine) mesh for the latter clearly
leads to a great increase of engineering efficiency, even if this static mesh is a priori
much too refined for modal analysis. But this demand can be fulfilled only thanks to a
method yielding reasonably accurate results sufficiently fast; this capability is provided
by the proposed strategy.

(iv) Based on our experience, the mass matrix C of the interface I' needs not be
computed. Various simple strategies of mass lumping have been tested. We do not
know how to decide where to distribute the mass along the interface. A similar question
has been raised by Destuynder {1989]. For implementation purposes, we thus recom-
mend the simplest discretization independent strategy, that is to choose the identity
matrix.

(v) The idea of using the Poincaré-Steklov operator as a tool for generating ba-

sis functions in view of a Ritz procedure can be traced back in El-Raheb & Wagner
[1981,eq16], but their practical computation seems to appeal to the knowledge of the
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interfacial stiffness matrix, that we do not want to compute, and the numerical analysis
of the operator is not addressed.

(vi) Finally, the question of whether our choice of coupling modes is optimal or not
has received a positive answer from a purely numerical point of view. As a matter of
fact, one could think of saving computer efforts by computing a rough approximation
of those modes, either by performing a coarse resolution of the Poincaré-Steklov oper-
ator, or by decreasing the dimension of the Krylov subspace in the Lanczos procedure.
Unfortunately, in both cases the accuracy of the final result of component mode syn-
thesis deteriorates for a given number of coupling modes. Therefore, those modes have
to be computed very carefully and seem to represent quite well a major part of the
global dynamic behaviour.
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