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Les contours d’occultation: détection et re-
constructlon en vue de la modélisation d’ob-

jets 3D!
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regismirsa.inria.fr - faugeras@mirsa.inria.fr

Ce rapport de recherche est consacré a I'étude des contours d’occultation. Les contours
d’occultation sont ccux pour lesquels le ravon optique est tangent a la surface observée. Nous
présentons plusieurs résultats liés aux proprié¢tés de 'image de ces contours et un algorithme
permettant : la détection des contours d'occultation en utilisant plusicurs images (au moins 3)
et la reconstruction de la surface observée dans le voisinage Jdu contour. La reconstruction faite
comprend les propriétés différenticlles de la surface jusqu'y I'ordre 2: courbures et directions
principales. Nous présentons aussi un algorithme trés simple permettant le calcul du signe de
la courbure gaussienne. Des résultats sur des donndes svnthétiques (en vue dévaluer la qualité
numérique) et des données réelles sont présentées. Les applications potentielles de ces algorithmes
sont trés importantes dans le cadre des problemes de inodélisation d’objets.

Using Occluding Contours for 3D Object
Modeling

This research report is devoted to the study of the extremal boundaries. The extremal
boundaries are such that the optical ray s tangent 10 the surface. We present several results
about the properties of the image of these contours and an algorithm for detecting and recon-
structing them (we need at least three images). The reconstruction includes up to second order
differential properties (principal curvatnres and directions). We also present an algorithm for
computing very simply the sign of the gaussian curvature. We show results on synthetic (it is
a very convenient wayv to study the numerical quality of the results) and real data. Potential
applications of this kind of algorithm are in the modeling of 3D ohjects.

"This work was supported in part by Esprit project 12502 Voila



1 Introduction

Ouce of the aims of computer vision is to extract concise surface descriptions from several images
of a scene. The deseriptions can be used for the purpose of object recoguition and for geometric
reasoning (such as obstacle avoidance).

Stereovision is often used for recovering the structure of the 3D world. Standard techniques
can determine the depth of edges on a surface. These techniques fail with extremal boundaries
as these change according to the viewpoint.

When we form on the vetina of a camera an image of the environment we assume, np to
a very good approximation, that it is a perspective projection of the scenc and that. at every
pixel, the image intensity is proportional to the scene irradiance [Hor86]. One of the goals
of computer vision is to extract from this pattern of changing intensities relevant information
about the three-dimensional geometry and kinematics of the objects present. One of the key
ideas to achieve this is to extract edges because they always signal important physical properties
of the scene: discontinuities in the reflectance, texture, color, depth, motion are among the many
possibilitics. But even though the knowledge of the physical origin of an edge in an image is
extremely important for further analysis, this information is usually lost making the task of
computer vision more difficult.

dc

Figure 1: The different edges

For example. figure | shows examnples of several of these edges: edges labeled r correspond
to a rapid change of the reflectance of the cylinder, edges labeled s are caused by the shadow
of the cylinder cast on the parallelepipedic box that supports it. edges labeled d correspond
to discontinuities of the distance of the object to the camera, the normal 1o the object being
discontinuous there (peaks and throughs), edges labeled n signal a discontinuity of the normal to
the object without a discontinuity of the distance. Finally edges labelled de signal a discontinuity
of the distance to the camera with no discontinuity of the normal to the object which varies
smoothly in the vicinity of the edge.



Labelling correctly and robustly those edges has proved to be a formidable task from just
one jimage. If we have several images of the same scene taken from slightly different viewpoint
as in the case of a moving observer or in the case of sterco, then the task may be a little simpler.

Let us consider for example the case of stereo. Many algorithms proposed for doing sterco
arc edge hased [Grif5,BB81,0K85,AL87],.... After matching these edges they can provide depth
along the edges which can be interpolated to yield a surface representation of the scene [GriS3.
FLB90]. Classification of the edges can then be obtained from this surface model.

my My
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Figure 2: pixels m; and m; are not the images of the same phvsical point on the cvlinder

This sounds like a reasonable thing 10 do but be cautious! This analvsis assmnes that an
edge in an image which is matched to an edge in another image both correspond to the images of
the same physical event in the 3D scene. Unfortunately, this is not true of the edges labeled dc
in figure 1 as the reader may convince himself by looking at figure 2 which represents the stereo
geometry in a plane going through the optical centers of the two cameras. Pixels my and my are
both on the outline of the cylinder as seen from the two cameras but hecause of the geometry of
the object they arc not the images of the same physical point: if our stereo algorithm matches
them they will vield the reconstructed point M which is an error.

Such edges have received several names in the literature: some authors call them obscuring
edges, extremal boundaries when refering to their images, or the rim when referring to them in
3D. Note that the rim is not a physical marking on the object but depends both on its geometry
and the viewing position.

It looks therefore as if we should pay attention to those edges and that further processing
of the data is necessary in their vicinity. We may take the pessimistic view of abandoning the
hope of obtaining an accurate reconstruction of the object near those edges. As we show in
this paper, this would be a big blunder since it is precisely there that we can extract the most
information about the geometry of the object: unlike edges such as d, r. s. or n where only
the distance de to the cameras can be recovered. extremal boundaries allow us to recover the



distance, the normal nx of the object and the principal curvatures or in terms of differential
geometry, the differential properties of order 0, 1 and 2.

If this statement is correct {and we show that it is in the rest of the paper) obscuring edges
appear more as a forgotten or lost treasure than as a nuisance for computer vision as a superficial
analysis might conclude.

In this paper, we propose a new method for detecting extremal boundaries. We also propose
an algorithm for reconstructing exactly the curves observed by each camera and computing the
principal curvatures of the object surface in their vicinity.

Extremal boundaries have already been studied by several authors. They broadly fall into two
classes; in the first class, the anthors assume that they have one monocular image in which they
have been able to identify by means that they do no describe one occluding edge. They then go
about to describe the kind of inferences that can be drawn from this observation. Marr [Mar82]
already signaled their possible importance to infer the sign of the gaussian curvature of the
object. His observations were made more precisely by Koenderink [Koe84] who has done a
fairlv thorough job at analvzing the gualitative properties of the rim and its images. Brady
et. al [BPYASS5] have derived other ways some of proving some of Koenderink results. In the
second class, the authors assunie that they have several views of the silhouette of an object
and therefore several occulding contours. The work of Giblin and Weiss [GW8&6] falls in that
class: they consider the two-dimensional case, analog to figure 2 and model the object as the
envelope of its tangents. Even though they work in this simplified setting and have only done
simulations we consider they work as seminal to ours. The work of Basri and Ullman [RSR88] is
more practical: thev show the interest of computing the magnitude of the image curvature of
the silhouette of an object. It is possible. from there using a small number of viewer-centered
models of the objects to predict their new appearance from any given viewpoint. Their work
is restricted in the sense that they use orthographic projection for the camera and make very
special assumptions on the motion of the object between the different views. Blake and Cipolla
[BC90] suppose that they obscrve the surface using a camera that they describe with a spherical
model and that this camera moves continously with a known motion (the motion is computed by
following markings on the surface). They parametrize the surface with respect to the arc length
along the extremal boundary and the time. They find the computation to be very sensitive to
noise on the measurement of the motion and chose to compute differential curvature rather than
curvature. Differential curvature is the difference between two radii of curvatures. Finally Lim
and Binford [LB8S] have also worked on this problem. They use two views of the object and tryv
to describe its surface by a cylinder whose section is a conic. None of these authors solve the
problem of identifying occlnding contours in the image.

In light of all this. our approach has several specificities which we think are interesting:

1. we identifv occluding contours from triplets of images by cstimating the radius of curva-
ture of a special planar cross-section of the object surface: the radial curve (defined in
section 5.1).

2. on the identified occluding edges, we detect the parts which are image of points ou the
object with zero gaussian curvature (parabolic points).

3. we model the object as the envelope of its tangent planes and use the Gauss map (defired
in section 3.2) to compute the depth, the normal and the second fundamental form of the
surface along the occluding edge (except at the parabolic points where the Gauss map is
degenerate).




4. we use a general camera model that uses perspective projection and is not restricted to
orthographic projection,

Our paper is then organized as follows. In the first part, we present the theoretical framework
of our algorithms, we briefly describe the main characteristics of the experimental setup used. In
the second part, we present a method for detecting and reconstructing the extremal boundaries.
The third part is devoted to the study of the computation of the first two fundamental forins of
the surface in the neighbourhood of the extremal boundary. We also study a special case: the
observation of parabolic points and we introduce an interesting relation between the gaussian
curvature and the curvature of the image curve. In the last part, we present results on real and
svnthetic data and discuss their accuracy.

2 Preliminaries

2.1 Camera Model

We assume that after calibration our cameras can be accurately modeled as pinholes. The
important features of such a svstem are the optical center and the retina plane where the
image is formed. Calibration techniques parameters have been extensively discussed in the
literature [FT86,Tsa86].

2.2 Object Models

We suppose that we are looking at a smooth object. i.c.. whose surface is at least (2. As discuss
in the introduction, for a given position of the camera, we can draw the optical rays tangent to
the surface of the object. These rays cut a curve on the retinal plane. the occluding contour.
and touch the object along a smooth curve on its surface, the rim.

2.3 Experimental setup

As shown in figure 3 our system is a stereo rig. with three cameras.
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Figure 3: Trinocular stereovision system
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The method that we have developed can be applied to more general systems. There are only
two restrictions:

o We need at least threc images from a scene. The viewpoints must not be too different.
With more than three images, the algorithms can be used in the same way and vicld
improved results.




o The relative positions of the different viewpoints must be known exactly.

For the detection of cdges in the mages, we use a recursive implementation of the Canny
filter [Der&7], followed by linking and polvgonal approximation. The whole process is described

in [VDF&9].

3 Computing differential properties of the object along the
rim

Like Giblin and Weiss. we consider the surface of the object as the envelope of its tangent plancs

but make no assumption about the camera motion or about orthographic projection on the
retina plane. In fact we deal with the full perspective projection case.

3.1 Definitions and notations:

Figure -I: A Rim (R) and its image (r)

As shown in figure 4, we consider a fixed coordinate svstem (Qayz); the optical center is at
C. The camera looks at the vim (R) which produces the occluding contour (7). A point m on
(r) is the image of a point A/ on (R) at which the optical ray determined by C'm is tangent to
the object surface. The tangent plane to the surface at Af is defined by the optical ray and the
tangent 1 to the occluding contour at m. Let » be the unit length normal vector to this plane,
defined by its Euler angles 8 and ¢ and p(#,6) the distance from the origin to the tangent plane.
The equation of this plane can be written as:

n(8.0)"X — p(8.¢) =0 (1)

where X is the vector (z,y,2) and n = (cos(8)cos(),sin(f)cos(@). sin(é)).
With respect to image measurements,

Cm At

8.0 = EAT

and p(A.0) = n(d,6)- OC




The observation of an ocelunding edge immediatly vields the normal 1o the object (differential
property of order 1).
3.2 A parametrization of the surface and the envelope theorem
In this paragraph. we establish that under some hypothesis, (#,¢) is a parametrization of the
surface (X) in the neighbourhood of a point . We consider the Gauss map :

N:i(E)— 8

where 52 is the unit sphere of R3. To each point p of (L), .V associates the point of $2 where

the normal to (X) pierces the Gauss sphere.

Theorem 1 The Gauss map is singular if and only if Ky(p) = 0.

Kg(p) is the gaussian curvature of (£) at p € (). A proof of this result can be found in [Car76)].
Now consider the mapping (6, ¢) — p(8: ¢) which associates to every direction the distance
from the origin to the plane tangent to the surface whose normal is in the direction (6. 3).

Theorem 2 For every non-parabolic poinl, (A,¢) is a parametrization of (X)) and we can give
a paromelric equation of the surface :

¥ = cos(6)cos(B)p(8. o) ~ sin(o) cos(#) 2 Sl Tplls)
y = sin((?)cos(o)p((i,o)—sil\(9)ﬁi1’(<")apf-f0¢;@)+5:((f»))'2’7‘v'("&d) @
s = sin(o)pl8.¢) + cos(o) 2]

Proof
First, for every non-parabolic point, (6. ¢) is a parametrization of the surface. We consider
the following open set of /¢%:

V={(0.¢0)0<8<2r.0< b < 7}

and the map x

X : Voo R3
(8.0) — {cos(f)cos(o).sin(#)cos(¢),sin(o))

x(17) is a subset of $% and x is a parametrization of this subset. It is clearly differentiable and

the jacobian matrix is -

—sin(f)cos(¢) —cos(B)sin(¢)

cos(B)cos(@p) —sin(f)sin(¢)
0 cos( )

The determinant of this jacobian is null if and only if cos(¢) = 0. For §2, this occurs at the
points (0.0, 1) and (0,0. —1). Except for these points x, is a parametrization of 5. The previous
result on the Gauss map implies that except for the parabolic points, 8, ¢ is a parametrization of
the surface. The specious point on the spherc $? can be eliminated by choosing an appropriate
frame.

The following part of the proof uses (6, 0) as a paramatrization of S2. In fact we can use
any other parametrization of the sphere as for example the stereographic projection.
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We denote X (8, ¢) the parametrization of the surface (X) with the angles (8. ¢):

X vV~ (%)
(6,6) — X(6.0)

The following equation must be satisfied by the points of (¥):

n(6,¢)- X(8,¢) - p(6.0) =0 (3)

We derive the equation (3) with respect to 8 and ¢.

and,0)7 IXN(0,9) Oplbo) _
on8,¢)7T 0X(6,¢) Opl8.¢) _
9% -X(6,¢) +n(8,9) - 9% 06 =0 (5)

%l belongs to the tangent plane of the surface. Consequently n - ﬂ% = 0. Also. we have
IX (8.9

_ ) _ : .
n = = 0. The equations (4-5) turn out to be:

077(0,q‘))T . op(d. )
. “X(0.9) - — = 0 (6)
00 a0

- T .

071(.0’.(,3) X(0.6) ()])(.9’,(‘)) — 0 (7)
o 90

(1). (6) and (7) form a system of three linear eqnations for the points of (¥). The physical
interpretation of this is that the point M where the planc of equation (1) is tangent to the
surface is obtained as the intersection with the planes defined by equations (6) and (7). We
rewrite these equations in matrix form:

AX = B (8)
\We note that:
cos(@)cos(¢)  sin(@)cos(¢)  sin(o) lf(()s(/))
A= | —sin{f)cos(¢) cos(f)cos(¢) 0 and I3 = %00‘(”)
—cos(f)sin{¢) - sin(B)sin(¢) cos(o) %ﬁl

We know that the Euler angle parametrization is singular for cos(¢) = 0 since all the values
of # are possible. Assuming thus cos(¢) £ 0. we rewrite (3) as

AN =D (9)
where
cos(f)cos(¢p)  sin(#)cos(¢) sin(¢) ])(0§,¢2; .
A= —sin(6) cos(#) 0 and B’ = ,,(,S](E,,)L%T'l
—cos(@)sin{@) —sin(@)sin{o) cos(@) ’L("oﬂ_”)

The matrix A’ is orthogonal (AT A’ = 1) and thus we have:



N=ATy (10)

This defines X as a function of 4 and ¢.

3.3 Computation of the second order differential properties of the object
shape

In this part, we show that it is possible to compute the two main curvatures of the surface for a
p 1

point A/ of the extremal boundary of the surface. A remarkable point is that this computation

needs only second order derivatives of the image measurements.

3.3.1 Some useful equations

We have previously established that if we observe an occluding boundary and that if we suppose
that (#.6) is an admissible parametrization of the surface in the neighborhood of M. a point
located on the rim, we can obtain X' = X (4, ¢).

The two fundamental quadratic forms of a surface can be derived from this expression. Theyv
require the computation of the following expressions:

ON(0.0)  AN(0.S)
® g T e

o AN AN(0.2) 1~ _ 2X(8.4) AN(0.0) 0 _ IN(0.2) OX(0.0)
I = I = G =
36 0 a0 - 36 ' ae -7 do 0 dp

o /Il = VILG - F?

PN(bo) #PXN(0.0) I2XN(8.0)

agt T agt T hoe
_ 1 PN(B4) IX(6.6) , IX(B.A), ay _ 1 92N(8e) IX(6.4) , IX(0e)
s L=y 202 T N ) M= g Soasr -\ Tog - N Toe )
o 182X (8.0)  AN(0.0) , IXN(8.5)
No= T ap2 (=G A I )

The expressions of the first two fundamental quadratic forms are:

dX(8,¢) 0N (6.9)
+ p—

A = EN 4+ 2F 4+ Gy?
21 28 00 ) + o+ G
0X(8,6)  0X(8.0) ) 2
Dy = LA 2MA Ny
2 20 + g 90 ) + p+ Np

The values of the two principal curvatures and principal directions are easily obtained from
these expressions by finding the eigenvalues of the endomorphism associated to &, (detailed
in B). All these derivatives can be computed by using the analvtical expression that we have
found in (10). We have derived them with the help of a svmbolic computation package and the
equations are presented in appendix B.



3.3.2 The necessary elements

The Kkey point is to determine the elements that we need in order to compute these quantitios:

o N = N (A.0) depends on 8.6, p(B. o) and the first derivatives of p(#.¢) with respect 1o #
and o.

o The first derivatives of X(#, ¢) depend on the second derivatives of p(#. ¢).
o The second derivatives of X (6.8) depend on the third derivatives of p(6. o).

o Fortunately, the third derivatives disappear in the expression of L, M and N.

After these computalions we obtain that the evaluation of the first and second fundamental

4 & h A2 (6 .05
quadratic forms requires an estimation of the value of 8, ¢, p(8,¢), 3”%“, @%“-_ - ]/(60?)

ap(6.6) 8%p(8.¢)

ag* 1 063
good accuracy for the points belonging to an extremal boundary, as shown later.

Note: This property is somewhat similar to the 2-D case when we try to compute the

curvature of an arc which is defined as the envelope of its tangent lines.

This is very interesting since these values can be estimated with sufficiently

3.4 General description of the reconstruction process

We have written the main equations. The problem is that they involve derivatives and we wish
to use them in the discrete casc: we have onlv three images to estimate all the quantities. The
differents steps of the computation will be:

o Detect the extremal boundary and match them among the images.
o Cotnpute p(f.¢) and its derivatives:

Mathematicallv. there are no difficulties; it is in practice that theyv arise. Indeed we measure
pieces of the surface [0, ¢. /)(0.(_‘))]7, the pedal surface (P) from which we have to estimate first
and second order derivatives which in turn vield properties of the object surface.

How is this estimation carried out? Returning to figure 4 and assuming that the curve (r)in
the retina plane has been identified as an occluding contour (wayvs of achieving this identification
are explained later in sections {1 and 5). if we move point m along (7). the tangent plane varies
in a predictable manner and we obtain, in general. a piece of curve drawn on the pedal surface
(figure 5). 1f we move the camera a bit and assume that we know its motion. we observe another
occluding contour and generate another piece of curve on (F).

For a given point AM; on the rim (R) defined by the values of 8, ¢, and p(6,. ¢;) . il we can
obtain sufficiently many curves on the surface (P) in the vicinity of [6:. ¢, p(8;. o, )]T by moving
the camera with sufficient accuracy then we may hope that the first and second order derivatives
of p can be accurately estimated and therefore that Af; can be reconstructed and the differential
properties of the object surface at A; computed.

In the following sections, we will investigate robust ways of achieving such a goal.

Note: The Gauss-Bonnet theorem If yvou choose 6 functions: K, F,G and L, AN these
equations are necessary and sufficient conditions such that there is a surface (Z) having thesce
functions as coefficients ol its first and second fundamental form. They are differential equations
and imply the first and second derivatives of F,F,( and L, M,N. Consequently. the third
order derivatives of p are needed. As we do not produce any estimate of these guantities,

9



Iigure 5: The pedal surface (P)

the Codazzi-Mainardi equations do not put any condition on the coeflicicuts of the first and
second fundamental form that we compute. In fact, they can be used as constraint equations
for computing the third order derivatives of p(8.¢) or equivalently the second order derivatives
of X(#.0).

4 A first try at the detection of occluding contours: the cylin-
drical case

In the previons part. we have assumed that we can detect the extremal boundaries. In [act
this is not an casy problem. We show in this part that sophisticated models are nceded. \We
first assume a simplified model in which we surface to be locally cylindrical along the rim. Tlis
investigation is interesting as it provides us with some ideas about the numerical stabitiy of the
problem and gain o better understanding of the difficulties. Futhermore it is used as a building
block of the more general algorithm described in section 5.

In the following sections. we present our notations. some of the techniques which can he used
to detect extremal bonndaries but which suffer from some major defects and the technique that
we propose.

4.1 Notation

As shown in figure 6. we consider a fixed coordinate system (Qayz) with the optical center
at (. The camera looks at the vim (£2) which produces the occluding contour (). We assume
that the image curve can be reasonably approximated by using polvgons. Consequently the
occluding contour () is a line segment (pg) which is the image of a 3D line (PQ). For cach
point. m helonging to the occluding contour (). the optical ray determined by Coris tangent 1o

10



(1)

Figure 6: A Rim (R) and its image (r)

the surface. The tangent plane to the surface at M is defined by the optical ray and the vector
py. Let n be the unit length normal vector to this plane. and p the distance from the origin to
the tangent plane. The equation of this plane can he written as:

N - p=0 (11)

where X is the vector [, y.2]7.

4.2 Detection by the violation of the epipolar constraint

One of the ideas which can be used for the detection of the extremal boundary is the violation
of the epipolar constraint. If vou consider figure 7. the points my and m, are the images of
two different physical points: My and M;. As a consequence they do not respect the epipolar
constraint: i.e.. nmy does not bhelong to the plane .y my. This property secms to be an
interesting characteristic and it is possible to quantify it by measuring the distance between the
point niy and the plane (). (. my. Nonetheless there are two objections to this method:

¢ It works in the proposed case because we suppose that we have detected the boundary of
the object. Consequently. each of the image points nmy and my is defined as the intersection
of two lines. One of these lines is the extremal houndary and the other is obtained by
intersection of two surfaces: the first one is the smooth surface corresponding to the
extremal houndary and the second one is the planar surface which cuts the other surface.
This is a special case. In general, we detect image-segments with poor precision at their
end points. It is not safe to use the distance between these points and the epipolar plane
as it depends strongly on the edge detection process.

e This method requires setting a threshold and as we show later, this is quite difficult because
the threshold depends on the curvature of the observed object.



‘[line of|
r line of m,

C,

Figure 7: Violation of the epipolar coustrainm

Figure 8: Detection by using motion
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4.3 Detection by using motion

Since occluding edges do not correspond to physical properties of the surface but depend on
the viewpoint. their position on the surface changes according to the viewpoint (fignre 8). This
means that when observing an extremal boundary with two cameras. the points observed on
the surface in cach camera are not the same. Let us suppose that we have matched some points
m;.i =1...3 between the three images. It we select two of them, my and m,. we can compute
the position of the corresponding 3D point M.

We can then compute the image m’% of A in the third camera. 1t is clear that if my and 1
are significantly different. then the observed edge is an extremal boundary.

This approach uses directly the most characteristic property of extremial boundaries. It
suffers from one problem. as in the previous method in that we have to fix a threshold to decide
if the considered edge is an extremal boundary. It is difficult to choose this threshold as the
distance between m3 and m’% depends on the distance between the cameras and the object and
the orientation of the extremal boundary with respect to the triangle formed by the optical
centers of the three cameras and on the curvature of the surface near M.

As an example figure 9 represents the variation of the distance between g and nds. for an
object which is rotating in front of the svstem of cameras. The axis of rotation is perpendicular
to the plane formed by the three optical center. The object is a synthetic cylinder. Each of the
three curves correspond to the reconstruction with a pair of cameras and the reprojection on
the third. The horizontal axis characterizes the motion of the object. Tn this case.itis an angle.

Pixel
3.0

2.28 :\ =N

\ \

0.76

0.01

0.00 19.66 3946 59.26 79.06

Figure 9: Rotational motion

Figure 10 represents the variation of the distance for a cvlinder which has a translational
motion. The distance between the cameras and the evlinder increases. The distance hetween



niy and mf decreases.
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Figure 10: Translational motion

Figure 11 is the variation of the distance between mjz and mj for a cylinder which has
increasing radius. The interval of variation is [0.001, 3.0} pixels when the cyvlinder has a constant
radius. In the last case. the maximum value is more than 12 pixels!

The small values are obtained when the extremal boundary is parallel to the epipolar plane.
This parameter varies cnormously, which shows that we need a fairly sophisticated model for

tracking these variations and detecting the extremal boundary.

4.4 Detection using a cylinder model

We suppose that we have matched segiments between different images. We want to verify il they
belong to an extremal boundary. One way to proceed is to assume that they do belong to one
and to write the corresponding equations. We make the hypothesis that the observed surface is
part of a cylinder. This provides us with a number of equations that can be used to compute the
parameters of the hvpothetical cvlinder: its axis and its radius. Fortunately this computation
can be divided into two independent parts:

- the direction of the axis of the cyvlinder.

- the position of the axis and the radius of the cylinder.

4.4.1 Computation of the direction of the axis of the cylinder
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Figure 12: Computation of the axis of the cvlinder



The image of the rim of a cvlinder is a line. We can consider the optical plane corresponding
to the image line. We have defined it in (1). Let us call w, the direction of the axis of the
cvlinder (figure 12).

The line (PQ) is a generatrix of the cylinder which means that it is parallel to the axis of
the cylinder. This line belongs to the optical plane and it yields the direction w = ny A ny of
the reconstructed 3D line.

4.4.2 Computation of the position of the axis and the radius of the cylinder

These computations are very simple if we perform them in the right coordinate system. \ good
one is (Ourw). where w is the direction of the axis of the cylinder, v and » define an arbitrary
frame in the plane JI which is perpendicular to w. The projection of the cylinder is a circle C.
In the exact case, the line PQ must be parallel to the vector w, the points P and @ must have
the same orthogonal projection on the plane 7 and the projection of the optical plane must be
a line. In fact unless there are only two cameras. the line PQ is not exactlv perpendicular to
the plane Il as we have computed w with a minimization technique.

(/v I2)

Figure 13: Computation of the center and the radius of the cylinder

Let (d) be the projection of the optical ray. The coordinates of the support vector are
written (vy.v2). Let ([f1,f2) be the coordinates of the projection of the optical center of the
camera on the plane Il and (¢;.¢;) the coordinates of the center of the circle C and 7 its radius.
The projection of the optical ray is tangent to the circle C. This vields the following equation:

di{cy.c2),(d)) =

This equation can be rewritten as a linear equation:

fl vy — facry — eyt ey ~1r =10
where ¢ is a variable whose value is 1 or — 1. It depends on the position of the circle with respect
to the line (d).
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4.4.3 The number of solutions

The number of solutions depends on the number of cameras:

e For two cameras. there is an infinity of solutions. The figure 14 is an illustration of such
a situation.

Figure [4: Two cameras

e For three cameras. there are exactly four solutions. They are shown in figure 15.

Figure 15: Three cameras. For clarity of the figure, the distances hetween the optical centers
have been increased



e lor more than three cameras. there are no solutions in the general case.

This result proves first that we need at least three cameras to detect an occluding edge. The
method of detection by motion that we have proposed gives the same minimal number. The
first method needs only two cameras because it uses a supplementary hypothesis that we have
a point to point match.

The system of equations is solved with least-squares techniques and with all the differeut
sets of value possible for ¢;. The correct solution can he obtained by using a physical criterion.
As we have made the assumption that the viewpoints are not very different, we can assert that
the object must be on the same side of all the optical rays. This constraint produces a unique
circle.

We have proposed a set of equations which can be used to compute the parametcrs of
a cylinder such that the observed line segments are the image of its rim, as seen from each
camera. We need a criterion to check whether our hypothesis is correct i.e. do we observe the
rim of something which is locally cvlindrical or a normal edge. We first note that the model
we used is still correct if we suppose that the radius of the cylinder is zero. A cylinder of zero
radius is physically equivalent to a normal edge. The occluding edges and the normal edges can
be classified by performing a test on the value of the radius. There is still a problem: we have to
fix a threshold for taking a decision. Fortunatelv. we show in the next section that it is possible
to attach a measure of confidence to the value of the radius.

4.4.4 Uncertainty estimation
We want to estimate the uncertainty on the measure of the radius of the cylinder. We can
consider that we have constructed a function { such that

= fluporg iy, vy)

where (u;.t;) are the coordinates of the extremities of the image-segments. We suppose that
these values are corrupted by a gaussian noise of variance ¢, and a,. In this case,we can express
the uncertainty on » by the formula:

B vy . )2 Af (g, v .. )2 )
T e T

1,

The expression of f is
[={ATA)1AT B

where A is a » x 3 matrix and B is a » x 1 matrix. They are constructed with the linear
equations presented in the previous paragraph. These matrices depend on (#u;.v;). With the
help of a svymbolic algebraic reduction system, we can obtain the expression of the derivatives
of A and B with respect to u; and ;.

We can now create a good criterion to check if an edge is an occluding edge or not. A normal
edge is characterized by a zero radius. The criterion is based on the probability for zero 1o be
in the interval of confidence.

r—20<0<r

In fact we evaluate the criterion € = (7 — 20)/r and we decide that the observed edge is an
occluding edge if € > s where « is a threshold which indicates the probability of the assertion
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that we have chosen. As we suppose that the measares are corrupted by these gaussian noise, s
is a threshold based on the gaussian distribution.
The validity of these computations can he verified in 1wo ways

o The first is to use the law of large numbers. We define a svnthetic cylinder and compute its
image using a set of calibration paramneters that we have obtained with real cameras. Then
we usc the iimage-segment to compute the parameters of the cylinder and the uncertainty
of the estimation of ». Iun the last step, we repeat these compulations a large nuniber
of times after adding gaussian noise on the coordinates of the projected segment. The
probability of the computed radius staying in the uncertainty interval is well described by
the properties of the gaussian distribution.

Figure 16 gives the result of a such a sequence of tests. The curve is the distribution of
the computed radius. The average value is the initial radius (the central dotted vertical
line). Note that this curve looks like a gaussian curve. The two fine dotted vertical line
are the values of » — g et v+ 0. o is the computed standard deviation computed on the
radius.
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Figure 16: Statistical test on the radius

e The second is to study the variations of the uncertainty with respect to the positions of
the cyvlinder. We can then compare the variations of the criterion with the variations of
distance between the image-segment of the cylinder and the segment which is the image of
a normal edge which has the same spatial position that the occluding edge of the cvlinder.
We perform this test on the same synthetic data as in the study on the variation of the
distance (paragraph 4.3). The results are presented in figure 17.
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Figure 17: Variation of € with respect to several parameters. As the three curves do not have
the same kind of abscissa, they cannot be compared.
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Real Radius | Estimated Radins o C
0 1.9 245 ] <0
50 59.2 23.2 1 0.21
100 98.3 22.1 1 0.55
130 114.5 21.3 1 0.62
160 175.2 20.0 | 0.77

Table 1: Five synthetic evlinders

— In the case of rotation, there are positions where C is very small. In these cases. the
extremal boundary is parallel to one of the epipolar planes and it is almost impossible
to classify the contour. In the method of the paragraph 4.3, we have exactly the same
kind of problems at these points.

— In the case of translation. the criterion decreases and it becomes impossible to detect
the cvlinder.

—~ When the radius increases. the criterion increases also.

These three factors. orientation. distance and radius are obviously linked to cach other: for
example the significative value is the distance divided by the radius.

4.5 Results of the implemented system

We have tested the algorithm on syvnthetic and real data.

4.5.1 Synthetic data

The objectives of the test on svuthetic data are
e testing the software.
e the verification of the noise model that we have used,

The principle of these tests is to take a description of a system of real cameras and to
simulate the observation of a cvlinder. In fact. we only compute the image-segment of the
extremal boundary of the segment. We add some noise to the extremities of the endpoints of
this image-segment. We use a gaussian noise with a variance of one pixel.

Table 1 shows the values of the following paramecters for a set of five cylinders: the radius of
the cylinder. the estimated radius, the value of the uncertainty o. the criterion C.

The observation is that the estimated radius always stays in the interval [r — 20,1+ 2a]. The
value of ¢ decreases when the radius increases. This is in accordance with our intuition: when
the cylinder has a large radius the part which is observed is more important and the cvlinder
can be reconstructed more accurately.

The baseline is approximatively 250 mm and the distance from the optical center of the
cameras to the objects is about 800 millimeters.

These experiments shows that our ideas are correct and that we can obtain realistic estima-
tions of the uncertainty. Nonetheless, we have to keep in mind that we have not modeled the
uncertainty on the calibration of the cameras.
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4.5.2 Real data

The figures I'he examples are showed by presenting the three original images and the recon-
structed edges. We ase two techniques for showing the reconstructed edges.

o In the first way, we underline the segments which have not been recognized as extremal
houndaries. There are four kinds of lines:

Dotted fine line: these segments have not been considered because they are too small
or they have been matched in only two cameras.

Dotted thick line: these segments have been detected as extremal boundaries.

— Continuous fine line: these segments have been classified as normal edges with a large
confidence (C < 0 and ¢ small).

Continuous thick line: these segments have been classified as with the Jower confidence
that the previous (C < 0 and o big).

o In the second way. we underline the segments which have been classified as extremal
boundaries. There are four kind of lines:

— Dotted fine line: these segments have not been considered.
— Dotted thick line: these segimments have been classified as normal edges.
— Continuous thick line: these segments have been classified as extremal boundarices.

— Continuous fine line: these segments are the computed axis of the cvlinders. In order
to establish the connection hetween the axis and the extremal boundary. there is a
segment hetween these two.

The results We present two triplet of images:

1. The first one is a scene with two cvlinders and some polvhedric objects (figure 18 and
figure 19). The results of the algorithm are precise for the segments which have an orien-
tation sufficiently different from the horizontal. (The segment on the left side of the big
cylinder is an erroneous matel. This is why it is reconstructed as a cvlinder with a false
axis.)

2. The sccond scene inclides two cvlinders and a box with a Jot of markings (figure 20 and

figure 21).

4.6 Conclusion

The main result of this section is that it is possible to detect the extremal boundaries in the
case of locally cylindrical objects. We have to use a model of uncertainty to come up with a
guantitative way of setting the decision threshold. It is clear that this process can provide false
results if there are erroneous matches or if the observed occluding contour does not correspond
to a cylinder but to a more general surface. In the next section. we deal with the general casc.
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Figure [R: Friplet =17 and the polvgonal approximations
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Camera 1 Camera 2

Camera 3

Figure 20: Triplet =27 and the polyvgonal approximations
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Figure 21: The reconstructed segments and the extrenal houndaries: triplet =27
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Figure 22: The reconstructed segments and the extremal boundaries: triplet “27 (with several
observations)

5 Detection of occluding contours: the general case

In this part, we suppose that we have observed an edge from several viewpoint and we want
1o decide if it is an extremal houndary and if s0 to compute some properties of the surface in
the neighbourhood of the rim. We are interested by the differential properties up to the second
order of the surface. Fundamental theorems of differential geometry [Car76] assert that these
properties are sufficient to characterize the surface up to a rigid displacement.

o The zcro order differential property is the simple estimation of the position of the point.
It means that we have to compute the exact position of the contact point between the
surface and the optical rayv for each of the cameras.

The first order differential property is the estimation of the tangent plane to the surface.
It is the casiest to obtain as we are observing an extremal boundary. In this case the

tangent plane is the optical plane.

e The second order properties are the most difficult to obtain as they require the evaluation
of second order derivatives. Such computation can be sensitive to noise.

There are two techuical points which will not be discussed in detail:

1. The matching of the image carves corresponding to the extremal boundaries. We solved
this problem by using a stereovision algorithm which has been described in [VF&9].

2. The problem of representing the image curves. We use a spline approximation in order
to have a more precise representation of the edges and to be able to compute the tangent
vector and the curvature along the points of the edges [Vai90].

5.1 The depth of the rim: the radial curve method
We remember that the vim (R) of a surface is a curve, and thus the image (») of the rim must

he a curve. It is alwavs true in a generic position. So, we can suppose that we have detected a
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curve (r;) in cach image. For cach of these curves. it is possible 1o compute the tangent vectors
at each of their points.

Figure 23: The radial curve R+

Let us choose one camera i and m; one point on the curve ri. We can consider the curve o}
which is the intersection of the surface of the object with the plane P = (C;. N;). where ('} is
the optical center of the camera i and N; = (Cym;) An;. n; is the normal to the optical plane
tangent to the surface at M, (figure 23). This plane can be casily constructed with the tangent
1; to the occluding contour r;. The planar curve R is called in the literature the radial curve
and its curvature is called the radial curvature n,. The curvature of the curve »; is called the
apparent curvaturc or transverse curvature sy,

The key idea is to neglect the apparent curvature and to use only the radial curvature. The
objectives are to he able to decide il an edge is an extremal boundary or not and to compute
the coordinates of the point M, which belongs to the surface of the object and projects to point
my;.

We can draw another planar curve on the surface of the object which has interesting prop-
erties. We consider the plane E;; = (C.my,C;) (figure 24). This plane is called the epipolar
plane of m; with respect to camera j'. Suppose that this plane intersects the image »; of the
rim seen from camera j at a point m;. The intersection of the plane L ; with the surface of the
object is a curve E,‘, M; belongs to this curve. The epipolar plane L; ; contains the optical
ray (C';,m;) and this implies that the point Af; belongs also to the curve F,(j Moreover we can
prove that R} and E,(/ have the same tangent at the point Af,. The tangent at A/, 10 R} is
the optical ray by construction. The tangent at 1/; 1o l.?,(."‘/ is in the plane [ ; by construction.

"This plane is formed by the three points i, . C, and €
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Figure 24: The radial curve R} and the epipolar curve l:',-(_'i

and in the plane tangent 1o the surface at ;. as this curve is drawn on the surface. As a
consequence. the tangent at A/; 1o El-c.;, belongs to the following two planes: the plane rtangent
to the surface at M; and the plane E; ;: The intersection of these two planes is the optical ray
because the optical ray helongs to both plancs. Consequently the two curves RE and If, have
the same tangent at the point A/;. They have also the same curvature.

Now we consider the curve l'.“,(_j/) obtained by projecting the curve F,(J orthogonally in the
plane F;. The tangent at M, to /f,P is the optical ray. Tle tangent at the projection of M,
10 Ef_"jf’ is the projection /; of the optical ray ' nr; on the plane P If there is no apparent
curvature the two curves 2 and lf,-c_'jp will be the same. The distance between these two curves
depends on the magnitude of the apparent curvature and the angle between the two plancs. If
the viewpoints are not too different. they will be verv close. The idea of our method is 10 neglect
the apparent curvature and to use these different projections to computate the radial envviture
at .’U,’.

From the coordinates of the points m; and m; and their tangent vectors ¢; and 1, and the
calibration parameters, we can perforin the following computations:

o Compultation of the optical ray C;m;.
o Computation of the radial plane P, = (C;. Ny with N; = (Cim; ) Aw;.
e Computation of the optical ray C';m; and its orthogonal projection /; in the planc /.

We now lLave a set of lines /; in the plane ;. We have exactly one line per camera. The
following question is how to find an approximation of the radial curve and especially of the point
M;. The carve I#F is approximately tangent to all the lines 7, As we have supposed that our
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viewpoints are not too different. the different contact points must he neighbours and we can
nse these points for estimating the osculating circle to the radial curve at M;. This is the same
problem ax the problem of finding the center and the radins of the evlinder in the previous part
and we apply the same technigues to solve it.

At the end. we have an estimation of the osculating circle of the radial curve and an idea
of the validity of this approximation. Let r be its radius and o the variance. Several cases are
possible;

¢ 0>+ = 20. 1t means that this part of the contour is not an occluding edge.
o r and o are small. It means that the edge does not correspond to an extremal boundary.

e o is not small. It means that the geometric configuration does not permit a good estimation
of r and the system of linear equations used for its computation is degenerate. For three
cameras, this is the case when one of the tangent vectors 7; is close to the epipolar line.
In that case. we only have two cameras which are really usable for detecting the extremal
houndary. The only condition for two image points to he the image of a unique spatial
point is that they respect the epipolar constraint. I'his is the case by coustruction of the
points m; so we cannot conclude anything in this situation. The only solution is to take
another image by moving the objects or the svstem of cameras.

We thus have a method for deciding whether or not an edge is occluding or not. This method
is based on the computation of the radial curvature and its uncertainty.

The position of the point A, can then be casily deduced from the line [, and the parameters
of the circle.

5.2 The estimation of the first and second derivatives order of p(f. o)

The formulas that we have discussed in section 3.3 and which arve given in appendix B for
computing the differential properties of the surface require the evaluation of the first and second
derivatives of p(f. o).

5.2.1 Estimation of the first order derivatives of ;(#.0)

By applyving the method described in the previous section. we can compute the coordinates of
M;. the observed point on the surface. Since we have detected that the observed edge is an
extremal boundary, we can apply the equations 6 and 7:

Ip(d.o) on8.o)"
o6 a9

Opd.0) _ on(d.0)" v
do Do '

We have a simple expression of the first derivatives of p(8. o).



5.2.2 The estimation of the second derivatives of p(f. )

I we consider the pedal surface (P) (figure 5), we measure one curve for cach camera. These
curves are drawn on (). (P) is simple since we have assumed that locally (8. @) is an admissible
parametrization of the object surface. The best way to estimate the second derivatives is to [it
locally a surface on the measured data in the space (6.¢.p). The problem is to find a good basis
of functions for performing the fit. In fact, since the function p(#. @) is periodic, it is natural to
consider its fourier expansion:

N

me, o) = Z "71.7rr'i(’)0+’,]"') (14)
nm=-oc
where the coefficients a,, ., satisfies @, ,, = @5, 0.
We have limited ourselves more or less arbitrarilv to those values of n and m satisfving
In| + |m} < 12
There are thus 13 unknown coefficients:

P0.0) = ag+ () cos(@) + by sin(@)) + (ay cos(f) + by sin(f))+
(azcos(f + @) + bzsin(@ + ¢)) + (agcos(6 — @) + bysin(t — o))+
(a5 c05(20) + b3 sin(28)) + (as cos(20) + bs sin(2¢))

For the minimization, we used a simple quadratic criterion and the values of a;.1 =0..... 6
and b;,i = 1.....6 are obtained by inverting a 13 x 13 matrix. Since we have already estimated
the first derivatives of p(f.0). they can also be used in the criterion withont changing the
complexity.

As discussed in the introduction and in section 3.2. our method breaks down when the points
on the rim are parabolic. It is therefore important 1o be able to detect such points reliably. We

discuss this issue and related ones in the next two sections.

6 The problem of parabolic points

6.1 Detecting parabolic points: a qualitative approach

The idea is to use the properties of the gauss map in order to compute the sign of the gaussian
curvature of a point belonging to an extremal boundary.

6.1.1 Properties of the Gauss Map

We make first the following remarks:

o [or every point pof a surface (£) such that pis a non-parabolic point. the gauss map is a
diffeomorphism between a neighbourhood of p on the surface (£) and S2. the unit sphere
of R3 (paragraph 3.2).

o Let ¥ and ¥ be two surfaces and ¢ : (£) — (X) be a diffeomorphism; assume that lor
some p € (X). the differential of ¢ at p d¢, is non singular. ¢ is oricntation preserving at

2In the case of the occluding boundary of a sphere the exact equation of p(8, ¢) can be derived:

p(H,06) = — cos(9) cos(f)c, — cos(@)sin(f)cy — <in{@)c: —

where (. ¢y, ;) are the coordinates of the center and » the radius.
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p if given a positive basis (wy. ury) in T,(X) then (do,(wy).doy(wy)) is a positive basis in
T E).

e () and S? are two surfaces of 3. Thus, an orientation on (£) induces an orientation on
52, Let p € (T) be such that d N, is non-singular. Since for a hasis (wy, wy) in T,(T)

ANp(wy) AdNy() = det(dNg)uwy A wy = Ky(plwy A wp (15)

the Gauss map will be orientation-preserving at p € () if Ky(p). the gaussian curvature
is positive. If Ky(p) < 0. then it is orientation-reversing.

Intuitively this means the following: the orientation of T,(X) induces an orientation of small
closed curves in (Z) going around p; the image by the Gauss map of these curves will have the
same as or the opposite orientation of the initial one. depending on whether p is an elliptic or
hyperbolic point, respectively.

More details about these properties of the Gauss map can be found in [Car76j.

6.1.2 Application to the case of the extremal boundaries

If we consider a point m, in one of the cameras. For this point, we can compute:

[

e the point 1/, whose image is m, (section 5.1).

e The oriented normal to the surface (section 5.2.1) at M. This is the image of 1/, by the
Gauss map.

We can also measure these quantities for other points m,. Among them we sclect those
points my image of A/, such that 1 is in the neighbourhood of A7,. These can be points on the
same rim as A, or points which have matched with the epipolar constraint. The whole set of
these points is used in order to build a small closed curve around A, on (). Using the normals.
we get the image of this curve by the Ganss map. It is a curve. There are three cascs:

o It has the same orientation as the original curve == ~y > 0.
e It has the opposite orientation of the original curve == K, < 0.
e It is not a simple curve == K, = 0 (this a consequence of the two first cases).

Remark Kocnderink [Koexd} shows that it is possible to determine the sign of the gaussian
curvature by using only one image. e uses hypotheses which are different from ours: he
supposes that he knows that the image curve (1) is an extremal boundary and an orientation of
(7), i.e. the position of the matter with respect to (r). We need at least three cameras in order
to establish these points.

6.2 Detecting parabolic points: a quantitative approach

We will now show in this section that if 3/, is a parabolic point then the curvature of () at m,

is zero.
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6.2.1 A relation between several curvatures

We define a camera by its optical center € and its optical axis W \We consider a'surface (¥)
and a point 17 on this surface which belongs to the apparent contour of (X) We denote the
transversal curvature by r,. the carvature of () at p (image of I'). \We denote the radial
curvature by n, the eurvature at P of the curve which is the intersection of the surface aud
the radial plane. K, (1) is the gaussian curvature of the surface (X) at P. We now prove the
following theorem:

Theorem 3 [fr, #0 then
KK,
A
a 15 a function of oW, C P Ne)., Ny is the normal of () at P.
A is the distance between O and P,
If i, =0 and Ky £ 0 then () has a singular point.

Hy:(l

The proof of this result and several remarks can be found in annex A.

From theorem 3 we deduce immediately that if the point on the surface is parabolic. then
cither o = 0. or x, = 0 or x, = 0. From equation (35). we deduce that a is not zero unless § = 0
and ¢ = 0. This is an impossible case as it means that N = U: X is an optical ray and 17 is a
vector of the image plane. Therefore:

K,=0=4s,=00rn, =0

If wy = 0. the point of (r) s not singular. so r, # 0 and K, = 0.

p=0=hKN,=0

The case ki, = 0 and x, = 0 is not generic: the set of parabolic points of a generic surface is
forined of curves. The set of points belonging to () is also formed from curves. The intersection
of these two sets is formed of points. #, = 0 means that the optical ray has the divection of
the principal divection with zero curvature (for a parabolic point the only direction with i zero
curvature is one of the two principal directions). This is impossible under the gencral viewing
assumption.

Thus under the general viewpoint assumption it is equivalent to say that K, = 0 or #,0: we
have a way to detect the parabolic points on the object from just image measurements.

Remark If we do not suppose that we are in a generic situation, strange situations can
occur, Tmagine that vou observe a cone such that its center is equal to the optical center,
The image is an ellipse (#, # 0) even if all the points are parabolic. But of course this elipse
disappears il we move only slightly.

7 Experimental Results

We have tested those ideas on svinthetic and real data and we present results witl these two
Kinds of data,



7.1 Synthetic data

We have done tests on synthetic data because computing the curvatures requires calculating
second order derivatives and the process of differentiation is well known to be noise sensitive,
The other advantage of synthetic data is that it is possible to compare the computed value 1o
the real value,

In fact we should say “almost™ synthetic since, even though we have been using synthetic
models, their rims have been projected on real 512 by 512 images and quantization noise is
therefore present in the data.

We have conducted experiments on synthetic images corresponding to a sphere, a cyvlinder.
a one-sheet hyperboloid and a torus. We will present results on a torus as there are several
interesting cases.

Figure 27 shows the surface of the torus (only the left part is visible from the cameras). ‘I'he
fine continuous lines represent the cameras.

We work in local frame [C', «, v. w] such that ' is the optical center of the camera, u is the
optical ray. r is the vector normal to the tangent plane, w = uAv. w is the vector normal to the
radial plane. In this local frame = 7/2 and ¢ = 0. We use it because all the computations are
simpler and we obtain better results. especially in the process of fitting a surface for computing
the second derivatives, From equation (7), we can deduce that a—”% = 0. Figure 25 shows the
values that we have computed for the first and second derivatives of p(6,¢). The continuous line
corresponds to the computed values. Tle dotted lines are the theoretical values, The abscissa
is equivalent to an indice along the reconstructed chains of points. In the case of the second
derivatives. part of curves are equal 1o zero: for these points the critervion C indicates that it is
inipossible 1o produce a measurement as there is a problem of orientation of the epipolar plane
with respect to the tangent of the curve.

The principal curvatures are represented in figure 26.

The reconstructed edges are drawn in figure 28, There is one rim () for each camera. The
fine lines describe the cameras. Figure 29 represents the results that we have obtained with the
qualitative approach. The continuons thick lines are the elliptic points. The dotted thick lines
arc the hvperbolic points. The fine continuous Jines are the points which do not belong to the

appavent contonr. They are reconstructed with a classical algorithm.

7.2 Real data

We present two scenes: the first one contains a ball and the second one a bottle.
o Figures 30 and 31 are the images with the edges.
e Figures 31 and 35 represent the reconstructed chains,

o Figures 32 and 36 represent the principal directions. In the case of the ballon the principal
directions vary considerably hetween two neighbouring points: thisis because all the points
are umbilical and every direction of the tangent plane is a principal direction.

e Figures 33 and 37 represent the computed radii of curvature. The added numbers corre-
spond 1o the part of the object which is referenced respectively at the figures 32 and 36.
In figure 33. the dotted thick lines are the real values of the radius of the ball.

e Figure 38 represents the sign of the gaussian curvature computed with the qualitative
approach in the case of the hottle. We use the same description as for figure 29. We do
ot preseut these results for the ball as all the points have been found to be elliptic,

32



1051

U130

1030

1019

12

-46

=134

=221

-6

™\

i
v

N

V)

U

116 231

c)z»( .0)
a4

352

21
A 0 s
r \ \./\P(‘—/- -\-[ -
-139
v \
-218
U Ia 2341 332
G234 0.0)
an?
h A /\
fvu\v el - RS
4 \ i
1 A4
0 116 234 352
O 0.)

Figure 25: The derivative ¢

P /\Vf“wﬂ\
57 M \._./[\. [Z ....\
il LU! |

HIOo

]
!

A

N
N _]
0 116 234 352
82p6.¢)
LY

urves for the torus

] 116

234

352

Figure 26: The radii of curvature for the torus
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Figure 27: The svathetic torus

Iligure 28: T'he reconstructed torus
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Figure 29: The sign of the gaussian curvature for the torus

There is still a point to be noted: we do not imiprove the results by filtrering the produced
values. We have shown the direct output of the algorithm. We think that the quality of the
results can be greatly improved if some smoothing techniques are applied. We choose to not
work in this direction as they will be part ol a more sophisticated algorithm whose goal is 1o
build a model of the object by fusing the information provided by a set of observations of the
object. This set will be organized such that it covers a discrete sphere of the possible viewpoints,

8 Conclusion

In this article. we have shown that occluding edges are a robust source of 3D information. Poiuts
on the rim can be accurately reconstructed and good estimates for the sccond order differential
properties of the surface in the vicinity of the rim can be reliably computed. More work needs
to be done to include this kind of processing in the framework of an active exploration of object
shape. We are presently testing our algorithm on a large number of images representing several
different shapes of occluding edges. We also want to usc the algorithm with more than three
views. The supplementary views will be obtained by moving the object with a known motion.
We think that this will improve accuracy greatly.

There is still another interesting point: is it possible to compute the same guantities for the
points of the rim of a surface observed by a camera with an unknown motion. Faugeras [Fau90]
proves that it is possible to recover the scene and the motion of the camera. if the observation is
formed by a rigid curve. Unfortunately the rim of a surface is not a rigid curve and we cannol
directly apply this result.

A Proof of the relation between ~,, ~, and x,

We demonstrate this result by using the theorem of local inversion,



Camera 1 Camera 2

Camera 3

Figure 30: Images of the triplet “ball™ and the polvgonal approximation



Figure 31: Reconstruction triplet “ball”
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Figure 32: Reconstruction and principal direction triplet “bhall”
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Camera 1 Clamera 2

Camera 3

Figure 34: Images of the triplet “bottle™ and the polygonal approximations



Figure 33: Reconstruction triplet “bottle”
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Figure 36: Reconstruction and principal directions (triplet “bottle™)
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Figure 38: The sign of the gaussian curvature (triplet “bottle™)
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Let X = CP/I|CP|| and Z = Ng and Y = Z A X. These 3 vectors form a frame. A
parametric equation of the surface (X) in this frame is M = [2 + Aoy, z(.y)] with 2(0.0) =
1—3%91 = % = 0 ([Car76]). The normal to (X) in a point M is [— M M .1]. The
equation of the extremal boundary is

dz(r,y) 1 dz(x,y)

o y dy
The equation (16) is an implicit equation with respect to the two variables 2 and y. We write
it:

Ve - M =0= —(x+ ) +:{ay)=0 (16)

dz(x.y) ?05(:1'-,y)
or Y dy

We can solve this as 2 = f(y) in the neighbourhood of x = 0,y = 0 if %’l # 0 (local inversion
theorem).

Ma,y) = (L+)\) + z(x.y)=0 (17)

8h(0.0) 42~(0 U) ,,2-
. . 81‘ A —’I # () . .
Using the local inversion theorom we get tho derivatives of & with respect to y:

First, we suppose

da t)h(n'.y) dh(r,y)
= 18
{/J =1 dy / ox (1%)
d*x L 0%h(x.y) Phix.y)  O*h(x.y).  ,0h(x.y)
— = " - _ ! 2 — b 2 ! ' T 1'
0y Ty) ((SCy) o +2/(y) 070y 05 )/ g7 (19)
For & = 0 and y = 0. the partial derivatives of I are:
o 0%z o %z
dr — Tl dy T Oxdy
R L R LS R SR
dr? ot ot 9yt T dy? oy Oxdy  drdy dx?y
The extremal boundary is the curve:
fy)+ A
Ply) = Y (20)
=(f(y)y)
The first and second partial derivatives are:
f'(y)
1P
P'ly) =1 ,/("’) = 1 (21)
V| g e
J7y)
2P
P'(y) = i# = e 0 (22)
W | st 4 iy Extea y Eotry

For #'=0and y = 0:



A 1(0) J7(0)
POYy=10 Py = ! "0y = 0 (23)

a2z

: . f/(o)?‘,‘_f:} + 'Zfl(.’/).‘_)-x-f; + 2'%}

In order to do analyze the properties of (r). we have to define more precisely the camera and
to introduce a frame [U, V. 1W]. 1V is the optical axis. 7 and | are a basis of the image planc.
The only constraint on U is U7 - W = 0, so we can add the constraint 7Y = 0 (we choose U in
the plane X — Z) (figure 39).

Figure 39: The two frames

U= [(:os(()).().sin(())]T
" is orthogonal to U'. 11" is defined by choosing the angle between W and one of the vector

[N.Y.Z]. We take:

W = [—sin(f) cos(¢).sin(0). cos(f) ('os(c_-i)]’l'

Vo= AU = [sin(é)sin(8), cos(), — sin(q’v)ms(ﬁ)]’r
The point p(y) which is the image of P(y) is defined by:

myy=| Vel (21)

W.P(y)

We compute the first and second derivatives of p(y):

(W-P(y))?
=V P{y)W P+ V-Py)W-P'(y)
(W-P(y))?

(25)

ZU PV PO U PLW Pl )
P(y) =

12



(P! () )W P (y))P = AU P ) WP ) (P )+ (P ) WP () = (1P (g))(W ()

p(y) = e
; (P )W Py) 2 =200 PYu)) (WP )) OV -Pu)) + (V- Pu) W P! (y))? = (WP (y) )WV P(y)))
(W-Py))*
(26)
I we simplifv these expressions. we get:
sin(¢) cos(f)
- 2 o 2 -
Vy) = Acos(d))1 sin(f) (27)
Asin(f#) cos(¢)?
p'(y) = o . X ;
cos(¢)2Asin(0)(§;§§§§ - (FZ5H + 2005(0)(515&sin(&)cos(¢)sin(¢)-+ g;ésin(¢)2)
g%/\? cos{@)3 sin(#)3
_2?%?):—”riill(t’l)t‘()S(gﬁ)+Sill(¢)%
£5\2 cos(#)” sin(0)?
(28)

With respect to the derivatives of the coordinates of p(y). the expression of x; is:

! 1 1 ’
Ny = 1»(y),,,1/ (A;'/)“ —/ 1 gy).up(.'/)«' (29)
W)+ (9)2N3/2)

So we have:

PR SRR 922 \2y 3
cos( ) /\(Ey'—ry - ('El_rﬁ) )sin( )

(1 — cos(#)2 cos($)?)3/2 5

(:."JV

hy = (30)

In the same wav. we can compute the radial curvature: the radial curve is the intersection
of the plane X' — 7 with (X). Consequently its equation is M = [z(2.0).x] in the basis (7. X))
of the plane X' — 7. After computation of the derivatives. we obtain:

0z
N, = —= 31
o’ (31
The gaussian curvature for a point on a surface represented as a Monge patch is:
""23(";.!/) """’:(g.y) iy 92 2(x.y) )2
Ry = = (32)
(14 (Zltdy g (Zlralyy
For & = 0 and y = 0. it simplifies in:
- Pz 9z oz (33)
T 920y 020y >
By taking into account the equations: (30). (31) and (33) we get the simple relation:
. (1 = cos(#)2 cos(0)2 Y2 wyn,
hy = l (34)

cos(@)3sin(#)} A



The denominator of this equation cannot be zero hecause N and W cannot bhe orthogonal
as 1" is the optical axis and X is an optical ray,
f and ¢ can be determined from X. Z and W or equivalently from CP. Ng and W as

X =CP/||CP|| and Z = Ny

sin(@) =W (ZAX)and cos(f) = (W - Z)/cos(¢)

SO We can write:

(1 — cos(#)? cos(¢)?)*/?

"’. ! . 1’\""‘ = . 3
MIW.CPNe) cos(¢)3 sin(9)3 (35)
The equations (34) and (35) vield the following result:
Ky = a(W.CP. .Ng)% (36)

The eq.ua.tion (31) proves that the condition Lh}f;ﬂ # 0 is equivalent to K, # 0.

If%l = 0and K, # 0, equation (33) implies that g_/%z_ul # 0. We apply the local inversion
theorem to the equation (16) and solve it as y = g(r). We obtain immediately that the tangem
vector to the rim (7) is equal to zero at p: pis a singular point.

Remark 1 We have built during this proof an analytical representation of the extremal
boundary (R) which can be used to compute some of the properties of the rim (R). The
curvature A and the torsion @ have very complex expressions. The most interesting point is

that the normal curvature #, of (/1) is proportional to the gaussian curvature:

2. 02: 2 023 2 -

9%z 0%z 9°: J%z

&z, 9%
=533 - (53 -
da’ dy° O dxdy

dardy + da?

)/

Hli

Remark 2 Using the same principle. we can prove similar relations for other models of
cameras:

In the orthographic case. we obtain the relation which has been demonstrated by Koenderink
[KoeS]:

h.ry = Hyh, (3'\))

In the spherical case. we obtain the relation which has been derived by Blake and Cipol-

la [BC90] using a different method:

I\'y = l\.pl\',.//\ (3())
Kp is the geodesic curvature of (1) as a curve on the unit sphere.
B Computation of the second fundamental form
We consider a point P on the surface. We note X = [z, y,2)7. its coordinates. We consider the
plane tangent to the surface at . This plane is defined by its vector normal n. and its distance
p to the origin. Its equation can bhe written:

nN —p=10 (-10)

» can be represented as a function of its Euler angle:
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n,(8,0) cos{¢)cos(f)
n,(6,0) cos{¢)sin{f)
1:(6.0) = sin(é)

We derive the equation (110) and we obtain the two following equations:

—cos{)sin(B)r + cos(¢)cos(f)y - %%ﬂ = 0 (1)
—sin(¢)cos(B)r — sin(@)sin(@)y + cos(¢): — glig;;—d’) = 0
We find the expression of X' = [.zr,y,:]T, by solving the following system of three lincar
equation: (40), one equation; (-11), two equations.
We find:
r = cos(¢)cos(f)p(6. q*))—-snn(qb)cos(())a”(“’) ::ti)) Bpgi)"b)
y = sin(f)cos{(¢)p(h, ) — sin(@)sin( q‘))ap@’d’) + z:fi)) 8’;&2‘4' . (42)

= sin(c{é)p(().<{'))+cos(o_‘))'3—’)((,190'—4’l

< . . . (¢ X (6.¢)
From these expressions ( 42). we derive the expression of g ( 2) and Cfoc
The first fundamental form is:

”."J_\’!(’;,(,‘.!ll) vl\!O b) . 3_\"0.¢!

d) = —_— b - ae d’
1 N (0.@"] . aXN !0.!,’: ”C’\‘o d’ ”2
e 1] b
As usual. we note:
E ||Ml|2 o= X (6.0) ) dX(6.0) G = ”0.\’(9.('))”2
BREL -6 26 =l

- . IX (0.4
Lhe normal n is parallel to the cross-product = .'!m 2) %

= JEG=T7?).

From these quantities. we can derive the second fundamental quadratic form. It is expressed
with the following elements:

AX(8.)
a6

. whose length is the quantity

X (0.6) DN (0, 0) PX(6.0)
= —-—— . 5 i = e————ermee—me e ] . ‘ ‘I\I T e——
L YT n(#. o) M 605 n(#. o) 957 n(f,o)

Note that the expression of X (A, ¢) involves derivatives of the filst order. As a conscquence
. . . IX(0.¢ IX (8.6
L M. N involves derivatives of the third order. For a vector v = A= ( 4 4 Jt cf L we can
consider all the curves drawn on the surface and tangent to v at X (6. o) These curves all have
] » normal curvature. the ratjio 2
the same normaj curvature, the ratio

Sy ()"
®, defines a lincar mapping > from the tangent plane of the surface at X (4, @) to the same
plane. ¢ is defined such that ®;(v) = ¢(¢)-v. The principal directions and the principal

curvatures are the eigenvectors and the ecigenvalues of ¢». The coordinates of the principal
directions are obtained as the solution of the following equation:
(FL = EAN 4 (GL = ENu+ (GAM = FN)u? =0

. . AN(.w) XN (8,0
These coordinates are express in the frame (4—% '—XH(';’L"—)).
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The cigenvalues are obtained as the solution of the fullowing equation:

(1G = FO)p? = (LG 4+ EN = 2FM)p+ (LN = M%) =0

These parameters are invariants of the surface and in particular they do not depend on the
choice of the parametrization. It is possible to derive all these computations with the help of a
svmbolic computation package and this is how we obtain the curvatures. The expressions that
we obtained do not depend on the third order derivatives of p(8,¢).

Now we give the expression of the different quantities involved in the computations of the
principal curvatures and principal directions.

( (sin(#)sin(Q) (os(gﬁ)m sin(¢) cos( q‘))cos(ﬁ)a Sg;é) 8p(0¢) cos(#)

— sin( ())i'—%%i sin(6) cos(9)?p(6, @) + 3”—(-9‘—4'1cos(¢)2 cos(f) )/cos(¢)

Q_\_ - (— sm(q‘))cos(é)cos(())d”f::f’) :11\(9)%111(¢)co%(q) “S) + cos(d))2 cos(A)p(8.¢)
96 + cos(®)? si 11(())5""5;5)"’) + 3252‘;“’ cos{#) — sin(#) C'—"’((’—‘f’l)/ cos(o

B2p(0.0) + "-"'P'(:_Z;-G*)

AL

cos( o) sin(e)

{(43)

(= sin(d) cos(0)* cm(())——m—()ﬁl cos(¢)sin( (9)2-%6-)ﬂ 1
— cos(d)? cos()p(B. &) sin(O) — sin(o)sin(B)"’w‘” )/ cos(b)?
ﬂ _ (—sin(())ﬁin(c'))cos(o)'zw ﬁin(())coq(tp) (8. 0)sin(0)

o + cos(6)- ’);0 ) cos(8) + sin(o) 22 'p(ﬁ 2) ¢ )2

cos(0)( B2 + 1(6.0))

(-14)
7))/ cos{¢

L

The following step is the second order derivatives of X (6.0):

(sin(¢) cos{d) cos(f )M + 2<1n(9)<in(<,7)cos(é)ﬁ—fp,’__’w‘c’)

s i .
—sin(@) cos( o) cos(f) ),g(f,f:) - Zd p(o%'ﬁ) cos(8) + sin(())ﬂ%‘ﬂ - sin(())%l
— cos(@)? cos(8)p(B.0) — 2 cos(0)? sm(t’))qpu9 6)
P2y +('7” 9:4) cos(0)? cos(8))/ cos(§)
(?().é' = (Sm(())sln( cos(m)—l"”f,.,i;"" - '25in(c;5)cos(c?)COS(())—M'?“i;;'m
—sin(#)sin{¢) cos(é)%ﬁ‘—;l —sin(f) cos(o)?p(d. o) + Zﬁ%ﬂ cos(d)? cos()
+ cos(&)? sin( 9)32’;%%"}’) 4+ & ?(9@) cos(f) — ‘Zsin(t‘))&g(gf);ﬁl

d—pg—"icos(a )}/ cos(¢)

i cos( d))d:legd‘ + *pwr' sin(@) ‘ J
‘ (-15)
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[ (— cos(o)! (‘OQ(())E'?—zS%ﬂ — cos(¢)? sin(<f>)(os(0)f‘3—(p,%0s£l cos(0)? sln((/)
—cos(@)! cos(8)p(6,®) — 2sin(¢p) cos(d sm(())%%—dl .28111(9)—3%-:99'—""2
P2y + cos(6)? ﬂm(())d”%";) cos(¢)3sin ¢)cos(0)§2$9—¢’;1/(os
W = (— cos(¢)! 911\(9)——(—7ﬂ cos(¢)3sin(6) @m(qb)( Z;v co’s(q'))" sin(@)p(4.0)
+ cos(¢)’ %ﬁ—) cos(f) + 25111(:,1))cos(q‘))i-(’,:—fjﬁsﬂ cos(f) + '25'2%,%?—)- cos(d)
—3”(0"“ cos(¢)? cos(f) — cos(¢)? sin(ﬁ)sin(c‘))a”g;‘d’) )/ cos()?
| coe((ﬁ)%iﬂ sin(q’;)y—s(&o,ﬁl + cos(¢) —p(«M — p(8,d)sin()
[ (sin(f)sin(¢) cos(¢) Q-a—ﬂ—;gl sin(¢) cos(¢)? cos(8) —dggm-)
— cos(g)})—’(-o,il cos(fd) — cos(cp)sm(())%%l + sin(8) cos(d)?( #,0) sin(&)
- ms(d) cos(())dp( '6) <1n(q§) sin( ¢)3p(0 ) cos(8)
92 — sin(¢)sin( __Ll"(o%ﬁl)/ cos(¢

5558 = (— am(o)cos(o)z co.s(())d—gg),21 — sin(d )qm(¢)cos(¢5)2—'d—’(9’d%§il
— cos(¢)? cos(B)p(h, o) sin(¢) — sin(h) cos( )2_Pg2_¢)_ sin(d)
+ coq(Q)Tg&(—M—l cos(f) — cos{@)sin H)ELZEI%ﬂ

+ sin( <‘>)"—”(-%—'il cos(d) — sin(¢)sin(8 )d”r,%” )/ cos(¢)?

cos( ) i 8) 4 Do)

L A0

The coefficients of the first quadratic form are:

(8.6 by 2 p 0y 2
E= (cos(o)'plh.0)* + 2(0».(0)—-:——5(3 <) & (,99/ sin(o) + "”giqm - ""fa%’”
N9 L’-'2 .-?!,m'z
——2%111(@7)(0\(0)"—’(—1];(9 o)+ (o\(¢)2i%c_l ~ cos{o)" ‘;Lgf;.l
~25in(6) conlo) PR THEE 1 TUENT L g costo)h.0) THE
+ cos( Q) —P@s’—’) )/ cos(o)?

ap(0. I s ) 2 a &) 2p(0.h
F= (ﬁg%_clwq( )3M+LU§ (¢ _;)%ﬁz'_g(ﬁ_«ﬁ)ﬂm (&) _2(0_5_1_(1;_)

] 2)
+sin(8) cos(0)? & ”‘” L9001 200) 1 9 cos(¢PLLEL (6, 0) + coq(cs)“’—ﬂ”#——v—' s

)

+2cos(¢)?*p(b. o) sm(q’))M :*_ngoll ros(cf))—'l%—m

— cos(¢)28 ’j(‘)o)" sin(@) W(ff,,'b )/ cos(#)3

g 2 4012 N
G= (2cos(6)' ZHEL (0, 0) + cos()'p(8,¢)? + cos( ) TREAY _ 20N (o2,

1%%2_ + 2 cos(o)E2l02) 2 p(OA) sin() d}’(9¢) + cos )23%(001) /cos(¢)4

The coefficients of the second quadratic form are:

cos(6)?

(16)

(48)

(19)

(50)



3 K 7129 2 ) (@ h 2 ) ) y
HIL = (cos(d)°p(b. (5)'* L00) 02) T oy 45)3 . o)%—)m sin(o)

A0 on 7
+ cos(@) 282 (0 5) — cos(6)'p(8, ) +22202) cos(0) plh. 0)?
-—‘ZM cos(d)°*p( 8, o)”’f-ﬁl sin(@) + 2—-31-07-@ cos(g'o)"%%ﬂp((),@
+O—’c’,‘f;i cos(8)2p(8, @) + cos(¢)°p(8, ¢)2 LEE)
—2sin(¢ (05(¢)“5—B§,7-1d—s(%1p(9 @)~ 25111(¢)cos(¢)""”’9d’ po,0)?
+CO<(¢)4—{(&—¢Z J—z&%ﬂ e, ¢)-ﬂ%—@ cos()? - coc(gb)sd—”g%;@ pb. o) .
—cos(d))“—-E.(gjfzz)'—""’l a—z(;,i! - 2em(¢)cos(¢)331’(€p¢) 0252024)) d?g(egql (1)
+ cos(@) 228 (8, §) + 2 cos( )22 LplE0) Tplbs)
-2 cos(o)? Bp(0.d>) d?p(a ¢) Jpgqod’ - cos(¢)33p %‘d’ Qﬂgzi)? sin{¢)
+ cos(¢ )MM sin(¢) + sin(@) cos(¢) 33—P(Mfﬂ—5(f,ﬂ2
—2%%1) cos( @)fﬁ&’_(o}ﬂ_di’(@ @) ¢in O) + %ﬂf-’pw ) cos(¢)?

Ap(h.o) | 2 :?p(go a2 (7(’» I p(6.¢
—W—l(.os(cf)) a,;a?) + ‘;% cos( c‘))z—i};,—’z)/cos(c‘)

o p(0 )?

HAI = (cos(o)'p(l,0)2: ’(,00"’) sin(Q) + cos(o )“—Wl,c—’) (#, 0)LTF= '7'(9""’) sin(o)
k] (') "} ) 0 1 = 2 ]
—cos(o)’%— —3cos(0) '—”(%ﬂ'—’w—ﬂ + 3(0@(0)%#(”— %‘(’—

=0

: 3?2 (8. a2 &2 (/f < . I1p( 3
+ cos(o)? pl8o) ’),(2 2): 7),(0)’ 3(0\(())2—%{ﬂ ‘—6"—1‘111(0)

Id)-
_ LI])(() ) (‘Oq ¢)3]}(0 (I‘) ._l])(f;f‘) Up(G., ('Ui((l))sl)(() (,')) Iplﬂq,n)

5 32p(0.6) &2 p(0.h p( ) 39%p(6.0) Op(6.o

+ cos(Q) —,!g;— e (8. ¢) cos(@ —,—;77—2—-—(——)
ngo ) Fp.8) Ip(0.0 (6. »! 1 p(6.

C;U()U cos(¢)™ SE:»'-’ }: pa(-w )+c s{ Sﬂ)-c plo.o _1_}__7» 2

42 (8.c) - ap(0 .
- cos(é)*'j—é),(g,f);ﬁlp((),c‘))sin(o)i%%l ~ cos(p) ERELI A Gy )—&l

Rp(f.o ; ip )3 . : > :
+cos(c>)“'—2—’iﬁl(0 ¢)? — 2Ll gin(o) + %ﬂ(U\( 0)?p(8. ¢) L5 sin(o)

R
+co<(q‘))2—(——”oc sin(o) + —L;—‘ ”,:"6 cos(@)? Z_.:fpo' ——l(”f__-,ooc sin(o))/ cos( c))'

(52)

HN = (0.6 cos(6) 220E2) (8,9 sin( ) cos( o) UG 2LE2)
+-—§%§ﬂ cos(o)'p(f.B) - ZLE,E,)%—@ cos( 0)3])(9 C))ﬂ)-(-g—l sin(é)
@ o . o2 V) ity ) 2
_*_Zd_z((’%g) cos(@)2p(0 é)d ’;(;; - Z Zf:?/’) cos(<p‘)3—’§-,0—('_,)—2 sin(@) — T’;S)s—d—)-"—(%f—)
a2 -
—z)(0,¢)%os(¢)3—‘—l’if$‘” sin(9) — 2sin(6) e con( o) e Sxfpe
p(d, Fp(0. 2 pl8.5) p(8.0) 2 ;
———7—)' gfb ¢ cos(¢)? 2 g(d);h) + 2 i g(d)?" cos(o‘))"p(().d))? ——-,—-’ Lf,) @) cos(®)® ﬁ-,(ﬂo‘)
I A 2
+1(8,6)° cos(¢)! — p(8, @) cos( 0)2—79@531 —p(().c;'))icg,f'o—""—l
8, 3
+0(6,8)252" cos(p)? + 224507 "—g%ﬂros(ov‘)/cosw)

All these quantities are sufficient for solving the different equations.
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