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Global behaviour of n-dimensional Lotka-Volterra
systems

Jean-Luc Gouzé
INRIA
BP 109
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France

Abstract. In this paper we study the behaviour of Lotka-Volterra sys-
tems; the principal tools are results from positivity and auxiliary functions
that decrease along the trajectories; one typical result is that, if a decom-
position of the interaction matrix into a product of a symmetric and an
off-diagonal nonnegative matrix is possible, then all the trajectories either
go to equilibria or cannot remain in any compact set of the interior of the
positive orthant.

Comportement global des systemes de Lotka-Volterra en
dimension n

Résumé : Nous étudions les systémes de Lotka-Volterra en dimension n;
nous utilisond des résultats de positivité et des fonctions auxiliaires dé-
croissant le long des trajectoires. Un des résultats est que s’il existe une
décomposition de la matrice d’interaction en un produit d’une matrice sym-
métrique et une matrice positive en dehors de la diagonale, alors toutes les
trajectoires vont vers ’ensemble des équilibres ou ne peuvent rester dans
aucun compact dans 'intérieur de P'orthant positif.






1 Introduction

The Lotka-Volterra models have been introduced by Volterra ([14]) in the
case where several species compete for a same resource, or where some
species are predators of other species, and by Lotka ([7]) in the case of
symbiosis and parasitism. It is a differential non-linear system describing
linear growths and quadratic interactions between variables.

The (n — 1)-dimensional Lotka-Volterra system is usually written:

:i:i=$,'(b,'+ZA,'ja:j) (i=1,...,n=1) (1)
J=1
The (n — 1) X (n — 1) real matrix A describes the quadratic interactions,
and is usually supposed to be bijective (the equilibrium will be unique if it
exists). The variables z;, standing for populations, are supposed real non-
negative.

Many results are known on these systems (see [13,6,8,14]). A complex
(chaotic) behaviour has been shown to be possible ([1]). Recently, the the-
ory of cooperative or competitive systems (cf. (11]) has been used to study
such systems ([12,5,6]). A known sufficient condition of global convergence
to equilibrium in the whole space R%™! is (cf. [3,13]) the existence of a
positive definite diagonal matrix D such that DA+ *AD is positive definite.

We shall use here different methods: the principal tools will be results
from positivity and theory of positive matrices (cf. [2]) and auxiliary func-
tions decreasing along trajectories (cf. [9]). We can then obtain results on
the global behaviour of the system, one typical result being the fact that
all trajectories either have limit points at infinity or on the faces z; = 0
or go towards the equilibria (there is no complex behaviour, such periodic
solutions, recurrent or chaotic behaviour, in any compact set of the interior
of the positive orthant).

Notations: For 2 in R, we writez > 0ifz; > 0(¢ =1,...,n) and z >
0if z; >0 (¢ =1,...,n). The closed positive orthant is R} = {z € R*;z >
0}. We will frequently use the open positive orthant P = {z € R";z > 0}.
Let us denote by *u the transpose of u, by e the vector {(e®!,...,e*"), and
similarly for Inz. The Kronecker product between two vectors 2 ® y is the
vector with components (2;3;). If z is a vector, we denote by 2! the vector
of components (1/z;). 1 is the vector }(1...1) and diag (z) the diagonal
matrix with diagonal 2.



HV CcR"isopen, h: V — R"is C1, and zo € V, for the differential
system £ = h(z) (& is the derivative with respect to time t), we denote by
z(t,zg) or sometimes by z(¢) the (maximally defined) solution in V with
initial value z¢g for ¢t = 0.

2 The system

It is easy to write the above equation in a slightly more general way by
introducing one new variable z, such that &, = 0 and z,(0) = z,(¢) = 1.
We can write now a n-dimensional quadratic homogenous system:

;= (IJ,(Z B,’j:l?]‘) (i=1,...,n)
Jj=1

with the initial condition z(0) satisfying £,(0) = 1, and

(1)

We are interested by this system for z > 0 (because z; stands for a
population); the faces x; = 0 of the orthant are invariant, and so is the open
positive orthant P™. We will study this system in P", so we can make the
change of variables:

y=Inz

and obtain
y = BeY (3)

In fact, we are going to study this last system for B a square singular
n X n matrix: this system includes Lotka-Volterra system (where y,(0) = 0
and B has the form (2)).

If ker BNP™ = (, then it is easy to show ([4]) that there is no equilibrium
for system (3) and that all trajectories of system (3) are unbounded. The
interesting case is therefore when ker B intersects the positive orthant; the
system has equilibria.

Let us examine more precisely the system: if rank B = s, then it has
(n — s) linear first integrals ‘qy = const, where ¢ € ker' B and the set
of equilibria is a (n — s)-manifold (such that eV € ker B). So, for a given
initial condition, the trajectories are constrained to stay on the linear first



integrals, and the set of equilibria on these first integrals is given by the
intersection of a s-dimensional vectorial space and of a (n — s)-manifold; we
can expect that this set is “generically” of dimension zero (namely consists
of a discrete set of points).

The case where s = n—1 (ker B is one dimensional) is important because
it corresponds to the case A bijective in system (2), that is to say the usual
Lotka-Volterra system. We therefore suppose that ker B is one-dimensional
and intersects P™ with vector k. The set of equilibria is :

=X y=(InA)1l+1Ink

that is a straight (affine) line L of vector 1 and containing the point In k.
But {qy = 0 (where q is in ker B) and we have one linear first-integral. The
intersection of L and of the (affine) hyperplane orthogonal to ker' B reduces
to one single equilibrium if and only if ‘gl # 0.

If B has the form (2)(Lotka- Volterra systems), then *q1 = 1 and there is
one single equilibrium on each hyperplane depending on the initial condition;
that is to say, there is one single equilibrium for Lotka-Volterra system (1).

3  Auxiliary functions

We want to find, in order to study the above system, auxiliary functions of
the variables that decrease along the trajectories ([9]); it is a kind of weak
version of Lyapunov functions. To construct these functions, we shall use
tools from theory of positive matrices (cf. [2]), also related to probabilistic
problems ([10]). We shall use the following lemma:

Lemma 1 Let M a square off-diagonal non-negative singular matriz such
that:

Mk=0 ‘M1=0
where k is a positive vector. Then:
Vp>0 Ylnp-Ink)Mp<0
Proof: Let ¢(p) = *(Inp —Ink)Mp. Then
d(p) = Z Z(ln pi — Ink;)ymy;p;
i
= Z((In pi — Ink))mip; + Z Z(ln pi — Inki)m;;p;

i



and using M1 =0

#(p) = Z(ln pi ~Ink)(= > m)pi + )Y (Inp; = Inki)my;p;

k#s i j#e
= - Z Z(ln P; — In kj mi;p; + Z Z(ln pi —In k,')m,'jp]‘
3 i#g I E
= ZZ(ln )m.,p)

T g#1 '

and we use the facts that Inz < z — 1 (for 2 > 0) and m;; > 0 to obtain

#(p) < ZZ(-———l)m”p]
i j#E p] t
= 20 miki)y al =22 miip;
i g t g#i
and using Mk =0
#(p) < —Zmﬁpi—zzmum

j UES]

= _Z(nlzz+(z777"7:))px
J#e

= 0
because of A1 = 0.

Lemma 2 Suppose that the (non-oriented) graph of M is connected; then
(for p > 0)
op)=0s pekerMNP™

Proof: Let us recall that the non-oriented graph of a square n-matrix M is
the graph with n vertices having an edge between vertices 7 and j if m;; or
mj; is non-zero. We know that Inz < z — 1 with egality if and only if 2 = 1.
Therefore we must have equality for each term of the above sum, and we

deduce
Pi

mi; £0ormy; £0 = — T

_D
k4

If the graph of A/ is connected, that implies that p = pk (with g > 0),
For the converse, it is enough to note that, if an off-diagonal nonnegative
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singular matrix M has a connected graph, then its kernel is reduced to a
positive vector ({2]).

Let us remark that, if the graph is not connected, we can consider the set
of n points as the union of two or more independant subsets with connected
graphs, and study each set independently.

We can now construct, under good hypotheses, an auxiliary function
decreasing along the trajectories of (3):

Theorem 3.1 Suppose that, for a given B, there exist a square off-diagonal
nonnegative singular matriz M, such that M1 = 0, and a symmetric square
matriz P such that:

PB =M
Then, if
V) =3 (- Ink)P(y ~ Ink)

with k € ker B N P", the function V(y) decreases along the trajectories of
(3) (V(y(t)) <0).

Moreover, if the graph of M is made of | disconnected classes, associated
with matrices M; (7 = 1,...,1), then this derivative vanishes if and only if

1
e¥ = Z Ajkj
Jj=1

where I:; is a positive vector in ker M; having the property that the compo-

nents not corresponding to the vertices of the graph of M; are zero, and the
A; are real nonnegative.

Indeed, V(y(t)) = *(y — Ink)PBe¥ and, as PB = M and Bk = 0 =
Mk = 0, we can apply lemma 1 with p = e¥. If the graph of M is not
connected, according to the remark of lemma 2, we can apply this lemma
to each connected class.

Remarks:

o It is clear that ker M is the direct sum of kerM; (j = 1,...,1), so we
conclude that the derivative vanishes if and only if eV € ker M NP7,



o We can write the decomposition:
‘BP = 'M 'M1=0

We have n(n + 1)/2 indeterminates in P, n? indeterminate in M, and
n? + n equations, and therefore more indeterminates than equations;
but we impose also the sign of the off-diagonal elements of M. The
above equations with sign-conditions are equivalent to :

'Bipr =y lgimy =0(i=1,...,n)

where !B is a n? x n(n + 1)/2-matrix, p; a n(n + 1)/2-vector and
my a ni- nonnegative vector. The ¢; are n?-vectors with components
equal to 0 or 1 or (-1). These equations will have at least one solution
if and only if im !By N R’f # {0}, and if we can choose m; in this
intersection such that m, is in addition orthogonal to the n vectors
gi- In fact, all this reduces to know (that is, to compute) if the kernel
of some matrix depending on I3 intersects the nonnegative orthant of
R™. This problem can be solved numerically by linear programming
methods.

o It would be interesting to study more precisely the set of matrices
B admitting such a decomposition; it is clear that we can restrict
ourselves to the set V of the matrices B such that ker BN P #
(if not, we know the trajectories are unbounded; cf. section 2); let
S = {B € V;B admits a decomposition}; we want here only make
some remarks:

- If B €S, then aB € § for o real; in particular, —B admits a
decomposition, that means that the system (3) in reverse time
will have the same properties.

— If B €S, then BD € S for all diagonal positive matrix D.

— Let us suppose, morcover, that B € V is such that ker B is one-
dimensional (this property is generic in V); this set 14 is an open
set on a manifold; let S; = {B € Vi; B admits a decomposition};
then we can choose a matrix I3 € §; such that B) is of maximum
feasible rank and admits a decomposition with m; > 0 (it is clear
that such a matrix exists, take for example B = M where A has
a connected graph); then there exists a neighbourhood of B in V3
where all matrices have the same properties. That means that S;



has a non-empty interior relatively to V;, and that the property
of decomposition with m; > 0 is robust in V.

o If we suppose P is bijective, then B = P~'M. Therefore all matrices
B such that B = @M, where Q is bijective symmetric and M is off-
diagonal nonnegative with M1 = 0, verify the hypotheses of the
theorem.

4 Global behaviour of the system

We suppose in the following that all the hypotheses of theorem (3.1) are
fulfilled: we will call these hypotheses the “PM-hypotheses”.
We will also restrict the problem by supposing that P does not add
equilibria, that is
ker BNP™* = kerM N P"

Let us remark that we have ker BNP™ C ker MNP™, and that our hypothesis
means that ker P does not intersects {except at 0) the set BP™; it is true,
in particular, if P is bijective.

We can now use the auxiliary function V(y) to study the global behaviour
of the system (3).

Theorem 4.2 [f B satisfies the PM-hypotheses and if ker BNP™ = ker M N
P™, then all the trajectories of (3) go towards the set of equilibria or are
unbounded.

Indeed, as V' decreases along all the trajectories, Lasalle’s theorem ([9]) says
that, if the positive orbit of a solution is bounded, it goes towards the set
{y;V(y(t)) = 0}, that is ker M N P™, namely the set of equilibria of (3)
because of the supplementary hypothesis ker B N P* = ker M n P™.

In fact, the trajectories are also constrained to stay on the lincar first
integrals (cf. section 2):

Corollary 1 If B satisfies the PM-hypotheses and if ker BN P* = ker M N
P", then all the trajectories of (3) go towards the intersection of im B and
of the set of equilibria, or are unbounded.

Proof: Take k a positive vector of ker B N P™, then Ink is an equilibrium.
Given an initial condition y(0), the trajectories stay on y(0) + im B; if the



intersection of the set of equilibria and y(0)+im B is non empty, then we can
choose In k in it; then (y(t) — In k) stays in im B and we can apply Lasalle’s
theorem. If the intersection is empty, all the trajectories are unbounded.

We can make the description of the behaviour more precise by using the
eigenvalues of P:

Theorem 4.3 If B satisfies the PM-hypotheses and if ker BNP™ = ker M N
P™, then, if P restricted to im B has positive eigenvalues, all trajectories go
towards the intersection (assumed to be non empty) of the set of equilibria
and im B.

If Ink is an isolated equilibrium on y(0) + im B, then, if P restricted
to im B has positive eigenvalues, the equilibrium is (locally) asymptotically
stable; if P restricted to im B has a negative eigenvalue, the equilibrium is
locally unstable.

Proof: Suppose P restricted to im B has positive eigenvalues and take In k
in the intersection of the set of equilibria and im B, then V(y) is positive;
the set {y : V(y) < V(y(0))} is therefore compact and all trajectories are
bounded. We can apply the preceeding theorem.

If moreover In k is an isolated equilibrium on y(0) + im B, then V(y) is
a Lyapunov function, and the equilibrium is asymptotically stable.

If P restricted to im B has a negative eigenvalue, then we can choose
¥(0) in a neighbourhood of In k such that V(y(0)) < 0 and the equilibrium
is unstable.

Let us remark that the jacobian matrix at the equilibrium Ink is B(diag k),
of rank equal to rank B, and therefore singular.

We can give a more detailed description in the important and simple
case where ker B N P™ is one-dimensional (the matrix A of system (1) is
bijective):

Theorem 4.4 Suppose ker B N P" is one-dimensional with vector k, and
q € ker 'B, with 'ql # 0. Under the PM hypotheses, and if ker B N
P™ = ker M N P", «ll the trajectories go towards the unique equilibrium
on the inveriant hyperplane (given an initial condition) or are unbounded.
Moreover, if P is positive definite or if P has all his eigenvalues positive
except u with Pq = pq, the single equilibrium is Lyapunov globally stable. If
P has a negative eigenvalue not associated with eigenvector ¢, the equilibrium
is unstable and some trajectories are unbounded.
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We already know (see end of section 1) that there is a single equilibrium
on the first integral containing the initial condition y(0). If Pq = ugq, thén
P restricted to im B is positive definite (because ¢ is in the orthogonal of
im B), and we can apply the preceeding theorem. Let us remark that the
results are here global, because of the unicity of the-equilibrium.

If we traduce this result for system (1) with A bijective, we obtain global
results in the positive orthant for stability or unstability of the unique equi-
librium of Lotka-Volterra systems.

5 Examples

It is easy to construct many examples by using the third and fourth remarks
of section 3. We are going here to study the decomposition (the PM hy-
potheses) in dimension three (it includes Lotka- Volterra models in dimension
two). We will restrict ourselves to the case where ker B is one-dimensional,
and Bk =0, k > 0. We want to find a decomposition such that:

‘BP='M 'M1=0

and M off-diagonal nonnegative. We can write down the linear system (cf.
second remark of section 3). It is easy to calculate that we obtain for the 9
m;; 6 equations (5 independent) given by

Mk=0 ‘M1=0
and a sixth equation:
b13myg — biamiz + bazmaog — baamas + bazmag — bzamaz =0

If we can solve these six equations with A off-diagonal nonnegative, then we

can find also a symmetric matrix P. We have nine variables, so the problem

is to compute if a three-dimensional space intersects or not the nonnegative

orthant in R®. We can remark that the first 5 equations always have a non-

negative solution ( ‘M + Id is a stochastic matrix, see ([2])), and it remains

to know if we can choose such a solution that verifies in addition the sixth
equation.

Of course, solutions with the wanted signs are sometimes impossible;
for example, the classical two-dimensional Lotka-Volterra system (cf. [14]),
whete 1 is the equilibrium, is such that the sixth equation becomes:

myz + myz —maz =0



and implies (because the diagonal of M is nonpositive) that my; = mq, = 0,
and therefore M = 0: the decomposition is impossible; but we know that
such a system admits an infinity of periodic solutions in the first orthant.
We can also construct systems with behaviour similar to the behaviour
described in the theorems, but admitting no decomposition. Take:

{ & =z(-z—y+2)
y=y(z-2y+1)

This system has a stable equilibrium at 1; all trajectories go to equilibrium
or leave any compact set of the interior of the orthant; but the decomposition
is impossible because of the sixth equation, that implies M = 0.

86 Conclusion

The PM-decomposition enables us to construct auxiliary functions and study
the behaviour of the Lotka-Volterra system; this behaviour is “regular”, in
the sense that all trajectories go to equilibria or are unbounded. It remains
now to study this decomposition more deeply; we believe that tools from
theory of positive matrices could be useful for doing that.
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