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Résumé

Dans une étude précédente, nous avons montré 'efficacité de la méthode d’ordon-
nancement cyclique pour générer du code vectoriel performant pour l'architecture du
CRAY-2, comparée aux compilateurs standards actuels. Cette méthode utilisait le
cadre de la compaction de microcode, grice & une modélisation adéquate du flot des
instructions vectorielles du CRAY-2.

Dans ce papier, nous étudidns plus précisément deux points: la modélisation de
I’architecture de la machine et son impact sur la méthode d’ordonnancement cyclique
envisagée, et le comportement de la technique spécifique d’allocation cyclique des reg-
istres, qui doit étre particulierement pointue pour tirer le meilleur parti du petit nombre
de registres vectoriels. Nous présentons des comparaisons de nos méthodes avec celles
utilisées dans le domaine des processeurs RISC et VLIW, ainsi que les performances
du code obtenu.

Abstract

In a previous work [3], a cyclic scheduling method was shown eflicient to generate
vector code for the Cray-2 architecture, and compared to existing compilers. This
method was using the framework of microcode compaction through a simplified model
of the Cray-2 ~ector instruction stream. In/this paper, we further elaborate on two
issues: how to model the machine architecture within the underlying cyclic scheduling
method, and the performance of the register allocation technique that must endeavour
to make a good use of the scarce resource represented by vector registers. Comparisons
with other related work in the area of RISC and VLIW processors are presented as
well as performance data.
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1 Introduction

The CRAY-2 architecture provides both vector registers and a local memory which must be-
used to hide the main memory latency and reduce the demand on main memory throughput
to obtain very efficient programs. Similar characteristics occur for several modern vector
processors, but this is much more critical on the CRAY-2 because it uses dynamic memory
and a very short CPU cycle, as opposed to other processors like the Cray X-MP or Y-MP.
To exploit this memory hierarchy, the code generator faces a significant resource allocation
and scheduling problem, which is made even more critical by the absence of chaining in the
CRAY-2 architecture. /
Our approach to these problems relies on several ideas:

e the approximation of the NP-complete original optimization problem [5] [9] by a se-
quential procedure involving three natural subgoals: the functional unit scheduling,
data spilling, and register allocation;

e a careful scheduling of the functional units performing vector operations in parallel;

e a register allocation procedure that attempts to make efficient use of the limited size
of the register set;

e usage of a simplified model of the architecture, that permits concentration on the key
architectural features and reduces the complexity of the involved algorithm.

This overall approach is described in our previous paper (3], and we will study here in
more detail two topics whose importance has been confirmed by the experience we have
gained. The first is the choice of the model used to present an abstract and simplified
description of the machine. The second concerns the register allocation scheme we are using
and a comparison of its characteristics with several alternatives, some of which have appeared
in the literature.

Although our presentation is restricted to the optimization of vector loops for the CRAY-
2 architecture, our techniques have much wider applicability and are of interest for RISC
and VLIW architectures. The fact that the common memory latency of the CRAY-2 is much
larger than on most current vector machines permits us to explore a direction of growing
importance. Indeed, the relative importance of both memory delays and transmission latency
is increasing because of the evolution of semiconductor technology and the decrease in cycle
time. The architectural evolution toward larger multiprocessor configurations will also result
in the usage of interconnection networks that will have longer latencies, and possibly very
complex dynamic behaviour. Some of these characteristics are already present on the CRAY-
2, and our experimental results show how they can be tackled.

Our presentation will adopt the following outline. In the first section, a model for the
execution of the vector instructions on the CRAY-2 is introduced. It captures the RISC-like
nature of the CRAY-2 vector architecture and allows use of a framework and techniques
developed for code,optimization on horizontally microcoded processors. Then in section 2
we present the principles of operation of our ‘code optimizer (VASCO). In section 3, we
analyze the impact of the simplifying assumptions of our model on the performance and we



show how this model can take into account parameters describing the common memory and
its practical behavior. In section 4, our nonstandard register allocation strategy for loops is
introduced and compared with previously pubhshed schemes. Among its advantages are the
facts that it can be integrated as a post pass after functional unit scheduling and data spilling
and that it requires a number of physical registers equal to the number of simultaneously
alive virtual registers implied by the functional unit schedule !. Although the experimental
results and the code optimizer used are specific to the CRAY-2, most of the ideas may be
carried to other machines with similar memory hierarchies.

2 A model of the CRAY-2 architecture

In this section, we present a model of the instruction execution of the CRAY-2. The key
point is to develop a model that has the ability to handle simultaneous execution of several
instructions provided that they do not use the same hardware resource. Such a model is
provided within the classical framework of microcode optimization, and enables us to use
the techniques developed in that context [14] [5] [11] [9].

For the convenience of the reader, the main characteristics of the CRAY-2 are summarized
hereafter. The main memory is shared by the four CPU’s, organized in four quadrants linked
to the processors by a X-bar switch, and involves adequate access arbitration and buffering
mechanisms. Each CPU privately owns a local memory of 16 Kwords, eight vector registers
of 64 elements each, eight floating point registers, and eight address registers. The transfers
between all these storage elements are entirely managed by explicit transfer instructions
emitted by the the compilers. The peak data rate from common memory is one word per
cycle per processor, with a high latency (depending on the exact memory options). However,
two independent vector memory accesses can be partially overlapped resulting in an "ideal”
rate of 72 cycles per block of 64 elements (210 Mwords per second). The local memory
provides the same peak access rate but has a much smaller latency , and the absence of
conflicts guarantees a practical bandwidth equal to its peak. However, the aggregate data
rate from these two memory levels is not sufficient to saturate the two floating point units,
making use of the vector registers a crucial part of code optimization for the CRAY-2. The
vector register file can support up to eight accesses simultaneously. Moreover, due to the
lack of instruction chaining, the vector registers have to be managed very carefully as buffers
in order to exploit the parallelism between the functional units.

A classical notibn in the framework of mictocode optimization is the reservation table
which allows description of the use of resources for a series of discrete time steps. These
tables specify, for each time step, the occupancy of the hardware resources subject to reser-
vation. In addition, all the instructions (or microoperations) are associated with elementary
reservation tables (called in the sequel templates) which describe the impact of the instruc-
tion execution on the reservation tables. Each template may specify reservations of several
resources spanning several time steps. Scheduling the basic operations and checking for the

'In the absence of spilling, given a functional unit scheduling, it thus generates the minimal number of
registers needed.
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effect of interlocks now amounts to placing the templates onto the reservation table in a
conflict-free manner. The role of the code optimizer is to determine the template scheduling
without violating dependence and resource constraints while minimizing the execution time.

The key advantage of the microcode compaction framework is its use of reservation tables
that can take precisely into account simultaneous activities of the various components of the
machine. A first solution to embed the CRAY-2 architecture in such a model is to consider all
the instructions (scalar and vector) and to associate with each of them a template describing
it at the processor cycle level. Figure 1 shows such templates for the most common CRAY-2
vector instructions. Such a fine grain model was successfully used by Arya [1] for optimizing
code for the Cray-1. The main drawback of such a solution is the cost of the resulting
optimization phaset this phase amounts to solying optimization problems over the integer
field which very quickly exhibit a high computational complexity.

We chose to go a step further in the modeling process by simplifying it to reduce the
complexity of the optimization phase. We are also able to take advantage of this modeling
strategy to describe the practical characteristics of main memory access. The rationale and
key model characteristics are summarized hereafter.

o First, the model takes into account only vector operations with full vector length. As
a result, we proceed in two phases. The first phase only considers vector instructions,
schedules them, and allocates vector registers and vector temporaries. In a final pass,
we emit and schedule scalar code. This is justified by the fact that we are primar-
ily interested in vector loop optimization for which most of the time is spent in the
vector instructions. Neglecting to optimize vector length less than 64 is not consid-
ered too severe since it occurs only once per loop after the classical strip mining loop
transformation.

o Second, for the scheduling of the vector instructions, we first define a time unit called

a macrocycle. All the timings during the scheduling of the vector instructions are
expressed as integer multiples of this time unit. In Figure 1, we give the exact timings
of the vector instructions together with their representations as templates using a
“macrocycle of 82 cycles (Cf. Figure 2) and a macrocycle of 72 cycles (Cf. Figure 1). The
introduction of the macrocycle greatly simplifies the reservation tables, and therefore
their optimization. However, for the scheduling of scalar instructions, we work with a
time granularity of a single cycle, which is almost two orders of magnitude smaller. It
should be noted that for instructions that do not involve common memory, the timings -
can easily be obtained from the manufacturer’s specifications. The case of instructions
involving common memory transactions is more complicated: due to conflicts, the real
time spent in a vector load can vary largely. This implies that mapping loads or stores
into templates requires approximations within the modeling procedure.

e Third, for scheduling, we will assume that the vector instruction issue is exactly de-
scribed by the program’s code according to our breakdown into macrocycles, and there-
fore entirely wnder our control. Several vector instructions can be executed at the same
macrocycle provided there is no resource conflict. This differs from the actual hardware
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issue policy, which is greedy, and therefore will start an instruction as soon as it will
not cause any resource conflict.

For example, according to our model, we may suppose that at macrocycle i we issue
a single instruction, A, and at macrocycle ¢ + 1 we issue the next vector instruction,
B. The actual execution of such a sequence of instructions will fall into one of two
cases: (1) there is a resource conflict which will prevent execution of instruction B
at cycle 7, and the instruction issue will exactly comply with our model, or (2) the
opportunity of executing both instructions A and B within the same macrocycle 7 will
cause a discrepancy between the modeled schedule and the actual execution. In the
latter case, this greedy behavior will not add conflicts for following instructions. The
semantic consistency of our models derives from the fact that there is only one memory
port, and that the hardware uses register reservation to guarantee the correctness of
the execution. These two features guarantee that all the memory instructions will be
executed in a serial manner exactly in the same order as they have been issued 2.

The templates are derived directly from the description of the instructions by marking
the resources occupied during each time macrocycle. The busy times are simply rounded
up to the next granule. For example, Figure 2 (respectively Figure 1) shows the templates
with a macrocycle of 82 (respectively 72) clock periods. The number 82 corresponds to the
longest reservation time, in processor cycles, which occurs for the result register in a floating
point add. (Cf. Figure 1). The number 72 corresponds to the minimal latency between
successive vector memory access.

Due to the choice of the macrocycle (72 or 82), all the resources in the templates are
considered as single-stage pipeline, except the common memory access, which is considered
as a 2-stage pipeline. Thus, in the case of a main memory store or load, the access is
split into two macrocycles and main memory accesses might be partially overlapped; The
local memory access is single stage. We clearly see the advantage of the macrocycle that
results in extremely simple templates (busy times of either one or two macrocycles), greatly
simplifying the complexity of the vector scheduling phase at the price of an approximation
of the processor timings.

For the vector scheduling phase (which only deals with macrocycles), the only difference
between a macrocycle of 72 and 82 is the occupancy of the result register: two macrocycles
in the first case, anld one in the second case. However, this minor difference at the level of
the resulting models hides deeper effects which will appear both at compile-time (register
usage) and at run-time.

3 VASCO: a code optimizer for the CRAY-2

This section outlines the organization and the principles of VASCO, our code optimizer for
the CRAY-2. The main focus will be on the scheduling problem; register management will be

2In the presence of parallel memory transfers (as in the Cray-XMP architecture) special instructions
would have to be issued to keep the run-time pattern coherent with the data dependencies of the code.
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DO 1 i=1,1200,1
z(1) = (a+x(i)*y(i))*Db
1 CONTINUE
Figure 4: Fortran code of MV1
BODY
( o123 456 [7[8 ]9 [10]11]]12]13]14]15[16]17] 18] 19] 20]
MEM1 || X1 Y1 X2{ Y2 X3| Y3 X4} Y4| Z1 Z2 73 Z4
MEM2 X1 Y1 X2| Y2 X3| Y3 X4| Y4
ADD +1 +2 +3 +4
MUL *1 *21 *1 *3] *2 *41 *3 *4

Figure 5: Reservation table for MV1 (VAS72)

BODY
| [0 T2 (3[4 567 [8 ]9 [io[ii]12] 3] 14[15]
MEM1 || X1 Y1 X2| Y2 X3| Y3| Z1 Z2 Z3
MEM2 X1 Y1 X2| Y2 X3 Y3
ADD +1 +2 +3
MUL *1 *1| *2 *20 *3 *3
Figure 6: Reservation table for MV1 (VAS82)
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Figure 8: Timing execution of MV1 (VAS82)



developed in section 5. As explained in the previous section, our code optimization strategy
distinguishes between vector operations and sc;ﬂar operations: in a first coarse granularity
pass, vector operations are scheduled, then, in a subsequent pass, scalar operations are
scheduled, working at the machine cycle granularity. The reader should by now be aware
of the approximate nature of our “optimization” procedure, and should acquire a deeper
insight into the rationale of our approach by considering the related set of heuristics that
supports the problem decomposition steps exposed below.
The optimization of vector operations itself is decomposed in two consecutive phases:

e scheduling of the functional units assuming an infinite number of pseudo-registers

e management of the storage units: spilling in local memory, physical register allocation.

During the first phase, the activities of the virtual registers are very precisely recorded, first
to preserve the dependencies within the program, and second to gather all the informa-
tion necessary for the allocation and spilling phases. The allocation of physical registers is
performed after the functional unit scheduling for two major reasons: first, it avoids the pre-
mature introduction of unnecessary dependencies due to register reservations, and second,
it simplifies the scheduling pass because we do not have to take into account reservation
conflicts of the registers.

3.1 Preprocessing

We are working on a vector loop which has already been detected and processed by a vector-
izer (in our case VATIL, {10]). The dependence graph (8] is available at this stage and several
optimizations, including strip mining, have been performed. The dependence information
(intra- and inter-iterations) is used during the scheduling process to preserve the semantics -
of the program. The strip mining operation consists of breaking (blocking) all the vectorized
loops by blocks of 64 iterations. For a loop of IV iterations, the result is an outermost loop
of %] and an innermost loop of 64 iterations.

Because vector operations are considered atomic blocks, the term iteration (respectively

loop) will exclusively denote the outermost iteration (respectively outermost loop).

3.2 Code generation of the loop body

In this phase, we generate an intermediate vector code for the loop body, which is used as a
basic pattern for the cyclic scheduling of the iterations.

The registers are handled in a virtual manner according to a single assignment rule:
the number of registers is assumed to be unbounded, and each time a register is needed
to hold a value resulting from a load or an operation, a new register is allocated. In the
cyclic scheduling, each iteration of the loop body will be represented by a similar copy of
the generated intermediate code. The virtual registers defined in the generic loop body
are named R, through R,.The copy corresponding to iteration : will create the registers
numbered R;(7) through R.(i). The virtual registers which either live on loop entry or are



invariant are named R;(0). Globally, as a consequence of the single assignment rule, each
virtual register is written once, but may be read several times. The main advantage of such
a technique is to avoid introduction of artificial dependencies due to bad allocation [2].

3.3 Scheduling

The scheduling of the whole loop involves two intimately related subproblems: scheduling of
the generic loop body code and then scheduling of the successive iterations. We use a cyclic
scheduling technique that was developed for array processor microcode compaction [11] [9]
and tackles the two issues simultaneously.

In this method, all the iterations are exactly scheduled following the same pattern derived
from the generic loop body. Therefore, each iteration contributes to the reservation table by
a translated copy of the generic loop body reservation table RT'. Iterations are started with
a constant unknown period of d macrocycles. The global scheduling problem is to build a
reservation table, RT, for the loop body and find a period, d, such that:

e the sequence RT + kd does not conflict(at each macrocycle, a given functional unit is -
not used more than once).

e the semantic dependence constraints are satisfied.

e the total execution time is minimized.

Note that the execution of one iteration may span more than d macrocycles and therefore,
at a given cycle, several successive iterations might be concurrently executing. Consequently,
the local scheduling has to take cyclic constraints into account to avoid resource conflicts
between iterations. This simply means that dependencies are satisfied under the periodic
initiation mode, and cyclic constraints can readily be computed from the dependence graph
as a function of d. The payoff of that additional complexity is the perfect chaining between
iterations.

For determining d, we first compute for each functional unit, ¢, the number of macrocycles,
ny, where ¢ is used during one iteration. The initial value for d is chosen to be the maximum
value of n,. This corresponds to the saturation of one of the functional units. Then for
this period, d, we try to schedule the loop body according to a list scheduling strategy
modified to take into account both semantic and cyclic constraints. If it appears that no
cyclic scheduling is possible with period d, we increment it by one and try again. However,
if the loop is vectorizable, it is always possible to find a cyclic scheduling with the initial
value of d (for more details see [11], [9]). The technique used is the exact equivalent of the
introduction of delays in a pipeline [13].

It should be noted that because we are dealing with virtual registers, the computation
of d does not take into account the occupation of the registers. Moreover, the compaction
process as described above is architecture independent in the sense that all the architectural
characteristics (which are just used as parameters by the compaction procedure) are embed-
ded into the template description. So, for example, our two different models of the CRAY-2,
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which differ by the choice of the value of the macrocycle, will use the same scheduling proce-
dure but with a different set of templates: VAS72 (respectively VAS82) corresponds to the
version of the code optimizer using the templates as described in Figure 2 (respectively in
Figure 3). An example of the result of the compaction procedure using the two models is
given in Figures 5 and 6.

The success of such a strategy of scheduling is mainly due to templates’ being extremely
simple: most functional units are not used more than one macrocycle. Figures 9 and 10
give examples of the performance of the codes generated by VAS82 compared with codes
obtained through the CFT77 3.0 compiler. Our code generation results in a better usage of
the memory bandwidth. More systematic benchmarking results are given in [3]. ' '

MFLOPS

X ®
< <
> >
24
FN

Figure 9: Performance of VAS72 and VAS82 compared with CFT77: MV1

3.4 Global register usage

During this step, we consider the schedule, (¥U-sched), obtained in the previous step as
given, and generate all the information relative to register usage. This information will be
used to find a register allocation scheme (cf. Section 5, which details register allocé,tion)
that allows execution as planned (i.e., according to (FU-sched)). Clearly, it may become
necessary to insert delays in the schedule or transfer data to and from local memory because
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Figure 10: Performance of VAS72 and VAS82 compared with CFT77: DROT

of a shortage in registers, thus obtaining a schedule (FU-sched*). We are, in effect, decou-
pling the scheduling problem by imposing the constraint that (FU-sched*) is derived from
(FU-sched) by delay insertion and register spillling.

The birth date of a virtual register is defined as the cycle where it is assigned a value.
Correspondingly, its death date is the cycle where its content is used for the last time.
Between its birth and death, the virtual register is said to be live. At each cycle, the total
number of live registers is determined, and the maximum number of live registers over the
whole execution is called the critical register quantity (C RQ). Note that the number of live
registers during a period of d cycles does vary during loop starting times and finishing times
(cf Figure 12), and that C RQ corresponds to the steady state of the execution. This number
clearly corresponds to the minimum? number of physical registers needed to execute the loop
without spilling.

Many useful properties of registers are common to a register class and correspond to
the virtual registers of the generic loop body. Specifically, the class R, contains R, =
Uizt Bi(2).

In the scheduling procedure described above, there is no direct attempt to minimize

3Within our constrained framework relevant to (FU-sched*).
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that quantity. However, as we observed in practice, the resulting CRQ is generally quite
satisfactory. It should be noted that the quantity to be minimized is C RQ, not the lifespan
of registers. Therefore, although they reduce the lifespan, techniques such as scheduling
operations in reverse order do not necessarily reduce CRQ. To refine our approach, we are
currently testing a level scheduling strategy which, instead of using an a priori ordering of
the templates, allogvs us to opt for execution between several templates, according to some
dynamically computed criteria. For example, the criteria used for selection might be the
local minimization of the number of simultaneously alive registers.

4 Discussion of the model

The quality of the code produced by VASCO not only depends upon the algorithms and
heuristics used for the optimization, but also upon our model of the CRAY-2 architecture.
In this section we will analyze how the choice of the model influences the code generated and
its performance. This last point raises the issue of evaluating how much the model differs
from the real behavior.

M1 y@) = (a@*x({i))+b

MVI o) = ((x() *y() +a) b

MVF1 [t(i) = ((x(i)*a)+ y(i)) * z(i)

MCOM | zr{i) = xr{i) * yr(i) - xi(i) * yi(1)

zi(i) =  xr(i) * yi(i) + xi(i) * yr(i)
DROT | x(i) = «c*z(i)-s*t(i)
y(i) = s*z(i) + c *t(i)

MVC1 |afi) = afi)+ b(i,1)*cl

MVC2 |a(i) = afi)+ b(i,1)*cl+b(i,2)*

MVC3 | a(i) = afi)+ b(i,1)*cl +b(i,2)* c2 + b(i,3) * 3

MVC4 | af(i) = afi)+ b(i,1)*cl + b(,2) * c2 + b(1,3) * c3 + b(i,4) * c4

MVC5 |a(i) = afi)+ b{i,1)*cl + b(i,2) * c2 + b(3,3) * ¢3 + b(i,4) * c4 + b(i,5) * ¢5

MVC6 |a(i) = a(i)+ b(i,1)*cl + b(3,2) * ¢2 + b(i,3) * ¢3 + b(i,4) * ¢4 + b(i,5) * c5
+ b(i,6) * c6

MVC7 | a(i) = a(i)+ b(i,1)*cl + b(1,2) * c2 + b(i,3) * ¢3 + b(i,4) * ¢4 + b(i,5) * ¢5
+ b(i,6) * ¢6 + b(i,7) * c7

MVC8 | a(i) = a(i)+ b(i,1)*cl + b(i,2) * c2 + b(i,3) * ¢3 + b(i,4) * c4 + b(i,5) * 5
+ b(i,6) * c6 + b(1,7) * c7 + b(i,8) * c8

MVC9 {a(i) = a(i)+ b(i,1)*cl + b(i,2) * c2 + b(i,3) * c3 + b(i,4) * c4 + b(i,5) * c5
+ b(1,6) * ¢6 + b(i,7) * ¢7 + b{i,8) * c8 + b(i,9) * 9

MVC10 | a(i) = a(i) + b(i,1) * c1 + b(3,2) * ¢2 + b(1,3) * ¢3 + b(i,4) * c4 + b(i,5) * c5
+ b(i,6) * ¢6 + b(i,7) * c¢7 + b(1,8) * ¢8 + b(i,9) * ¢9 + b(i,10) * c10

LL1 Lawrence Livermore Kernel 1

LL7 Lawrénce Livermore Kernel 7

LL12 Lawrence Livermore Kernel 12

LL21 Lawrence Livermore Kernel 21

LL183 Third loop of Lawrence Livermore Kernel 18

Table 1: Program kernels used in the experiments
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Four major simplifications can be found in our model and need to be validated.

1. We used a model that is explicitly synchronized on macro-cycles intervals, although the
execution appears asynchronous when analyzed at this level of granularity. This hides
a more complex issue mechanism that works at a much lower time scale and involves
a much more detailed description of the machine. In reality, we do not have absolute
control over the execution of the instructions issued as soon as there is no resource
conflict.

2. The loop optimization procedure takes into account only vector instructions; the scalar
and address instructions are scheduled in a subsequent pass.

3. The choice of the macrocycle duration introduces some errors in that the timing of every
instruction is rounded up to the next multiple of a macrocycle length (discretization
error).

4. While the timing of non-memory instructions (instructions all of whose operands are
in registers or local memory) can accurately be described, the timing of the common
memory instructions has to be modeled: it is impossible to statically predict all memory
conflicts, in addition to its being too complex.

In this section the impact on performance of each point mentioned above is analyzed in
more detail. The experimental results were obtained using the codes described in Table 1.
The sequence of kernels MVC1 through MVC10 was chosen because these kernels correspond
to a gradual increase in the complexity of the loop body and allow a precise determination
of the models’ impact on resource usage.

4.1 Synchronous model

The choice of a “synchronous model” has a relatively minor impact on performance: the
difference between our model and the real Cray issue mechanism is that some instructions
will be issued earlier than assumed in our model. This greedy behavior will not result in
generating conflicts later in the execution of the code. This is not true in general, as some
timing anomalies may appear when instructions are issued earlier than planned [4]. However,
such a situation does not occur for the CRAY-2 vector instructions due to the specific shape
of their templates [4].

As a result, the total execution time observed in reality will be smaller than the one
predicted, i.e., the code will perform better than expected. In practice, such a phenomenon
occurs very rarely because most of the codes are memory bound on the CRAY-2. The
presence of a single memory access unit implies that for vector loops, the code generated by
our model will often contain a vector memory load or store every macrocycle. In such cases,
the presence of these memory transactions in every macrocycle will limit the possible shift
to one macrocycle and will only change the timing of the startup phase, not the steady state
for the execution of the strip-mined loop.
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Table 2: Latencies (in number of cycles) of two different models and impact of scalar instruc-
tions (stride 1); the presence of dag (resp. a double dag) following a code name indicating
that VAS72 (resp. VAS82) required spilling.

Codes® VAST2 VAS82
ScOv | Chime ScOv | Chime

M1 0% 72 0% 74.5
MV1 2.5% 74.7 0.8% | 81.6
MVF1 0.7% | 73.25 0% 72
MCOM 0% 73.3 0.8% | 81.3
DROT t [} 0.5% | 71.2 1.2% | 84.25
MVC1 0% 72 0.9% | 73.6
MVC2 0% 72 06% | 79
MVC3 0.4% 72.8 1% 82
MVC4 ¢t 0.7% | 62.8 1.2% | 82.5
MVC5 ¢ 1.2% | 59.1/ 0.7% | 81
MVCé t 6.6% | 71.4 1.8% | 83
MVC7 t 4.9% 69.9 0.8% | 82.3
MVCS t 6.9% 64.2 0.2% | 82.3
MVC9t | 94% | 66.9 0.7% | 82.3
MVC10 t || 10.7% | 70.2 0.5% | 81.4
LL1t 1.3% | 74.7 0% 82.5
LL7 tt 78% | 73.9 1.3% | 78.8
LL12 0.5% 72.8 05% | 72.8
LL21 0% 72 0.7% 78.7
L1183 0% 72 0.4% | 75.3

As an example, let us consider the timing diagrams obtained by simulation of the exe-
cution of MV1 codes (Figure 7 for VAS72 and Figure 8 for VAS82). In these diagrams, the
row labeled MEM (resp. ADD and MUL) specifies the activity of the memory (respectively,
adder and multiplier) unit. These diagrams were generated using the SIM facility, which
takes into account most of the architectural features of the CRAY-2 except the memory
conflicts between independent memory requests. It appears that the simulated behavior is
very close to that produced by the models (cf. Figures 5 and 6); most of the differences are
due to the discrepancy between the exact timings and the ones used in the model.

4.2 Impact of scalar instructions

Ignoring the scalar instructions in the optimization of the loop body greatly simplified the
optimization procedure. This was justified by the fact that most scalar instructions take a
number of cycles an order of magnitude smaller than the full vector length vector instruc-
tions. However, a legitimate question arises as to how much the post pass scheduling of
the scalar instructions costs, and whether it excessively perturbates the execution of vector
instructions. To obtain an experimental estimation of the cost, we first measured the latency
(denoted Latl and expressed in cycles) between two consecutive blocks of 64 iterations for
the codes generated by VASCO; these codes were then trimmed down by suppressing all
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scalar instructions but the jumps and vector length decrementations (i.e., this corresponds
to discarding almost all the scalar instructions), and the latency for these codes was mea-
sured (denoted Lat2). By comparing these two latencies and computing the scalar overhead
ScOv = (Latl— Lat2)/Latl, we obtained an estimate of the impact of the scalar instructions
on the performance (cf. Table 2). It turns out that the cost in most cases is less than 5%,
the only exceptions worth mentioning being codes involving spilling (these codes are marked
with a single or a double dag in Table 2) for which the cost might be as high as 11 %. The
reason for this is that, in these cases, the pointers to the local memory locations used for spill
have to be spilled themselves due to the lack of address registers, which drastically increases
the number of scalar instructions.

Table 3: Register requirements and memory bandwidth usage (stride 1, vector length =
1024 and timings performed in dedicated mode); the presence of dag (resp. a double dag)
following a code name indicating that VAS72 (resp. VAS82) required spilling.

Codes CRQ MWORDS MFLOPS
VAS72 | VAS82 | VAS72 | VAS82 | CFT77 | VAS72 | VAS82 | CFT77

M1 6 4 185 176 148 185 176 148
MV1 6 5 188 174 118 188 174 118
MVF1 i 5 196 203 165 147 152 124
MCOM | 8 8 193 177 143 193 177 143
DROT{ | 9 8 163 170 108 244 255 162
MVC1 6 4 201 197 143 100 98 | 71
MVC2 8 5 199 184 135 133 123 90
MVC3 8 6 197 180 143 148 135 107
MVC4 1 || 10 7 153 180 143 122 144 114
MVC5t | 10 8 154 180 143 128 150 120
MVC6 1 || 11 8 102 171 148 87 147 127
MVC7 1 || 11 8 115 172 151 101 150 132
MVC8 1 || 12 8 92 174 154 82 155 137
MVCSt | 12 8 97 174 156 87 157 140
MVCi0t || 13 8 76 175 160 69 159 145
LL1{ 9 6 176 170 133 220 212 166
LL7 i1 10 9 128 170 137 205 272 219
LL12 4 4 198 198 167 66 66 56
LL21 6 4 188 177 135 99 88 67
L1183 7 6 201 197 189 134 131 126

4.3 Choice of the macrocycle

The choice of both macrocycles (72 and 82 cycles) was first motivated by the resulting
simplification of the templates, and therefore, the table reservation optimization process.
Consequently, all the elementary reservation tables for both models were extremely simple.
Although the difference between the two models may seem minor, the impact on the gen-
erated code and performance is far from being negligible. In the sequel, we shall designate
by VAST72 (respectively VAS82) the result of applying VASCO with the 72 (respectively 82)
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cycles macrocycle templates. CFT77 will stand for the output of the Cray CFT77 Version
3.0 compiler.

First, for the code optimizer, the only difference between the two models is that VAS72
considers the result register of the vector floating point add or multiply reserved for two
macrocycles while VAS82 considers it reserved just for one macrocycle. As we expected,
VAST72 turns out to be consuming more registers (see Table 3, the columns CRQ of which
show the number of virtual registers simultaneously alive). As a result, codes produced by
VAS72 will more often require spilling than codes produced by VAS82.

The situation with performance results is more subtle. Table 3 gives the memory band-
widths obtained when running codes obtained by VAS72, VAS82, and CFT77. The memory
bandwidth was computed by dividing the total number of memory accesses actually per-
formed by the time measured. The timings were done in a dedicated environment and on a
CRAY-2 with a dynamic memory. Because all the codes in this table are memory bound,
the Megaflop rate can be obtained by straightforward scaling. Depending upon the code, we
distinguish two cases: either VAS72 was able to produce a code requiring no spilling (i.e.,
CRQ < 8) or not. In the first case, VAS72 performs better than VAS82, while in the second
the situation is reversed. The second case is relatively easy to explain: the cost of the spilling
code required by VAS72 reduces the performance so severely that the advantage of VAS72
is lost.

The situation in the first case (no spilling for VAS72) is directly related to the choice of
the macrocycle and the induced approximation. For VAS72, the reservation time for both
memory and functional unit is modeled accurately. The only major error introduced is in
the reservation of the result registers which are considered two macrocycles (i.e., 144 cycles)
although they are, in reality, reserved for only 82 cycles. As a result, the memory and the
functional units are well modeled and their usage very well optimized via VAS72.

On the other hand, the choice of 82 as a macrocycle implies that memory and functional
unit timing will be overestimated, resulting in an under-utilization of these resources. In
contrast, the register reservations are more accurately modeled.

However, the impact of such an overestimation is not uniform, as evidenced by consider-
ation of the following two extreme cases:

1. none of the instructions scheduled at macrocycle 7 + 1 use a value produced by one of
the floating point units at macrocycle :.

2. one of the instructions scheduled at macrocycle 7+1 uses a result produced by a floating
point unit at macrocycle 2.

In the first case, although the model assumes a length of 82 cycles, all the instructions
will be executed in around 72 cycles. In the second case, the presence of dependence and
reservations involving the result register will enforce the value of 82 as the time spent at
execution for macrocycle i. An example of such a case is depicted in Figure 8, where
the addition (+2) of the second macrocycle depends on the multiplication (+2) executed
during the previous cycle. Although the second memory access, Y3, is executed immediately
following the first one (resulting in the full utilization of memory bandwidth), the third
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memory access is delayed. This stems from the critical path of the code produced by VAS82
being constituted by the concatenation of triples of dependent floating point operations (*2,
+2, *2). Conversely, VAS72 has scheduled the operations corresponding to the same triple
in nonconsecutive macrocycles, resulting in a better utilization of the memory bandwidth
(cf Figure 7).

This effect can be better appreciated if we compute the apparent chime, which is defined
as the number of cycles between the starting of two consecutive blocks of 64 iterations of
the loop body divided by the latency expressed in macrocycles, as predicted by the model
(cf. Table 2).

For VAS72, when no spilling is required, the model is very close to the apparent chime
because the critical path of code produced by VAS72 is mostly comprised of operations, all
of which last 72 cycles. As described elsewhere [3], the spilling procedure we used introduces
macrocycles during which no operations are scheduled: they correspond to waiting for the
liberation of result registers. In such cases, the model is considerably inaccurate because
such macrocycles are accounted for a full macrocycle, while in reality they last only about
10 cycles (82 -72).

For VAS82, the apparent chime rate varies between 72 and 82 cycles (cf Table 2). This
variation i1s due to the phenomenon described above, i.e, the presence of dependencies be-
tween instructions scheduled in consecutive macrocycles. An extreme case is MVF1 where
the apparent chime rate is 72, which turns out to be a result of the scheduling process that
systematically inserted a macrocycle between the production of a result by one of the floating
point units and its usage. On the other hand, for the loop body of MV1, any result produced
by a functional unit was used in the following macrocycle, resulting in an apparent chime
rate of 81.6 cycles. '

4.4 Modeling the memory behavior

The two models we used were constructed assuming an almost ideal memory behavior in
terms of bandwidth and assuming the processing of a vector memory request every 72 or
82 cycles. Although code optimized for such models may seem inadequate because of over
optimistic memory behavior modeling, in practige it turned out to generate high performance
code. The reason is that most of the codes are memory bound on the CRAY-2. Therefore,
it is important to be able to issue memory transactions as soon as possible to saturate the
memory bandwidth. Our models fulfill that requirement by trying to schedule a memory
transaction every macrocycle, achieving a perfect overlap betwecen the memory operations
and the floating point computations. This also means that the constraints imposed by the
model are more severe than in reality. If we assume that all vector memory accesses are more
than 82 cycles long, it is easy to show that the critical path in the codes generated by VASCO
will mostly be constituted by the memory access. To validate that assumption, we ran the
generated codes with all the vector accesses performed with stride 2 (this is equivalent to a
slowdown of the memory access by a factor of 3). As shown in Table 4, the codes produced
by VAS72 and VASS82 are still saturating the available memory bandwidth.
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Table 4: Memory bandwidth usage (stride 2, vector length 1024 and timings performed in
dedicated mode})

Codes MWORDS
VAS72 | VAS82 | CFT77
M1 66.8 68.7 59.5

MV1 67.3 68.5 55

MVF1 | 69.6 70.0 65.0
MCOM | 68.1 68.1 594
DROT | 68.9 68.7 55.3
MVC1 | 69.8 70.0 58.4
MVC2 | 68.9 69.7 58.7
MVC3 | 69.1 69.3 60.1
MVC4 | 67.9 68.7 59.7
MVC5 | 67.8 68.8 60.1
MVCé6 | 63.0 68.2 61.1
MVC7 | 65.5 67.6 62.3
MVC8 | 60.7 67.8 63.2
MVC9 | 63.4 68.1 63.7
MVC10 | 54.2 67.8 64.2
LL1 66.6 68.2 63.6
LL7 63.3 68.4 59.3
LL12 69.6 69.6 64.5
LL21 67.3 67.7 57.9
LL183 | 68.7 69.4 69.4

4.5 Strict limitations of the common memory model

There are two issues of common memory access that are clearly overlooked by our simple
model:

e non-unit strides memory accesses have been modeled, a priori, identically to unit-stride
(or to even stride) accesses: the same load template is used for all cases. Although
such a choice does not waste memory cycles as shown in the previous subsection for the
stride 2 case (i.e., the code generated still saturates the memory bandwidth available), it
may result in wasting register space. This could be avoided in many cases where stride
is known at compile-time (either explicitly or after global interprocedural analysis)
by using different templates for loads with strides resulting in a degradation of the
memory performance (i.e., stride multiples of 2, 4, 8 etc...).

e Our pipelined model ignores many of the fine grain details of processor and memory
system architecture: bank level reservation, data path buffering, hardware resources
multiplexing (like pseudo-banking). This can be justified in light of the satisfactory
use we can make of this model in our search for faster codes. However, we can also
show examples where our generated code clearly shows that the limit of the simplified
mode] has been reached.
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Figure 11: Influence of the gap on performance

It is interesting to note that a very simple experiment suffices to illustrate this point. It
can be performed by using the following piece of code

c 0 < IGAP < 512

c N < 4096 therefore no dependency
DOI=1,N

1 A(I+IGAP+4096) = (B + A(I)) = C

where IGAP is a parameter influencing the memory offset of memory writes with respect
to memory reads®.

The results (Figure 11), obtained in a dedicated mode with dynamic memory configura-
tion, show that our optimized code is sensitive to changes in IGAP, whereas CFT77 code
does not stress memory access enough to exhibit the phenomenon.

Such an effect is relatively difficult to take into account at compile-time because in most
cases, it depends upon the data layout. The only effective solution is to unroll the loop and
try to schedule successive loads on the same vector into consecutive macrocycles, although
the price in terms of register space is prohibitive when compared with the benefits.

5This also offsets quadrant controllers and pseudo banking common hardware (modulo 4 and modulo -
256).
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5 Optimization of register usage

During the scheduling of the functional units, we were dealing with virtual registers
to focus on optimizing the usage of the functional units. Now physical registers need to
be allocated. Even if the number of virtual registers simultaneously alive is less than the
number of physical registers, the task is complex because the loop structure and the cyclic
scheduling technique used induces cyclic constraints on the physical register assignment.

As an example, let us assume a loop for which the functional unit schedule has a latency
L = 3 and for which the reservation of the virtual register is given in Figure 12. The solution
of allocating, for every iteration 7, R;(¢) to VO would not work: starting the second iteration
three cycles later than the first one will lead to a conflict between R;(1) and R;(2) which
are mapped on the same physical register V0. To avoid the reservation conflict, the second
iteration needs to be started more than three cycles later, in fact seven cycles later due to
the reservation time of Ry(1). As a result, the schedule computed previously is no longer
valid because it was assuming a latency of three cycles. Computing a new schedule with a
latency of seven would not fix the problem because the reservation of the virtual registers
might change and furthermore it would result in an unacceptable slowdown. More generally,
such a problem occurs each time the lifetime of a virtual register exceeds the latency between
two consecutive iterations of the loop.

The solution proposed by Lam [9] consists of allocating to virtual registers within a
same class, but associated with different iterations, different physical registers, which is
achieved by first unrolling the object code of the loop and performing the allocation for that
unrolled loop. Unrolling the loop k times multiplies the latency by k while keeping the same
reservation timings for the virtual registers. The underlying principle of this method can
also be described by stating that instead of looking for an allocation mapping ¢ identical for
each iteration, we are looking for a mapping ¢ and a period u such that:

For every virtual register family R; and for every iteration :

S(Ri(i + u)) = ¢(R(2))

In fact, the quantity u corresponds to the unrolling factor.

In the sequel three different allocation strategies are presented and compared. For com-
parison, we will use two main criteria: the number of physical register used and the unrolling
factor. The first criterion is clearly crucial because registers are a scarce resource on the
CRAY-2. In practice, the only point that rcally matters is that the number of physical
registers used is less than or equal to the number of physical registers available. The second
criterion is related to the size of the code generated: unrolling the loop & times multiplies
the size of the code by k& which on some machines with a limited instruction cache or buffer
may have a adverse effect on performance. The influence of exceeding the aggregate size of
the four CRAY-2 instruction buffers results in a performance degradation in the order of
5%, as indicated by our practical experience.

For a unified presentation of the three algorithms, we will define a common framework.
Let us suppose that the latency between two iterations is L. We recall that virtual registers
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are grouped into families (R, --- R;) and that iteration ¢ uses virtual registers R;(7) - -- R(%).

With each virtual register Ri(z), we will associate its corresponding lifetime duration ex-

pressed in cycles. Because this quantity only depends upon the family, we will note it N and
CRQ will denote the maximum number of virtual registers simultaneously alive (CRQ = 4

for the example described in Figure 12). We will assume that there are C RQ physical reg-

isters available numbered 0---CRQ — 1. The function ¢ (called allocation function) will

denote a mapping in 0--- CRQ ~ 1, which gives for each virtual register the physical register

it is assigned to.

5.1 Algorith/rn 1

/
This method is a systematic application of the Modulo variable expansion as proposed by

Lam [9]. The key point is that if members of a register class Ry have a lifetime Ny and if
an iteration is initiated every L cycles, then at least [Ny /L] members of that class have to
be kept alive concurrently in that many physical registers. This register allocation problem
can be solved by first unrolling the loop s = [N;/L] times and then dedicating s distinct
physical registers for the allocation of the corresponding virtual registers Ri(7) - -+ Rp(i + s).
More precisely, the virtual register Ri(z) is assigned to the (i modulo s)th register allocated
to the class R;. More generally, this has to be applied to every register family. Thus, the
loop is unrolled u; times with u; = lemy, ([Ni/L]) and the total number of registers used
will be RU; = 34 [Ni/L]. In the example (Cf. Figure 12) N; = 4 and N, = 7 implies that
the loop has to be unrolled u; = lem(2,3) = 6 times and that five registers are needed. The
complete allocation is given in Figure 13.

5.2 Algorithm 2

The previous algorithm may result in a very large degree of unrolling, so Lam proposed a
modification of the algorithm that reduces the degree of unrolling at the price of using, a
priori, more registers. First the loop is unrolled u, times with u, = maz; [N, /L] and then
to each virtual register class Ry, t physical registers are allocated where ¢ is the smallest
factor of u, that is no smaller than [V, /L], that is:

t = min, n such that n > [Ny/L] and u, =0 (mod n) (1)

To reduce the number of registers used a post pass was added to take care of registers
whose lifetime was less than L; they were first sorted by decreasing lifetime and allocated to
the first physical register available (cf [9]).

In the example (Cf. Figure 12), this gives an unrolling factor of 4, requires six physical
registers, and the allocation scheme is described in Figure 14.

5.3 Algorithm 3

Our basic algorithin, which will use exactly ORQ registers, was introduced in (3] and is
described below. First, consider the loop as entirely unrolled and decompose this infinite
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sequence into a sequence of consecutive chunks with length L cycles called windows (W1,
W2, W3, etc ... in the example). Let us note that the first may have less than L cycles,
although all the subsequent will contain exactly L cycles. Except for the first windows, all
the windows will exhibit exactly the same reservation tables, modulo a translation in time,
thus describing a periodic steady state. One of them is then selected in the steady state
region as a reference window (W2 in our example).

Our method consists of building a function ¢, on a window by window basis, satisfying
the following constraints.

1. Over each window considered separately, the function ¢ is an admissible register allo--
cation: any pair of virtual registers simultaneously alive in any cycle of the window
will be assigned via ¢ different physical registers.

2. Between two consecutive windows, the function ¢ preserves the continuity of the as-
signment: a virtual register whose life spans several windows is assigned across all the
windows to the same physical register.

It can easily be checked that such a function ¢ will constitute an admissible assignment
for the whole loop.

The procedure for building ¢ reflects exactly the two properties mentioned above. First
we build a partial assignment ¢, over the reference window. This problem can be solved
exactly in polynomial time using exactly C RQ@ registers. More precisely, the algorithm is
linear with respect to the number of virtual registers alive inside the reference window. In
our example, let us pick W3 as the reference window, then over W3, five registers, Ry(1),
R1(2), R2(2), Ryi(3) and Ry(3), are alive (although not more than four are simultaneously
alive at any cycle). For our example, the initial assignment over W3 was given by

¢-(Ra(1)) =0 ¢,(Ry(2)) = 1
¢ (Ra2(2)) =2 6.(Ri(3)) =3
$-(R2(3)) =1

For simplicity’s sake, let us assume that the windows are numbered consecutively starting
by the reference window (W1 is the reference window). The allocation over the other windows
will be built according to the following rule:

for any register name Ri(u) alive in any window W;
B(Ri(w)) = 0 0 g, (Ru(u — i +1))

where o is a permutation over 0--- CR@ —1. It should be noted that due to the cyclic nature
of our functional unit scheduling, R(u) alive in W; implies that Ry(u — 2+ 1) is alive during
W,. By such a construction the first property is automatically verified. As a consequence of
such a construction, ¢ will necessarily be periodic with a period u3 equal to the order of the
permutation o (i.e. ¢ = Id). | '

Now the problem is to build o such that the continuity property holds. Let us first
observe that over the reference window, two different names belonging to the same class
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may appear, such as R;(2) and R;(3) in our example. These virtual registers need to be
allocated to different physical registers.

To satisfy the continuity property, we need to look closely at the registers whose lives
span over several windows. Let us introduce the set of virtual registers (denoted RIGH T),
whose life spans over the reference window and the next one:

RIGHT = {R;,(j1), - Ri, (o)} (2)

Similarly, we define LEFT as the set of virtual registers alive in the reference window
and the previous one. Due to the cyclic nature of the loop and of the scheduling generated,
there is a one to one mapping between the elements of LEFT and RIGHT associating
names in the same class such that every element of RIGHT can be extended by an element
of LEFT. More precisely, if R,(u) appears in the set RIGHT, Ry(u — 1) is in LEFT and
is the “extension” of R,(u).

For each pair of elements associated in this manner (R;,(k.), R;, (ks — 1)), we consider
the corresponding physical register numbers to which they were allocated over the reference
window. We can define a partial mapping 8 over 0--- CRQ — 1 by:

8(¢r(Ri¢(kt))) = (¢T(Ri¢(kt - 1))) (3)

This partial mapping 6 is injective and can be completed into a bijection ¢. It can easily
be checked that such a permutation will satisfy the continuity constraint.
In our example, the sets RIGHT and LEFT are given by

RIGHT = {Ry(2), Ri(3), R2(3)}
LEFT = {Ry(1), Ri(2), R2(2)}

The couples associated are (R2(2), R2(1)), (R1(3), R1(2)), (R2(3), R2(2)). Then 6 is given
by

There are many ways to complete 6 in order to get o. For this purpose, we build the
partial graph of  and complete it to limit the length of the cycles. The reason is that the
order of o, and therefore the unrolling factor us, is the least common multiple of the length
cycles. By the same token, for the eight registers of the CRAY, the maximal u; is 15. To
reduce this unrolling, we apply the previous algorithm not with CRQ@ as a target, but with
the number of physical registers, which gives more room for determining ¢,, limiting the
number of edges in the partial graph of § and reducing a priori the unrolling factor. Another
technique used for reducing uj3 is to choose the reference window such that it minimizes-
the number of elements of the set RIGHT, thereby possibly reducing the order of . As a
corollary, this implies that the maximum degree of unrolling is bound by the maximal order
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of a permutation over CRQ — 1 elements: for the CRAY2, this reduces the maximal degree
of unrolling down to 12.
In our example, 0 was chosen as

0(2)=6(2)=0 o(3)=6(3)=1
o(l)=6(1) =2 o(0) =3

It should be noted than even if all the register lifetimes are less than the latency L, which
will result in no unrolling for Algorithm 1 and 2, Algorithm 3 may generate unrolling because
it tries systematically to minimize the number of registers used.

As a final point, one of the major advantages of this algorithm is that the number of
registers it requires only depends on CR(Q). Therefore, after the functional unit scheduling
phase, two situations may arise: either CRQ is less than 8 so we can apply directly the
allocation procedure as stated in Algorithm 3, or CRQ is greater than 8. In this latter case,
we first perform a spilling pass in order to reduce CRQ down to 8, then we allocate the
physical registers. The spilling strategy we used is relatively simple and is a simple variant
of the one described in [3].

5.4 Comparison

Table 5: Comparison of different physical register allocations (VAS72)

Codes Lat | CRQ | uy [ us | u3 { RU; | RU; | RU;
M1 2 6 2 2 2 6 6 6
MV1 K 6 2 2 2 7 7 7
MVF1 4 7 2 2 2 8 8 8
MCOM 6 8 1 1 2 10 10 8
DROT{ || 5 |8(9) |2 |2 |2 |9 9 8
MVC1 3 6 2 2 2 6 6 6
MVC2 4 8 2 2 2 8 8 8
MVC3 5 8 2 2 2 11 11 8
MVC4 ¢ 9 8 (10) 111 2 14 10 8
MVC5t || 11 |8(10) |1 |1 |2 |17 |9 |8
MVCS ¢ 16 8 (11) 1 1 3 23 10 8
MVC7 } 16 8(11) |1 |1 [2 |26 10 8
MVCS 25 8 (12) 1 1 2 32 10 8
MVCOt || 25 |8(12) |1 |1 |2 |35 |10 |8
MVCI0t [ 3¢ |8(13)]1 |1 |3 |41 |9 |8
LLI { 4 |8(9) |2 |2 |6 |10 [10 |8
LL7 { 16 [8(10)|1 |1 |6 |26 |11 |8
LL12 3 4 2 2 2 4 4 4
LL21 3 6 2 2 2 6 6 6
LL183 6 7 2 2 2 10 9 8

Tables 5 and 6 give the unrolling degrees and the number of registers used for each of the
three algorithms described above. The column labeled u; (resp. u, and u3) indicates the
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degree of unrolling resulting from using Algorithm 1 (resp. 2 and 3). Similarly the columns
RU,, RU,, and RUj indicate the number of physical registers required. For the codes which a
priori required spilling, we first performed the spilling pass before the allocation. In Tables 5
and 6, these codes are associated with two numbers in the column CRQ: the first one is the
value of CRQ after the spilling pass, the second one (in parenthesis) is the original value of
C RQ before spilling.

Algorithm 1 exhibits a moderate degree of unrolling but is clearly not competitive due
to the prohibitive number of registers it requires. Algorithm 2 gives exactly the same degree
of unrolling as Algorithm 1. This is because the life of all register names was not spreading
over more than two windows (i.e., N/L < 2); for such a special case, the unrolling degree
of both Algorithms 1 and 2 are identical because they result in exactly the same modulo
variable expansion (lem(1,2) = maz(1,2) = 2). However, Algorithm 2 is consuming less
registers, primarily due to the special postpass for the registers whose lifetime is less than
the latency. ' ‘

Finally, as expected, Algorithm 3 is making the best usage of the available registers. The
price to be paid is not prohibitive: the unrolling degree of Algorithm 3 is in most cases very
similar to the one produced by Algorithm 2 (cf. Tables 5 and 6).

Table 6: Comparison of different physical register allocations (VAS82)

Codes Lat | CRQ | u; | up | uz | RU; | RU; | RU;
M1 2 4 2 (222 |5 5 5
MV1 3 5 2 [2 12 |7 7 7
MVF1 4 5 1 11 |1 |6 6 6
MCOM || 6 8 1 |1 [1 |10 9 8
DROT | 4 8 2 [2 72 J1o 9 8
MVC1 || 3 4 1 |1 |1 14 4 4
MVC2 | 4 5 1 |1 {1 |7 6 7
MVC3 | 5 6 1 {1 |1 |10 7 8
MVC4 [[ 6 7 1 |1 |1 ]13 7 8
MVCs | 7 8 1 [1 [1 |16 8 8
MVCeé |[ 8 8 1 |1 [1 |19 8 8
MVC7 9 8 1 1 1 22 8 8
MVC8 [[10 |8 1 11 {1 |25 8 8
MVC9 | 11 8 1 |1 [1 |28 9 8
MVC10 || 12 8 1 [1 12 |31 8 8
LL1 4 6 1 i1 [1 [8 7 8
LL7 11 8(9) {1 |1 [2 |26 10 8
LL12 3 4 2 12 72 14 4 4
LL21 3 4 171 |1 |4 4 4
LL183 6 6 1 {1 [t |8 6 8

27



6 Conclusion

We have shown the applicability of a technique based on the microcompaction framework
for generating efficient vector code on the CRAY-2. The experimental results presented
demonstrate the need for a sophisticated register allocation procedure efficient enough to
make good use of the vector registers which appear to be a very scarce resource on the
CRAY architectures.

The modeling procedure we used gives some insight on the relation of key architectural
features to practical performance of general vector code. This can be used to improve the
tradeoff that has to be made between purely architectural considerations and compiler related
issues, following a methodology much popularized by the RISC movement.

More generally, supercomputers are increasingly using complex hierarchical memory sys-
tems to achieve a data rate matching the arithmetic rate. Although such memory orga-
nizations result in a substantial improvement at least in peak performance, the efficiency
may become highly dependent upon the usage of the different storage levels of the hierarchy.
This implies a major change in the algorithm design, the larger applicability of high-level
restructuring transformations, and an evolution of compiler technology. At that level, several -
problems have to be solved:

e code optimization when memory may have a very long, unpredictable and highly fluc-
tuating latency;
e optimization of the usage of all the various levels of storage;

e minimization of the transfers between the different levels, which includes generation
and scheduling of the corresponding code.
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