N

N

Estimation of network reliability on a parallel machine
by means of a Monte Carlo technique
Mohamed El Khadiri, Raymond Marie, Gerardo Rubino

» To cite this version:

Mohamed El Khadiri, Raymond Marie, Gerardo Rubino. Estimation of network reliability on a
parallel machine by means of a Monte Carlo technique. [Research Report] RR-1297, INRIA. 1990.
inria-00075262

HAL 1d: inria-00075262
https://inria.hal.science/inria-00075262
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075262
https://hal.archives-ouvertes.fr

R

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocguencourt
BP105
/8163 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche

N° 1297

Programme 3
Réseaux et Systémes Répartis

ESTIMATION OF NETWORK
RELIABILITY ON A PARALLEL
MACHINE BY MEANS OF A
MONTE CARLO TECHNIQUE

Mohamed EL KHADIRI
Raymond MARIE
Gerardo RUBINO

Octobre 1990

*RR.128 7%

l R l S INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX
FRANCE

Téléphone : 99.36.20.00

Télex : UNIRISA 950 473F
Télécopie : 99.38.38.32

Estimation of Network Reliability
on a Parallel Machine
by means of a Monte Carlo Technique
Mohamed El Khadir:, Raymond Marie, Gerardo Rubino

IRISA
Campus de Beaulieu, FF-35042 Rennes Cedex, FRANCE

31 aoiit 1990
Publication Interne No. 545 - 20 pages

Abstract. We consider the evaluation of reliability measures of communication net-
works. The used models are stochastic graphs and the exact computation of most of the
standard reliability measures are very expensive in computational time. We explore here the
estimation of these measures with a Monte Carlo method and using a powerful parallel com-
puter. To illustrate the work, we consider a basic measurc in the arca, the 2-terminal (or
source-to-terminal) reliability. In the general case, the computation of this measure belongs
to the NP-hard class. The chosen machine is the iPSC2 hypercube of Intel. The Monte Carlo
method together with the computational power of the chosen computer allows the evaluation
of large networks while exact algorithms usually fails due to their high cost in time. The
paper discusses the architectural aspects and the algorithmic solutions that we adopted to
implement the technique. ‘

NETWORK RELIABILITY, MONTE CARLO SIMULATION, IPSC2

Estimation de la fiabilité d’un réseau
sur une machine parallele
par une méthode Monte Carlo

Résumeé. Nous considérons ici le probleme de ’évaluation de mesures de fiabilité pour les
réseaux de communications. Ce probleme appartient & la classe des NP-durs et sa résolution
par des méthodes directes, méme dans le cas de petits modeles, est prohibitive en temps
de calcul. Dans cet article nous étudions l’estimation de ces mesures par un algorithme
de type Monte Carlo mis en ceuvre sur une machine parallele & mémoire distribuée. Pour
illustrer la méthode, nous traitons le probleme de la fiabilité source-terminal d’un réseau
de communications modélisé par un graphe stochastique. Cette technique d’évaluation et
I'utilisation d’une machine puissante, 'iPSC2 de Intel, nous ont permis d’évaluer de trés
grands réseaux.

F1ABILITE DES RESEAUX, MoNTE CARrLO, IPSC2

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 1 INSTITUT NATIONAL DE RECHERCHE

(U.RA, 227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES | LLN.S.A. DE RENNES { UNITE DE RECHERCHE DE RENNES)

1 Introduction

In communication network modelling, one of the approaches to evaluate quantitatively the
behaviour of the system from a reliability point of view is to use stochastic graphs. The
network is represented by a graph and the components (nodes and links) are wighted by
probabilities corresponding to the respective reliabilities of the elements. Let G be such a
graph. Here G is supposed to be undirected, connected and without loops. For simplicity, we
assume that the nodes are perfect (no message is destroyed or lost in them) but at an instant
T of interest, each link is in one of two states: either “working perfectly” or “completly down”.
Let X; be the random variable defined by
X = 1{a,t time 7, link ! is working}

where 1 4 denotes the indicator function of the event A. In other words, X takes the value 1 iff
link ! is working at time 7, 0 otherwise. Let us assume that the X’s variables are independent
and let r; denote the reliability of link [, that is, Pr(X; = 1) = r;. At instant 7, the subset of
working links defines a subgraph G of G. There are many interesting measures that can be
evaluated from this model. A basic one will be consider here but the following ideas can be
applied to a wide class of problems.

Let us fix two nodes s and t of G. The measure which is considered in this paper is the
probability that there is at least a path in G between s and ¢. This number will be denoted
by R in the sequel. If Y denotes the random variable

Y=1 . -
{at time 7, the nodes s and ¢t are connected in G}
we have Pr(Y = 1) = R,. There are many variations around this type of measure and the
reader can find references for instance in [13]. See also [1] for a general survey and [14] for
details on two efficient exact algorithms.

In the general case, this is a NP-hard problem [12] and it remains in this class even
for restricted families of topologies (for instance, it remains NP-hard in planar graphs or
in graphs with bounded degree [9]). More specifically, the computational time required to
solve a medium size model (say many dozens of components) is in general prohibitive on a
workstation. On the other side, if we accept a probabilistic answer, a Monte Carlo technique
[8] can produce it more quickly (actually in polynomial time). This is the main topic of this
work. Our goal is to deal with very large topologies (more than one thousand components) in
order to evaluate the ability of the approach to give solutions for the case of non applicability
of exact techniques. We have not analysed here the statistical concerns with the Monte Carlo
approach; the interested reader can see [5],[10]. Another paper related to this problem is {15]
in which planar topologies are considered.

The paper is organized as follows. The following section introduces the machine and its
architecture. Comments on the algorithmic decisions that must be taken in this context are
also given. In Section 3 we discuss in some detail the implementation. In particular, we discuss
the main algorithm and the distribution of tasks on the hypercube, the used Monte Carlo
method and the pseudo-random number generation problem on a multiprocessor machine.
Section 4 contains examples of executions and the conclusions of this work are reported in
Section 5.

2 The iPSC2 machine

The iPSC2 computer [6] [7] is a multiprocessor machine with distributed memory, composed
of 2" nodes numbered from 0 to 2" — 1, connected according to a hypercube (or shortly, cube)
topology: Each node is directly connected to n other nodes and two nodes are neighbours iff
the Hamming distance between the binary representation of their numbers is 1 (see Figure 1).
Observe that, as a graph, an hypercube contains subgraphes corresponding to useful regular
topologies such as rings, 2D grids (if n > 4), 3D grids (if n > 6), binary trees, etc. See [18] for
an analysis of the hypercube topology. Each node of the iPSC2 is first composed of a 80386
processor and has at least 1 Mbyte of RAM. Moreover, there is a 80387 coprocessor and a
cache of 64 Kbytes. Each node has no direct access to the local memory of the other nodes
and there is no global memory. v

As a distributed machine, the cooperation between the nodes is achieved by message
passing. The iPSC2 offers to the programmer a communication network between its nodes
which is built on dedied hardware: each node has a specialized processor called DCM (Direct
Connect Module) [16] which avoids the utilization of the 80386 CPU and of the local RAM
for the routing task. A PC/386 frontal allows to share the whole cube between several users:
Each of them can then allocate any number of nodes. Also, the frontal processor loads the
processes on the nodes and kills them when necessary. The whole system runs under UNIX V
with supplementary specialized primitives. Several processes can be running on the same
node. Each process can be identified by its number together with the identifier of the node
on which it is running.

110 111

010 011

100 101

000 001

Figure 1: The 3-cube topology.

A program is then a set of communicating sequential tasks running on the different nodes.
As a consequence of the machine architecture, the algorithms must satisfy certain rules {17].
For instance, the different tasks must equilibrate to optimally use the set of nodes. Also, the
overhead induced by the exchange of messages must be controlled in order to avoid spending
most of the time in communications. Concerning the programming aspects, let us also mention
that the operating system allows the exchange of messages in two modes: with and without
blocking. In the first one, a node waiting for (resp. sending) a message is blocked until the
message arrives (resp. until the message leaves the node).

The estimation of the R, measure by a “crude” Monte Carlo method consists of repeating

N times the following experience. For each link / a Bernoulli trial is performed with the
distribution (r;,1 — ;). A subgraph G is obtained and the value of Y is calculated. Then, if
we denote by Y; the value of Y in the ith replication, the estimator of R, is

_Yi+Yet- 4+ Wy

Rst N ’

that is, the number of times that s and ¢ are connected in the resulting subgraph, divided
by the total number of generated subgraphs. To implement this experience in a computer
(to simulate it) we need a pseudo-random number generator giving pseudo-realizations of a
random variable X € {0,1} and a procedure to decide if s and t are connected in G or not
(in fact, we use a more efficient Monte Carlo technique presented in Subsection 3.2).

Our first architectural decision was the choice between a distributed simulation in which
each node takes in charge only a part of the network and a parallel simulation, in which
each node receives a copy of the whole graph and performs independently local replications.
We adopted the second solution since it reduces to a minimum the amount of necessary
communications: each node has only to send the results of its local replications to a central
supervisor who controls the whole application. We experimented some versions of the first
one and they did not behave very well. In particular, the number of exchanged messages was
proportional to the number of Bernoulli trials. The following section reports on the details of
the finally chosen implementation.

3 Implementation

In this section we describe the architecture of the application and some of the problems that
we had to solve to implement it.

3.1 Load balancing

Let us denote by C the number of allocated nodes of the iPSC2. Assume that we must perform
N replications. From the load balancing point of view, the immediate method consisting of
assigning N /C replications to each processor and then waiting that every one terminates its
part of the work is not efficient. This is due to the non deterministic execution time for each
replication. In particular, if the model has bridge-like regions (a bridge is an edge such that
its delation makes the graph unconnected) we may have high variations in this execution
time according to the fact that the bridge-like region allows the passing of messages or not.
To illustrate this, we show in Figure 2 the variation of the necessary time to perform N/C
replications when 64 processors are allocated and when the previous approach and the Monte
Carlo algorithm presented in Subsection 3.2 are used. A large network is evaluated: there are
3047 edges, each with the same elementary reliability 7. The graph has exactly three bridges.
The total number of replications to perform is 1000 times the number of processors, that is
64000 replications. We plot the coefficient of variation (square root of variance divided by the
absolute value of the mean) of the time used by a processor to perform its 1000 replications
against the value of r. Observe that the drift can be of about 25 times the mean time of 1000
replications if the elementary reliabilities are high. Observe also that in real networks models,
these elementary reliabilities are usually high.

Instead, we implemented a dynamic distribution of the load on the cube, taking into ac-
count the evolution of the work of each node. There are two types of processes here called

25

20 -

15 |-

10 |-

0 $ 1 | 1

0 .2 4 .6 .8 1
Elementary reliability

Figure 2: Coef. of variation in % of the time of execution of 1000 replications (sample size:
64 processors)

control process (or shortly controller) and simulation process. One of the C processors (the
master node) runs alternatively a process of each type and the remaining C — 1 nodes execute
only a stmulation process. The idea is the following. At the beginning, the control process
assigns a quota to each simulation one, that is, a number of replications to be performed.
This quota is the same for all the receivers and its value is ceiling(N/C) where ceiling(z) is
the smallest integer greater than or equal to the real number z. When a simulation process
achieves its quota it sends a report to the controller containing the total number of performed
replications (in fact, the total number of replications that have been performed since the pre-
vious report) and the number of successes in these simulations. There will be a first report
to arrive at the control process. Then, the control process asks each one of the remaining
simulation processes for a report independently on the number of already performed replica-
tions. When all the reports have arrived, the controller computes the total number of already
performed replications, say K, it updates also the total number of successes and it sends a
new quota to all the simulation processes equal to ceiling((N — K)/C) if K < N, 0 otherwise.
Coming back to the simulation process job, once it sends its report, it starts a new series of
replications and after each one, it looks at its local mailbox for a new quota. When this new
quota is 0, it sends a last report and stops. If it already achieved its new quota (or bypassed
it), it sends a new report. Otherwise, its next report will be sent when it will achieve this
new quota or when a request will arrive from the control process. In this way, the simulation
processes perform the replications continuously until the end of the application, which guar-
antees the load balancing. In the next section, we illustrate the speed-up obtained with C
processors as a function of C (see Figure 5).

In a more detailed way, the tasks of the two processes are described below. We use a simple
description langage with some particularities which are specific to the distributed application.
The objective is to be precise enough in the presentation of the algorithms without being too
technical with the programming details. '

Processes communicate with each other by message passing. The messages may be of
any data type and format. Also, “empty” messages (messages without data) can be used
as signals to coordinate the processes. In our description langage, when a process sends a
message it uses the SEND primitive that has three parameters: a message’s type, the message’s

buffer and the receiver’s address. On the other side, the primitive READ allows a process to
read a message from its mailbox. Reading a message is a consummer task, the message leaves
the mailbox. This primitive has only two parameters, identical to the first two parameters of
SEND.

We use three types of messages: mesg_quota, mesg_request and mesg_report. Messages of
the first type are sent by the control process to the simulation processes and contain an integer,
the quota value. The mesg.request messages are empty and they are used by the controller just
to ask for reports. The messages of the mesg_report type are sent by the simulation processes
to the controller. They are structured with two integer fields called done and success. The
first one contains the number of performed replications (from the last report) and the second
one contains the number of successes.

We use a function SENDER(mesg_type) returning the address of the process which sent
the oldest message of the given type in the mailbox. The primitive WAIT(mesg-type) stops
a process until a message of the given type has arrived. The primitive FLUSH(mesg_type,
process(es)) allows to destroy all the messages of the given type in the mailbox of the named
processes. Last, the function oneReplication() performs a replication (see the next subsection)
and return 1 or 0 according to the fact that the result is a success or not.

The control process cummulates the number of successses in its counter totalSuccesses
and the number of performed replications in alreadyDone. The coresponding variables in
each simulation process are called successes and done respectively.

¢ Simulation process.

done := O ; success := 0
loop
if (mesg.quota is present) then
READ(mesg-quota , quota)
if quota > O then
for i := done + 1,quota do
if (mesg_request is present) then
i :=1 -1 ; break /*x for */

endif
success := success + oneReplication()
endfor
done := i
endif
/* send report : */

report.done := done ; reporl.success := success
SEND(mesg_report, report, control process)
if quota = O then
break /* loop */

endif
done := 0 ; success := 0

else /* no mesg-quota message in mailbox */
success := success + oneReplication()
done := done + 1

endif

endloop

e Control process.

alreadyDone := 0 ; totalSuccess := 0
while alreadyDone < N do
/* distribute the current quota : */
quota := ceiling((N — alreadyDone)/C)
SEND(mesg._quota, quota, every simulation process)
/* wait for a first report and update counters : */
WAIT(mesg_report)
analyzeReport ()
/* request report to every other simulation process */
p := SENDER(mesg_report)
SEND(mesg_request, empty, every simulation process exept p)
/* receive all the remaining C — 1 reports : */
for j :=1,C - 1 do
WAIT(mesg_report)
/* update counters */
analyzeReport ()
endfor
/* prevent for any remaining request message : */
FLUSH(mesg.request, every simulation process)
endwhile
/* send stop signal : %/
quota := 0
SEND(mesg_quota, every simulation process)
for j := 1,C do
WAIT(mesg_report)
analyzeReport() /* last update of counters */

endfor
R := totalSuccess/alreadyDone [* computing the output */
end

procedure analyzeReport()
READ (mesg_report, report)
alreadyDone := alreadyDone + report.done
totalSuccess := totalSuccess + report.success
end

3.2 The used Monte Carlo algorithm

As stated before, the illustrative problem is the so called source-to-terminal or 2-terminal
one, in an undirected context. Let us denote by nbNodes the number of nodes of the graph
G and by nbEdges the number of edges.

Instead of performing nbEdges Bernoulli trials and then using a routine to see if the nodes
s and t are connected in the resulting sub-graph of G, our approach consists of doing these
two tasks at the same time. As it is usual in connectivity tests, we perform a depth-first
search starting with node s. Before visiting a new node y from an already visited node z,
we perform a Bernoulli trial for the link {z,y}. If the result is not a success, the algorithm

behaves as if the link {z,y} does not exist and the search continues. In this way, the number
of Bernoulli trials in each replication is diminished (see Figure 7 in the next section).

Moreover, it is clear that the way in which the search algorithm finds the successive vertex
that are adjacent to a given node is relevant on the time necessary to detect the connection
between s and ¢ or to decide that the two nodes are not connected. We used a dictionary of
adjacent nodes sorted according to their respective distances to the terminal node t. More
specifically, when starting from node z, the depth-first search first consider, among the nodes
adjacent to z and not yet visited, the node y which is the closest one to t. This method
has behaved much better than a blind exploration; it is called here the “topologic” algorithm
since it depends strongly on the topology of the underlying graph (see Section 4). In [10]
further details on the topologic algorithm and its behaviour compared with other Monte
Carlo methods are given.

3.3 Independent random number generators

We used a classical congruential pseudo-random number generator [3]:
Ugy1 =aUgmodm, k21

where m = 232 (the iPSC2 is a 32-bit machine), Uy is relatively prime to m and a = 3 mod 8.
The period of such a sequence is 23°,

To implement a parallel simulation, we need C independent sequences of random numbers
where C is the number of allocated nodes. To solve this problem, let us consider the whole
sequence U = (Ug)i=1,2,. 2%. Assume that we need 27 independent random sequences to be
used by 27 processors in our cube (that is, assume that C = 27). The general case in which
C is not a power of two is not a problem once this case is solved. We divide the sequence U
into 2/ parts in order to build 2/ generators (see Figure 3). If U7 denotes the jth generator,
j=1,2,...,27, the corresponding recurrence is

U,{H:aU,{modm, k>1
where U{ = U(j-1)2%0-741-
Uy Uyzs Uax o2 U3y g2 Uaso

o © © © ©
subsequence 1 subsequence 2 subsequence 3 subsequence 4

Figure 3: Partitionning the sequence U into 22 parts
To compute Ulj , observe that
U.=Uyd* 'modm k>1.
Then,

Ui’ = U(J'_l)230—.l+1
Ula((j’l)zso_J) mod m

Uy (a(23°-1))j_1 mod m.

8

We need only to compute the factor b = a(?°™’) mod m which is done executing 30 — J times
the sequence

r:=z’mod m

where z is a variable initialized to a. Last, we compute

and Ui*! := bU{ mod m, j=1,2,...,27 - 1.

4 Results

Consider the family of graphs (sx) illustrated in Figure 4. The number of edges in si is
2k? — 2k + 1. The first graph s; has only one edge between s and t. A simple duality
argument gives that if every line in s; has elementary probability 0.5 then R, = 0.5. This
result is used here to test the algorithm on arbitrarily large networks with a “reasonable”
connectivity and a known exact value for the answer.

f— k — 1 columms
m o0

X

k TOowWsS

Figure 4: The s, topology

First, we show in Figure 5 the speed-up obtained with C processors as a function of C.
The considered measure is the time necessary to perform a sequential simulation divided by
the time used by our algorithm on C processors [4]. Let us denote this ratio by S(C). The
plot corresponds to the execution time on s4o (3121 edges) with all the edges having the same
elementary reliability r = 0.5. Observe that the optimal situation is S(C) = C. This kind of
behaviour is obtained when a perfect load balancing is achieved and when the communication
time is negligible. In our case, there is a small drift of the speed-up with respect to the ideal
curve when C increases since the number of exchanged messages increases with C. The fact

that there are two processes running in node 0 introduces a very small overhead : we measured
S(1) = 0.9776. In Annex A we propose a simple analytical model to have some insight on
this behaviour.

oL ! 1 1 1 1

0 5 10 15 20 25 30
Number C of allocated processors

Figure 5: Speed-up as a function of the number of allocated processors (the time of a sequential
simulation on 1 processor divided by the time of our algorithm running on C processors.

On the same family of graphs, we analysed the execution time as a function of the (com-
mon) elementary reliability r. In Figure 6 we show this variation on two graphs, s40 (3121
edges) and sgp (7081 edges). In the y-axis we put the mean execution time per replication,
computed on a 64-processors cube. This mean is evaluated using a sample of 64000 replica-
tions. It is given in millisecs. The mean time per replication is greater in the case of sgg since
there are much more paths than in the s40 graph and they are longer. Since the two graphs
have a similar structure, the two curves have roughly the same shape. We can also observe
that the difference between the mean execution times is smaller when r = 0 or r = 1. In the
first case this is due to the fact that regardless to the number of lines in the graph, only the
“neighbours” of s are relevant since the result is very often that s and ¢ are disconnected,
and this is detected very quickly. In the second one, the determinant factor is the distance
between s and t since the lines are working almost for every trial. In Figure 7, we compare
the algorithm with a version using in each simulation process a crude Monte Carlo method.
We plot the ratio between the mean expectation time per replication in the two cases, called
gain in the caption of the figure, always on s40 and sep, as a function of r. As we can expect,
the gain is smaller when r = 0.5. See, for instance, that on s49 our algorithm works about 17
times faster than the crude implementation when r = 0.9. Observe that in general, in “real”
models the values of the elementary reliabilities are usually high.

The () family allows an efficient analysis of the variation on the execution time when the
size of the network increases. We performed as usual 64000 replications on a 64-processors
cube on s¢;, for j = 1,2,... We computed the ratio between the execution time to evaluate
s10; and the execution time to evaluate sj9. This ratio is plotted in Figure 8. In the z-axis
we put the size of the graphs where the unit is the size of ;0. We show four curves, two for
the proposed algorithm and two for the version that uses crude Monte Carlo. In each cases,
we measured the ratio when r = 0.5 and when r = 0.9. The important point to observe here
is that in our solution, this increase ratio is below the y = z/2 line. Moreover, the ratio is
sensitive to the value of 7 (which is not true in the crude Monte Carlo version) with smaller

10

2 T T T T
1.8 | 540 (3121 edges) -+— a
1.6 F 360 (7081 edges) »— -
14 + -
1.2 -1
1 — -4
8+ =
6 I N
4 n
2F =

0 ! 1 1 1
0 2 4 6 .8 1

Elemeﬁtary reliz;bility T

Figure 6: Mean time in millisecs per replication with 64 processors as a function of r, the
elementary reliability of the edges.

40 T T T T

R sS40 (3121 edges) —+— i
35 Seo (7081 edges) »— |
30
25 -
20 J
15]
10 +
0 i 1 1 1

0 2 4 .6 .8 1
. Elementary reliability 7

Figure 7: Gain of the topologic algorithm over crude Monte Carlo as a function of r, the
elementary reliability of the edges (execution times ratio of the first one over the second).

values for high elementary reliabilities. Other tests with different values of r and different
graphs confirm this behaviour.

To give an idea about the cost in time to obtain a reasonable answer on a large network,
we present some values of the execution time computed with 64 processors and the respective
0.95% confidence intervals. We used a Gaussian approximation since the number of replica-
tions was very high. We evaluated a graph composed by 20 copies of s4 in parallel (sharing
the same source and terminal vertex) with all the elementary reliabilities equal to 0.5. The
graph has 20 * 25 = 500 edges. The theoretical reliability R is 1 —(0.5)%° = 0.99999905. We
performed 20098263 replications. The execution time was 8.96 minutes. The estimation of
Ry was 0.99999925 and the size of the confidence interval was 0.00000076.

Consider now a series of four copies of syq relied by its respective terminal and source points
with bridges. This gives a network with 4+ 761+ 3 = 3047 edges. Table 1 gives the execution
time in secs together with the value of the estimation of R, and the confidence interval

11

T T T T T
50 - r = 0.5 with crude <—
r = 0.5 with topologic A
r = 0.9 with crude +—
40 r = 0.9 with topologic —+— -
30 - Y= -32:— -
20
10 |- -
et
o L= a] — 1 1 !
0 10 20 30 40 50

Network size

Figure 8: Execution time on a graph with 181m edges, divided by the execution time on a
graph with 181 edges, as a function of m. The number of replications is 64000 and we use 64

processors.

size, for three different number of replications, in the case of the elementary reliabilities all
equal to 0.99. In Table 2, the same information is presented when the edges have elementary
reliabilities equal to 0.5. In this case, the theoretical reliability R, is (0.5)7 = 0.0078125.

repl. | estimation conf. int. size | exec. time

70344 | 9.7067269e-01 | 2.4937047e-03 16.6 secs
118617 | 9.7087264e-01 | 1.9140104e-03 21.5 secs
265608 | 9.7066730e-01 | 1.2834434e-03 43.1 secs

Table 1: case of r = 0.99

repl. | estimation conf. int. size | exec. time
104940 | 7.2994092e-03 | 1.0300743e-03 50.9 secs
202251 | 7.7032994e-03 | 7.6207882¢-04 94.4 secs
250956 | 7.7941950e-03 | 6.8813523e-04 | 115.8 secs

5 Conclusions

Table 2: case of r = 0.5

Our experience on some real network evaluations (from the reliability point of view) learns us
that exact algorithms are too expensive in time to be applied to them. This is the case, for
instance, for networks with hundreds of links once the obvious reductions (as series-parallel
simplifications) have been performed. When exact algorithms fail or when their computational

12

v

time is prohibitive, the Monte Carlo method can supply a probabilistic answer in a reasonable
time. In particular, the implementation of this technique on a multiprocessor machine as
reported in this paper has allowed us to handle with very large networks in a satisfactory
way. Further work can be performed in several directions. From one side one can attempt
to still reduce the computational time by trying, for example, other Monte Carlo techniques
or by looking for other algorithmic approaches in the exploration of the stochastic graph.
Furthermore, it is of interest to investigate the implementation of exact techniques as factoring
algorithms [2], [11] in a parallel computer such as the iPSC2. Even if almost surely it cannot
handle networks with hundreds of elements, the utilization of such a machine must improve
the bounds on the size of the graphs that can be exactly solved in “reasonable” computational
time on sequential computers.

13

References

[1] A.Agrawal and R.E.Barlow. A survey of network reliability and domination theory. Op.
Res., 32:478-492, 1984.

[2] A.Satyarayana and M.K.Chang. Network reliability and the factoring theorem. Net-
works, 13, 1983.

(3] D.Knuth. The Art of Computer Programming. Volume 2 : Seminumerical Algorithms,
Addison-Wesley, 1969.

[4] D.L.Eager, J.Zahorjan, and E.D.Lazowska. Speed-up versus efficiency in parallel systems.
IEEE Trans. on Comp., 38(3):408-423, March 1989.

[5] G.S.Fishman. A comparison of four monte-carlo methods for estimating the probability
of s-t conectedness. IEEE Trans. Reliab., R-35(2), 1986.

(6] INTEL. iPSC/2 Users Guide, Intel Scientific Computers. Beaverton, 1988.

[7] INTEL. Product Realease Notes, Realease 2.2, iPSC/2 System Software. Beaverton,
1988.

[8] J.M.Hammerslay and D.C.Handscomb. Monte Carlo Methods. Halsted Press, Wiley &
Soms. Inc., New York, 1979,

[9] J.S.Provan. The complexity of reliability computations in planar and acyclic graphs.
SIAM J. Comput., 15(3), Aug. 1986.

(10} M.El Khadiri and G.Rubino. Efficient Monte Carlo Evaluation of Network Reliability
Measures. Technical Report, INRIA, Campus de Beaulieu, 35042 Rennes, France, 1990
(to appear).

[11] K.Wood. A factoring algorithm using polygon-to-chain reductions for computing k-
terminal network reliability. Networks, 15:173-190, 1985.

[12] M.O.Ball. Computational complexity of network reliability analysis: an overview. IEEE
Trans. Reliab., R-35(3), 1986.

[13] M.O.Locks and A.Satyarayana editors. Network reliability — the state of the art. IEEE
Trans. Reliab., R-35(3), 1986.

[14] R.Marie and G.Rubino. Direct approaches to the 2-terminal reliabiity problem. In
E.Orhun E.Gelembe and E.Bagar, editors, The Third International Symposium on Com-
puter and Information Sciences, pages 740-747, Ege University, Cesme, Izmir, Turkey,
1988.

[15]) R.M.Karp and M.Luby. Monte-carlo algorithms for the planar multiterminal network
reliability problem. Journal of Complexity, 1:45-64, 1985.

[16] S.F.Nugent. The ipsc/2 direct-connect communications technology. In Geoffrey Fox,
editor, The Third Conference On Hypercube Concurrent Computers and Applications,
pages 51-60, California Institute of Technology, 1988.

14

[17] Y.Won S.Ranka and S.Sahni. Programming a hypercube multicomputer. IEFFE Software,
69-77, September 1988.

[18] Y.Saad and M.H.Shultz. Topological properties of hypercubes. Yale Reseach Report,
June 1985.

A Annex : on the speed-up function

Let us derive here a simple model to give an idea on the behaviour of the speed-up function as
the number of processors increases. In the sequel, we will implicitely consider average times.

Let us denote by T(p) the time needed by a configuration of p processors to perform
a fixed number N of replications on a given graph with our algorithm. Let us denote by
T,rp the preprocessing time that can be considered independent of p (preparation of the data
structures and of the pseudo-random number generators, etc.). After the preprocessing, the
control process asynchronously sends the data iteratively to the simulation processes. The p
packets of messages are not received at the same instant. We denote by Ty the delay between
the end of the preprocessing phase and the instant at which the first simulation process is
ready to start its replications. Then, we write

T(p) = Tyrp+ To + hp+Tep+---+Tpp

Here, T;, is the length of the interval in which there are exactly j simulation processes
performing replications. This interval starts when the jth process receives the data and it
ends when the data arrives to the next one (for j < p). When the last simulation process
begins its replications, the whole p processors work in parallel for the rest of the replications
(this last interval has length T}, ,). From this it follows that

Tijp=Tjppr forj=12,...,p—-1. (1)

Experimental results show that the speed of the simulation process running on node 0 is not
significantly affected by the control process runing in the same node. If we denote by T the
time needed by one single processor to achieve N replications (excluding the preprocessing
time) then its speed is v = N/T and we can write

vTyp+ 20T+ -+ pvTpp,=N

which gives

T Tip+2Tpp+---+(p-— 17T, -1,p
Tp,p = ; et p .

Then, we have

T
T(p)=Tprp+ To + A(p) + ;

where

1 2 p—1
A =Ty (1-7) + T (1) ++ T (1-257).

Proposition A.1 The function p — A(p) increases with p.
Proof.

r-1 J
AD) =3 Tjp (1 _ —)
j=1 p
and

A(p+1)

> :
Tjpi1 <1 - _)
i=1 P+ 1

= j P
= Z Tj,p (1 - m) + Tp,p+l (1 — m) (from (1))

i=1

So,
p—-

A(p+1)-A(p) = PP -

1 :
. 1
. IT5p + mTp,pH >0
O
Let us denote by S(p) the speed-up function and by E(p) the efficiency function. We have
S(p) dzef Tprp + T = Tprp + T T
T
(p) TO + Tprp + A(P) + ;

and
def S(p) _ Toprp+ T

E(p) = = .
B = Mo ¥ Ty + AN+ T
It is clear that E(p) < 1 for all p and that it decreases with p. This gives the last result.

Proposition A.2 The function p — p — S(p) increases with p.

Proof. Since E(p) is decreasing, if p; > p; then

_S(Pl) > _S(Pz)
n P2

Adding 1 to the two sides, we get

- S(p1) S P2 S(p2)
¥4 P2

Also, since E(p) < 1 for all p we have p— S(p) > 0. This allows us to conclude that if p; > p,
then p1 — S(p1) > p2 — S(p2)- o

17

Pl

Pl

Pl

Pl

PI

Pl

PI

Pl

PI

542

543

544

545

546

547

548

549

550

A NEW APPROACH TO VISUAL SERVOING IN ROBOTICS
Bernard ESPIAU, Frangois CHAUMETTE, Patrick RIVES
Juillet 1990, 44 Pages.

SIMPLE DISTRIBUTED 'SOLUTIONS TO THE READERS-WRITERS
PROBLEM

Michel RAYNAL -

Juillet 1990, 10 Pages.

IMPLEMENTATION AND EVALUATION OF DISTRIBUTED
SYNCHRONIZATION ON A DISTRIBUTED MEMORY PARALLEL
MACHINE

André COUVERT, René PEDRONO, Michel RAYNAL

Juillet 1990, 14 Pages.

ESTIMATION OF NETWORK RELIABILITY ON A PARALLEL
MACHINE BY MEANS OF A MONTE CARLO TECHNIQUE
Mohamed EL KHADIRI, Raymond MARIE, Gerardo RUBINO
Aoflit 1990, 20 Pages.

LIMIT THEOREMS FOR MIXING PROCESSES
Bernard DELYON
Septembre 1990, 22 Pages.

PERFORMANCES DES COMMUNICATIONS SUR LE T-NODE
Frédéric GUIDEC
Septembre 1990, 38 Pages.

LES PREDICATS COLLECTIFS : UN MOYEN D'EXPRESSION DU
CONTROLE DU PARALLELISME 0V EN PROLOG

René QUINIOU, Laurent TRILLING

Septembre 1990, 34 Pages.

NORMALISATION SOUS HYPOTHESE D'ABSENCE DE LIEN
APPLICATION AU CAS NOMINAL

Francois DAUDE

Septembre 1990, 42 Pages.

MULTISCALE SIGNAL PROCESSING : FROM QMF TO WAVELETS
Albert BENVENISTE
Septembre 1990, 28 Pages.

18

Imprimé en France
ar
. I'Institut National de Recherche en Informatique et en Automatique .

ISSN 0249-6399

