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Résumé

Un certain nombre de systémes de files d’attente possedent une intéressante propriété connue sous
le nom de “phénomene de coupure”: apres une normalisation adéquate, la distance en variation
totale entre le processus transitoire et le processus stationnaire converge vers une fontion de saut
lorsque la charge initiale tend vers 'infini. Le but de cet article est de prouver que cette propriété
est une conséquence directe du couplage entre ces deux processus, et qu’elle est donc généralisable
a des systémes sans structure markovienne.

Mots-clés: files d’attente stationnaires et ergodiques, distance en variation totale,
temps de relaxation
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Abstract

A number of stochastic queueing systems exhibit an interesting phenomenon, termed as the
cut-off phenomenon. A properly scaled version of the distance between the transient process
and the stationary one, converges to a step function as the initial load converges to infinity. The
purpose of this paper is to promote the idea that this phenomenon is a direct consequence of
the coupling between the two processes, being thus generalizable to systems lacking any kind of
Markovian structure.

STATIONARY AND ERGODIC QUEUEING SYSTEMS, TOTAL VARIATION DISTANCE, SETTLING TIME

1 Introduction

The cut-off phenomenon in a stochastic system, refers, loosely speaking, to the existence of a time
such that, before this time the system is far from stationarity, while, after this time the system is
very close to stationarity. The above statement has to be interpreted asymptotically, as a parameter
N of the system converges to infinity. To be more specific, we give a few examples of systems that
have been studied in the literature:

Aldous [1] has looked into random walks on finite groups. For these processes he has shown that
the distance between the transient process and its stationary version is maximal before the settling
time and minimal after. The parameter that is taken to converge to infinity here is the total
number of states. Anantharam [2] has extended these ideas in order to identify the settling time of
a closed Jackson Network, asymptotically as the total number of customers N converges to infinity.
Stamoulis and Tsitsiklis [9] treated a non-Markov-chain case, that of the GI/GI/1 queue. This
system was parametrized by the initial population N.

The purpose of our paper is to show, by means of specific examples, first that the cut-off
phenomenon is valid even for systems without any Markovian structure at all and second that it is
essentially based on coupling. In Section 2 we study the general single-server queue with stationary
and ergodic input and in Section 3 we study a multi-dimensional system that has applications, for
instance, to queues with locking customers.

*This work was supported in part by the National Science Foundation under grant ASC 88-8802764



2 The cut-off phenomenon for the single-server queue

We start with this simple model so as to make the ideas of the proof transparent. These will be
extended to the more general system of Section 3. Consider a single-server queue with general
service discipline, input rate A, and service rate . Assuming that the queue is stable, i.e., that the
state of the queue at time ¢ converges to a steady-state as t — oo, we are interested in a numerical
estimate for the time that the queue “reaches stationarity” (the so-called settling time) under the
condition that the queue has a large initial load.

Let dn(t) be the total variation distance between the distribution of the population X}V of the
queue at time ¢t when the initial load is N (i.e., when X = N) and its steady-state distribution
w. This is defined as

dn(t) = sup | P(X]" € 4) - x(4)] (21)

where the supremum ranges over all subsets A of the non-negative integers. Then the following
happens: There exists a positive constant, say a, such that dn(t) is approximately equal to its
maximum value (that is, 1) when t < Na and approximately equal to its minimurn value (that
is, 0) when t > Na, asymptotically as N — oo. This statement (and the conditions under which
it holds) will be made more precise later. It will also be shown that the value of & is equal to
1/(p = A).

The intuition (at least for an M/M/1. queue) is as follows: It takes time N/(px — A), on the
average, for the queue to get rid of its initial load N (this is due to the fact that the first time that
the queue reaches the empty state is the sum of N i.i.d. random variables with the same mean
/(s — A)). If N is large then the steady state version of the queue will have emptied before time
N/(p — A) with high probability. After hitting the zero state we can couple the two Markov chains
without changing their marginal distributions. This is an intuitive explanation of the conjecture
that dy(t) is almost O after N/(x — A) and almost 1 before. The result holds true for a queue
with general stationary and ergodic input. The idea of the proof is not far from the above intuitive
explanation for the M/M/1 queue, as it is indeed based on coupling.

Let now A; be the arrival process and 5; the service process of the queue. We assume that the
processes are jointly stationary and ergodic. Thus both A := limy—~co A¢/t and g := lim;—oo St /2
exist and are assumed to be finite. We also assume that the stability condition A < u is satisfied.
Let X, be the population (number of customers in the queue) at time ¢t. The initial population Xj is
a finite random variable. We denote by X}V the population process with Xy = N. It is known that
there exists a finite random variable Xg for the initial population such that the resulting process
X, is stationary and ergodic. Furthermore, any population process X; couples with X, in finite
time. As a result, d(Xt,X,) —¢—co 0. Here d(X,Y ) denotes the total variation distance between
two random variables (or, more precisely, between their distributions) X and Y:

d(X,Y):=sup|P(X € A) - P(Y € A)|.
A

For a proof of these results we refer to the original paper of Loynes [8]. Now let dn(t) be asin (2.1)
with m(A) := P(X; € A). The following will be shown in the next section.

Theorem 1 Under the above-mentioned hypotheses,

. (1 fo<t<a .
NIL“L—(ZN(M)_{O ift>a, (22)

where o := 1/(pn — A).



Before proceeding to the proof Theorem 1 we first show the following lemma:
Lemma 1 If Ty :=inf{t > 0: XN = 0} then

lim TN——L— a.s
Nooo N p=X 7

Proof Consider the process defined by
Zt = At - Sg.

Clearly, the piece of the process XN for 0 < t < T is the same as the piece of the process N + Z,
for t between 0 and the first time at which Z, hits —N. That is, Ty := inf{t > 0: Z, = —N}.
Clearly then, Ty — oo and Z;/t — A — u. Hence, Z7,/Tn — A — p, and since Z7, = —N, we
have Tn/N — 1/(u — A). Note that all the above convergences are in the almost sure sense. This
proves Lemma 1. O

Proof of Theorem 1
Suppose first that t > o := 1/(u — A). From the triangle inequality we have

dN(Nt) = d(XII\\’/t’XNt) < d(Xﬁtv‘qult) + d(-XR’t’XNt)v (2.3)

where X? is the population process that starts from zero. By what has been mentioned above, this
process couples with the stationary process X and so the last term of (2.3) tends to 0 as N — oo.
For the first term we have the usual coupling estimate

d( XN X%) < P(Tn > Nt)

which, in view of the result of Lemma 1 and the assumption that ¢t > a, tends to zero as well.

Suppose next that 0 <t < a. Observe that

7 N vy ‘X’l‘yt -\71\/! :
(lN(A t) = d(‘YNzaXNt) = d(T, T) (24)

From the fact that X, can be written as Xy + 4, — D,, where D, is a stationary and ergodic
departure process with the same rate A as the arrival process ,;, we get

XNt

lim -~

N—oo

=0, a.s. (2.5)

On the other hand, the fact that X,Q"t =N + An; — Sy for Nt < Tn together with the result of
Lemma 1 and the convergences Ane/N —nNooo A, SNt/ N —N—oo pt, yields

XN
NhirLT];“ =1-(p— At as. (2.6)

Since the limit in (2.5) is not equal to the limit in (2.6) (the latter is positive, by the assumption
t < a), it follows easily that (2.4) converges to 1. To see this just choose an ¢ > 0 such that
1—(u—A)t >e€ Then d(XR,/N,Xni/N) > |P(~¢ < XN,/N < €)= P(—e < XN,/N < ¢)| —
1 — 0 = 1. This finishes the proof of Theorem 1. O



Settling times for other processes associated with the system

We have investigated the settling time of the queue-length process {X;,t € R}. Consider now the
queue length process X, := X;,_., n € Z, just before the arrival times t,,. It is not difficult to see
that the settling time (settling index) for the latter process is proportional to A/(u — A). In other
words, if 7° denotes the steady-state distribution of {X,}, then d(X¥,,7°) converges to 1 [resp.
0]if n < A/(r — A) [resp. n > A/(p — A)], as N — oco. We should, perhaps, note at this point that
the customer-stationary distribution 7° is related to the time-stationary distribution 7 by means
of a Palm transformation.

Another process that is of interest is the workload process. The settling time for this process
can be seen to be proportional to u/( — A) (provided that the parameter converging to infinity is
the initial workload). Finally, the process of the workload as seen by the arriving customers (which
is equal to the waiting time if the service discipline is first-come first-serve), has a settling time
proportional to Au/(p — A).

Let us finally note that the results presented in this section generalize the results of [9], as they
get rid of the independence assumptions between the inter-arrival or service times.

3 The cut-off phenomenon for more general systems

We turn now to the generalization of the ideas developed in the previous section and consider more
general systems. The class of systems for which our analysis is applicable is the one that can be
described by equations that generalize the classical Lindley’s equation (see (3.2) below). Examples
of such systems are: Queues with locking customers (see the definition below), queueing networks
with a certain service discipline (discussed in reference [4}), a tandem network with manufacturing
blocking and unit-size buffers (see [4]) and, more generally, the class of Petri nets that are event
graphs (these are discussed in [3]). However, for concreteness, we choose to give the proofs of a
system with locking.
Consider the following computer system with s servers: Custoniers arrive at times ¢,. Customer
n demands service from one or more servers. Let 7, be the set of servers required by customer n.
This is the case, for instance, when a task is split into sub-tasks for execution in parallel processors.
For each j in m, we have a corresponding service time ¢}. Furthermore, customer n locks the
servers after service. In other words, it does not leave the system before all of its sub-parts have
completed service. This means that at times, some of the servers may be idle while there are other
customers awaiting for service. Note that we do not require the sub-parts to synchronize when
service begins. This system differs from the fork-join queue (see [5] and [7]) because in the latter
system the sub-parts do have to synchronize after service, but this synchronization takes place in
an infinite-size buffer and so the finished parts do not block the server. Let W] be the virtual
waiting time in server j at time ¢, — (just before the arrival of customer n). The idea is that W is
the actual waiting time of part jif j € @,. It is then not difficult to see that we have the following
recursion:
Wi - { maX;er, (Wi + 0], —m)" ifiem, (3.1)
ntl (W —1,)7F otherwise.

Here 7, = typ41 —t, and 2% = max(z,0). It can be easily seen that this equation is a generalization
of Lindley’s equation for a single-server queue. The cutoff phenomenon for the latter system was
presented in the previous section. Our argument there was based on the continuous-time evolution
of the system but we could have casily taken a discrete-time point of view as well.



In the present section we prefer to work in discrete time. The treatment of the multi-dimensional
system of this section is somewhat more technical than that of the single-server queue. However, the
essential ideas remain unchanged. This is why we presented the simpler case first. The statistical
assumptions for the system are as follows:

(1) The sequence {r,,m,, (a:;;i € 7 )}nez is a stationary and ergodic sequence under some proba-
bility measure P.

(ii) Er, < 00 and Eo} < oo foralli = 1,...,s.

(iii) For each i, j there is a sequence i = ig,i1,...,4 = j (for some finite £ € {1,2,...}) such
that P({im-1,%m} C 7,) > 0 for all m = 1,...,k. (For instance, if 7, is equal to the whole set
{1,...,s} with positive probability, then this last requirement is satisfied.)

Some remarks about these assumptions: The first two are natural and we have nothing to add.
The last one is a kind of “irreducibility” assumption in the sense that if we define a graph with a
vertex set {1,...,s} and an edge from 7 to j whenever P({i,7} C 7o) > 0, then (iii) says that this
graph is strongly connected. This assumption will be later used in the proofs of Lemmas 3 and 4.

The problem that we want to analyze here is again the formn of the settling time for the system.
In other words, does there exist a constant a such that (2.2) holds? First let us see what dy is. Let
W,(N) be the solution of (3.1) with initial condition Wo(N) = N.a, where a = (al,...,a") € R
with a* > 0 for all i. When there is no possibility of confusion we will denote W,(N) simply by
W,. Assuming that there is a steady-state, dy(n) is defined as the total variation distance between
the steady-state distribution and the distribution of W,(N).

But first, let us examine the existence of such a steady-state. We will begin by writing (3.1) in
a more convenient form. Let us introduce some extra notation: Define the random subsets ¢, (%),
fori=1,...,s,0f {1,...,s} by

¢n(i)={ T fi1€m,

{1} otherwise.

Define the random variables £, for i = 1,...,s, by

n?

—Tn otherwise.

{i {U;—Tn ifiem,

Then (3.1) takes the form

Wi, = max (W!+€)*. (3.2)
JE(I)n(i)

Observe that the random sequence {[¢,(4),€.;1 < ¢ < s]},ez is still stationary and ergodic

under P. Finally, for m < n, define the following quantities
. . _ 1 tm+1 in—l
Sm,n(lma v aln—l) - 677’1" + €m+1 +...+ én—l 3
Umn = max max Sma(im, ... in-1),
1\Ss

The second maximum in the latter is taken over all indices i, ..., 1,—1 such that iy, € dm(tmt1),-- -
in—1 € ®n_1(2). This will save some space. It is essential to notice this convention carefully in order
to avoid possible confusion later in the paper. These quantities appear when one writes down the
solution of the recursion (3.2). See also (3.4) below.

Observe now that the process U, , is subadditive:

l<m<n=U, <Ugm+ U,n».



This inequality holds pathwise and is easy to deduce from the very definition of Uy, ,,. Furthermore,
Un, n is stationary in the following sense:

{Unmn,m < n} = {Untkntk, m < n}in distribution for each integer k.

Hence, by Kingman’s theorem (see [6]), the linear rate of growth of Uy, ,,, either as a function of m
or as a function of n, exists, and is a deterministic constant that will be denoted by v:
Um,n m,n

lim =+; lim —— =9, as. (3.3)

n—oo n m——0co0 —1M

We are now ready to prove the following theorem, concerning the existence of the steady-state:

Theorem 2 Ify < 0 then there is a steady-state, in the sense that there is a finite, stationary and
ergodic process that satisfies (3.2).

Proof The idea of the proof is classical. It is based on the fact that the right-hand-side of (3.2)
is non-decreasing in W?. Our proof follows closely the proof of Baccelli and Liu [4].

For m < n, let W, , be the Rj-valued process that, as function of n, satisfies (3.1) (or,
equivalently, (3.2)) with initial condition at time n = m zero: Wy, ,, = 0. Observe that W}, . <
W} _,, forall m,n and i. Define - '

W, = mlixzx()(} Wr‘n,n' |
It is easy to see that the latter (i) satisfies the recursion (3.2) (by its definition and the fact that
n— Wy, , also satisfies (3.2)), and (ii) that is stationary and ergodic. We only need to prove then
that W} is finite with probability one. To this end, observe, after some algebra, that
max W . = UnnVUngin V... VUi1, VO.

m,n

Since (3.3) holds and since ¥ < 0, it follows that

sup max W, . < oo, as.
m<n 1<1<s ’

The existence of the steady-state has been shown by construction. O
The rest of this section is devoted to the investigation of the cutoff phenomenon. We will
throughout assume that ¥ < 0. The main result is Theorem 3 below. Before proceeding to it we
need some technical lemmata.
First let
Ly =inf{n > 0: W,(N) = W,(0)}.

This is the first time that the process W, (/N ) meets the process Wy(0). A priori, this time might
be infinite with positive probability. Among other things, the next lemma shows that this is not
the case, as long as vy < 0.

Lemma 2 For any N there is a finite sequence of indices {k,;0 < n < Ly}, such that ¢,_1(kn) D
kn_1,...,¢0(k1) 3 ko and W,'f" = Wé“’ + Son(ko, ... kn-1). Furthermore, Ly < oo with probability
one.



Proof Let first n = Ly — 1. Then there is an index k, € {1,...,s} such that W= > W}~ (0),
by the very definition of Ly. But this means that W,’f" is not zero and hence, from (3.2), there
is a previous index kn_; € @n_1(ks) such that Wrr = W:Z;‘ + 521‘1‘. It is easy to see that
W:ﬁ;‘ > W:Z;‘(O), as well. Propagating the argument (backwards) we prove the first part of the

theorem.
In particular, we showed that

P(Ly >n) < P(Wkr = WS + Son(ko, .- kn_1))
= P(Wkn/n = WE In 4 Son(ko, ... kn_1)/n),

which implies that
limsup P(Ly > n) € P(limsup Wrn/n = ).

But v < 0 and hence the latter probability is zero. O
Note that the indices k,, depend on N, but we omit to write it explicitly for simplicity reasons.

This lemma showed that as long as n is before the first time that W,(/N) meets with W,(0),
there is some component of the vector W, (N) that can be expressed in terms of some component
Wé°° of the initial condition without having to use the operator ( )* of the equation (3.2). The next
lemma is concerned with the behavior of the index ko (recall that it depends on N) as N tends to
co. It is shown that, for all realizations of the process, if NV is suitably large, then kg is equal to
the index that achieves the maximum of Wé over 1 <i<s.

We should also mention at this point that the proof of Lemma 2 also works for showing that
any process W, that satisfies (3.2) (starting from a finite random initial condition Wy) couples with
the stationary process W,,, that was constructed in Theorem 2, in finite time.

Recalling that W} = N - @', by definition, we will show the following:
Lemma 3 Let f = max{al,...,a%}. Then limy_o ¢ = 3.

Proof We start with an explicit expression for W ». This can be obtained from the recursion
(3.2): |
W,‘f" = max{WJ° + So(Jo,---,Jn-1)} Vmax{S1 n(j1.---»Jn_1)} V... VO. (3.4)

Again, we employ our space-saver convention that the first maximum is taken over all jo,...,Jn_1
such that jo € ¢o(J1),---yJn=1 € dn_1(ky), the second one is taken over all j1,...,Jn—1 such that
J1 € 01(32)s- - -y Jn-1 € dn_1(kn), and so forth and so on. (It should be observed-at this point that
the index k,, that appears explicitly on the l.h.s. of (3.4) also appears on the r.h.s. implicitly under
the first max.) Fix now n. As Ly — oo, we can choose an N so that Ly > n. Then

‘/V();o + SO,n(kOs s 3kn—1) 2 ma,x{Wg° + SO,?l(jO’ ce 7j71—1)}a (35)
from Lemma 2 and eq. (3.4) above. Dividing by N and letting N tend to oo we get
liminfa® > liminf  max ... max {a’}. (3.6)
N—oo N—0oo ju-1€én—i1(kn)  Jo€do(s1)

For any i, j let A% be the event N
Ay = {1 € ou(y)}-

If ¢, j are such that P({i,5} C mo) > 0 then P(A%) > 0 and hence P(AY, infinitely often) = 1. by
ergodicity. Otherwise, for arbitrary ¢, j we can find ¢ = ég.....ix = j for some finite k € {1,2,...},
such that

P({im_1,tm} Cm) >0, forallm=1....,k.



(This is due to assumption (iii).) Hence
P(A;m"'im,inﬁllite]y often) = 1, for all m = 1,... k. (3.7)

This, together with the fact that ¢ € ¢,(i) (by definition), shows that the set of jo’s under the
maximum of (3.6) is eventually equal to {1,...,s}. That is,

{Jo: 371, s Jn-1 8.t Jo € do(J1)s- -3 Jn1 € Snr(ka)} = {1,...,s}.

(To give an intuitive explanation of this, let us say that the points reached one step backwards at
time n by some given node j are those points in the set ¢,(j); those reached in 2 steps backwards
are the points k£ with k£ € ¢,_1(7), for some ¢ € ¢,(k); and so forth and so on... These sets are
non-decreasing (because 7 is always in ¢(¢)) and they eventually include any node in {1,...,s} due
to (3.7).)
Hence, the right hand side of (3.6) is equal to 3. But, on the other hand, ako < 8. We conclude

that

li ko — 3,

Ng»noo ¢ ﬂ

This finishes the proof of Lemma 3. O

Our final lemma in this section has the same goal as Lemma 1, namely it shows that the coupling
time Ly between W,(N) and W,(0) has a linear rate of growth as N — oo.

Lemma 4 The coupling time Ly of {W,(N)} with {W,(0)} satisfies
In B

Proof First observe that limy_.o, Ly = 00. Choose a subsequence {ny} such that ny — o as
N — o0 and ny < Ly for all N. By Lemma 2 we have

W::,N = ak°N + So'nN (3.8)

for some sequence of indices ko, k1,...,kL,y 1. Here So.,, is an abbreviation for Son (Ko, ..., kny_, ).
Proceeding as in the proof of Lemma 3 we get (by comparing the expression (3.8) with (3.4) )

max So,n‘\/(k07j1’ R ’jnN—I ) S 5‘0,71‘\,' S (]0.71,\,'7 (39)

(the inequality on the left is actually an equality) where the maximum is taken over the set j; €
61(72)s- - -1 Jnny-1 € Pny-1(kny). The term on the right satisfies

. UO,nN
lim ——= = ~,
N—*CO nN

as in (3.3). It is not difficult to see that the same is true for the term on the left:

. 1 . . .
lim — max Sonpy(kosJ1s. - s Jnp=1) =7 (3.10)
N—oc Ny
To see this, we just have to show that the quantity Z& := Max; eg, (J2) - ..111axj,‘_lea,,l_l(k){£§° +

P4+ £ ) satisfies lim ZF /n = v as n — oo, Observe that

Zk - max (ZJn—l + Jn—l) — max max (ZA/"_~2 + £.Iu—2 + jn—l = ..
-1 -1 . . -2 -2 Sn—1
" Jn—l€¢n—l(k) ™ n Jn—1€¢n—l(k) Jn—2€d’n—‘2(]n—l) ™ " n



We continue the iteration until the first time, say, m, such that the index jh,_m, below the nested
maxima will range over the whole set {1,...,s}. This is true for sufficiently large n because of our
assumption (iii) (see also the proof of Lemma 3). Noting that m (which depends on n) is of order
o(n), by stationarity, we readily conclude that lim Z¥/n = lim Ugn-m/n =7, i.e., its rate of growth
does not depend on k. Hence (3.10) is true.

Looking now at inequality (3.9) we conclude that, along the subsequence {nn},
Sony/nn — 7. (3.11)

Another limit that we need in the sequel is

lim -l-W,,(O) = 0. (3.12)

n—oo 7

This follows easily from the fact that W,,(0) converges to W and hence the rate at which work exits
the system is the same as the rate that work enters the system.

From the definition of Ly and the recursion (3.2) we get

Wiy =W = max (W] _ +¢&, )" (3.13)

JE€SL Ny -1(1)
Combining (3.13) with (3.8) we get

ki1

Wi, (0) > a*N + Sopy_1+ &7
Divide by N, use (3.10), (3.12) and Lemma 3 to get

o In B .
l}\IIIE;LfT > =k (3.14)

On the other hand,

kp - ko
WoNT > W T(0) 2 0.

This, together with (3.8), implies
a®N + Sopy-1 > 0.

Dividing, as usual, by N and using the result of Lemma 3 again, we get another inequality, for the
limsup this time:

I ;
limsup =Y < £ (3.15)
Nooo N |A/]

Combining (3.14) and (3.15) we obtain the proof of Lemma 4. O

We are now ready to state and prove the main theorem.
Theorem 3 Provided that the constant v (defined by (3.3)) is strictly negative, we have

1 ifn< g/l

1\}1—{}100 d(Wya(N), W) = { 0 i n>3/l,

where W is the steady-state that was constructed in the proof of Theorem 2.



Proof
Suppose first that n > §/|v|. Using a triangle inequality, as in (2.3), we get

dWrny, Whn) < d(Win, Wrn(0)) + d(Wan(0), Wan).

The last term on the right converges to 0, by coupling (Lemma 2). The first term is dominated
above by P(Ly > Nn) which converges to 0 also (Lemma 4 and the assumption n > 8/|v|).

Suppose next that n < 8/|y|. We have
AW, W) = A Wi Worn).
We claim that the right-hand-side converges to 1. From Lemma 2 we have
Whn = abo N 4 8o (koy... kne1) if n < L.
Replace n by Nn in the above and divide by N
Lwhin = gk 4 LSo nn(kos. .. kno1) if n < In/N.

Now let N go to co and use Lemma 3, Lemma 4, (3.11), and the assumption n < 3/|7] to get

Jim LWt = 3 4 4m. (3.16)
On the other hand,
1\}1_1}}){) T:/-WNTL = O, (3.17)

for the same reason that (3.12) holds. Consider now the obvious inequality
d(ﬁWan 'ﬁ‘;VNn) _>_ d(#”‘/VNnHa %“Wl\'ull)a (318)

where ||z|| = (Zi5, :v?)l/?. Fix n < f/]v| and choose ¢ > 0 such that 3 + yn > €. The right-hand
side of (3.18) is dominated below by

PG 1Wanll < €) = P [Waall < €]
But (3.16) implies that P(||Wy,||/N < ¢, infinitely often) = 0, while (3.17) implies that P(J|Wy,||/N <
€) — 1. Hence (3.18) converges to 1. This concludes the proof of Theorem 3. O

Remarks

The settling time for the process W, has been shown to be proportional to 1/|y| (normalize by
setting 8 = 1). The problem is, as usual with the subadditive ergodic theorems, the actual value of
the constant ¥ which was defined only as the rate of growth of U, ,,. There are almost no systems
where one knows v exactly, unless U,, , is additive, instead of being subadditive (in which case
v equals EUp1). Observe that, if s = 1, the system of Section 3 is actually the G/G/1 queue of
Section 2. In this case, v is trivially equal to ! — A=1. This leads to a settling time proportional
to Au/(p — A), in agreement with the remarks at the end of Section 2.
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4

Conclusions

We have investigated the settling time for two non-Markovian systems: The single-server queue
and the multi-server queue with locking with stationary and ergodic inputs. The essential idea in
our development has been the coupling between the transient process and the stationary one. It
has been shown that the settling time is proportional to the (linear) rate of growth of the coupling
time when the initial state goes to infinity. It is expected that our methods are also applicable to
other systems that admit coupling.
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