N

N
N

HAL

open science

Non-blocking atomic broadcast with omission failures

Emmanuelle Anceaume, Pascale Minet

» To cite this version:

Emmanuelle Anceaume, Pascale Minet. Non-blocking atomic broadcast with omission failures. RR-

1287, INRIA. 1990. inria-00075272

HAL 1d: inria-00075272
https://inria.hal.science/inria-00075272
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075272
https://hal.archives-ouvertes.fr

. ‘\
| »
: A
i i

5

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt
BP105
| /8163 Le Chesnay Cedex
France

T8l:(1)39635511

Rapports de Recherche

N° 1287

Programme 3
Réseaux et Systémes Répartis

NON-BLOCKING ATOMIC
BROADCAST WITH OMISSION
FAILURES

Pascale MINET
Emmanuelle ANCEAUME

Octobre 1990

g

2871

NON-BLOCKING ATOMIC BROADCAST
WITH OMISSION FAILURES

DIFFUSION ATOMIQUE NON BLOQUANTE AVEC
DEFAILLANCES PAR OMISSION

Pascale Minet, Emmanuelle Anceaume
INRIA, Reflecs Project, BP 105
Rocquencourt, 78153 Le Chesnay Cedex
France
minet@score.inria.fr, anccaume@score.inria.fr

ABSTRACT

A non-blocking atomic broadcast protocol meets the four properties of unanimity, order, uniform
agreement and termination. The protocol presented here assumes weak fail-silent Network Attachment
Controllers (NAC) subject to general omission failures or crash failures and a broadcast channel subject
to omission failures or crash failures. This protocol uses the services provided by a Medium Access
Control protocol. Transmission delays are assumed to be bounded. Concurrent broadcasts are not
considered. In a failure-free environment it consists of two phases. In case of receivers failures, the
number of phases is three. If the broadcaster fails either all the receivers ignore the broadcast or all the
correct receivers deliver the broadcast message to their Host. The protocol described hereafter is non-
blocking provided that the majority of the current correct NACs is present.

RESUME

Un protocole de diffusion atomique non bloquant satisfait les quatre propriétés d’unanimité, ordre,
uniformité et terminaison. Les hypoth&ses suivantes sont adoptées : les contrdleurs réseau (notés NAC) et
le canal de transmission ont deux modes de défaillance possibles : défaillance par omission ou défaillance
par arrét définitif. Pour le controleur réseau 1’omission peut intervenir en émission ou en réception. Le
protocole décrit ci-apreés utilise les services fournis par un protocole d’acces au médium. Les délais de
transmission sont supposés bomés. Les diffusions concurrentes ne sont pas traitées. Ce protocole
comprend deux phases en univers non défaillant et trois phases dans le cas d’une défaillance d’un récepteur.
La défaillance du diffuseur entraine soit la validation du message par tous les récepteurs corrects, soit
I’annulation du message par tous les réceptcurs. Ce protocole est non-bloquant sous réserve que la
majorité des contrdleurs corrects soient présents.

1. WHY AN ATOMIC BROADCAST ?

As the trend towards distribution continues, the role of atomic broadcast protocols in distributed
operating systems of the future has been compared with those of message passing in the operating systems
of today [1).

A broadcast is atomic if it meets the four following properties :

- unanimity : every message whose broadcast is initiated by a sender is either delivered to all
correct receivers or to none of them. The latter case occurs only if the sender fails during its
broadcast.

- order : all delivered messages from all senders are delivered in the same order at all receivers,

- termination : each correct receiver knows the outcome of a broadcast within some known time
bound.

- uniform agreement : if any receiver (failed or non-failed) has delivered a message, then each
non-failed receiver must deliver this message.

2. FAULT ASSUMPTIONS

The communication system consists of a number of Network Attachment Controllers (NACs) connected
to a local area network (LAN) modeled as a possibly faulty broadcast channel. A Host is associated with
each NAC.

2.1. Weak fail-silent NAC

The NACs are assumed to be weak fail-silent [2].

- a non-faulty weak fail-silent communication processor always sends correct messages and
always delivers correct messages to its Host.

- a faulty weak fail-silent communication processor omits to send or to receive messages from
the LAN. It is considered as permanently failed (crashed) as soon as the omission degree (number
of omissions which are either consecutive or related to a given message) is higher than a given
threshold.

- a permanently weak fail-silent communication processor does not send any messages, and does
not deliver any messages to its Host : from the point of view of the Host it remains silent.

This assumption takes into account temporary faults like buffer overflow at the receiving end.

2.2. Channel with omission failure

The channel is subject to crash or omission failure. A faulty channel omits to deliver a frame to some or
all NACs. The channel is considered as permanently failed (crashed) as soon as the omission degree is
exceeded.

2.3. Communication system

Assuming that the omission degree is n for a NAC and c¢ for the channel, the number of faults to be
tolerated for a given message is equal to 2n+c. Hence a message may be sent 2n+c+1=N times to be
received by all correct NACs provided that no partition occurs. N is termed the maximum transmission
number. A NAC is assumed to be able to receive the messages it sends.

Transmission delays are assumed to be bounded.

3. ATOMIC BROADCAST PROTOCOL

3.1. Main features

This atomic broadcast protocol uses the services provided by a Medium Access Control protocol, and does
not consider concurrent broadcasts.

The non-blocking atomic broadcast protocol completes in two phases in a failure-free environment
(see fig. 1). The first phase starts with the first transmission of the message M to be broadcast. Each
correct NAC acknowledges the message receipt. A NAC is said to be correct as long as it belongs to the
correct list maintained by each NAC. As soon as the broadcaster has collected at least one
acknowledgement from each correct NAC, it enters the second phase or commit phase by broadcasting
the commit message. Upon commit receipt, a correct NAC is allowed to deliver the committed message
to its Host.

In a faulty environment, omission receive faults are tolerated by retransmissions. The broadcaster must
retransmit its message until :

- either it has collected at least one acknowledgment from each correct NAC,

- or the maximum transmission number N is reached.

The first phase ends with one of these two conditions. If at the end of the first phase, some correct NACs
have not acknowledged the message M, the broadcaster initiates a new phase with the broadcast of the
new correct list excluding the silent NACs. This exclusion is allowed provided that this broadcaster has
received at least a majority of acknowledgements from the comrect NACs during the first phase. The new
correct list contains all the correct receivers which have acknowledged M. The broadcaster completcs its
broadcast with the commit phase. In this case (receiver failures), the protocol completes in three phases
(see fig. 2).

Majority-Rule : if after N transmissions, the broadcaster has not received the acknowledgements from at
least a majority of correct NACs, it must halt.

The majority concept is introduced to avoid that :

- either a faulty broadcaster excludes correct NACs. Indeed with omission receive errors the
broadcaster does not receive the acknowledgements of the correct NACs after N transmissions. It
considers these correct NACs as failed and excludes them from the correct list ;

- Or two or morc partitions operate concurrently.
The majority required by this protocol is self-adaptive. It evolves dynamically according to the changes

occurring in the system (failures, departures, and joins). For a given broadcast, the maximum number of
receiver failures tolerated by the protocol is equal to the majority of the current correct list minus one.

3.2. Failure-free environment
Each NAC n maintains locally :
- the current correct list L,

- a variable last = <!, s’> which is the timestamp of L, with { the sequence number of the correct
list and s’ the identifier of the list source,

- a variable mlast = <m-1, s> which is the most recent message timestamp it has received, with
m-1 the sequence number of the message and s the identifier of the message source.

Broadcaster b Receiver i Receiver j
3
Msg <m, b> <l,5'>
1st phase >
= 1st /
message transmission _ Ackm ><
transmission - ,
phase Msg <m, b> <l, s'> ><
ithe=N /
transmission Ack m >
v «
4 Commit <m, b> <l,s'> .
2nd phase / v
= Ack_commit m >
commit € -
phase _ Ack_commit m
v

Figure 1 : Failure-free environment : broadcast in two phases

A broadcaster b belonging to the correct list L is allowed to broadcast a new message only if it has
committed or aborted the previous message. This broadcaster b enters the first phase of the non-blocking
atomic broadcast protocol. It broadcasts its message M with a message timestamp <m, b> and a list

timestamp </, s">.

To tolerate omission faults, the broadcaster is allowed to transmit up to N times its message. In the
following, these transmissions are called retries.

When a correct NAC R receives a valid message, it acknowledges it. A message is considered valid by a
NAC whose the variables mlast and llast are equal to <m-1, s> and </, "> respectively if :

- the broadcaster belongs to the list timestamped by llast,

- and the list timestamp received is equal to last,

-and:
- either the message sequence number is equal to m (normal case),
- or the message timestamp received is equal to mlast (it is a retry)

- or the message sequence number is equal to m-1 (crash of the sender of the message
timestamped mlast, (see sender failure)).

When a broadcaster has received at least one acknowledgement of all the correct NACs, it initiates the
commit phase by broadcasting the commit message. The commit message contains the timestamp of the
message to commit with the list timestamp associated. Each list member delivers the committed message
to its Host. Like the first phase, all the correct NACs must acknowledge the commit message which can
be transmitted up to N times.

3.3. Receiver failure

If a broadcaster has not received at least one acknowledgement of each correct NAC after N transmissions
of the message, it must enter a new phase by broadcasting a new correct list excluding the silent
receivers. This new list is retransmitted until either the maximum transmission number is reached or this
list is acknowledged by all its members. As a consequence of the Majority Rule, a broadcaster is allowed
to broadcast a new list if and only if this new list contains a majority of members of the previous list.
Otherwise it halts.

Broadcaster b Receiver i Receiver j
A
Msg <m, b> <l,5'>
1st Z i \
transmission Ackm /
Msg <m, b> <1, 5'>
2nd 7 g
transmission Ack
1st phase om
message (o)
transmission
phase o]
0
Msg <m, b> <!, s'>
Nth L _ N
transmission _ Ackm
v
At least one recciver has never acknowledged during the first phase (N transmissions).
A
2nd phase List <l+1, b> R
y £ - —
list Ack_list 1+1
transmission «—
phase VL

Commit <m, b> <i+1,5'>
3rd phase /

~ Ack_commit m

X

commit phase

Figure 2 : Receiver failures : broadcast in three phases

A list is considered valid by a NAC with mlast = <m-1, s> and llast = <l, s"> if :
- the broadcaster belongs to the list timestamped by llast,

-and:

- either the list sequence number is equal to I+ (normal case)
- or the list timestamp received is equal to llast (it is a retry)

- or the list sequence number is equal to ! (crash of the sender of the list timestamped
llast (see sender failure)).

A NAC that violates the weak fail silence assumption must recognize that it has done so and must halt.
A NAC detects such a violation if :

- either it receives an out-of-sequence message with a list timestamp equal to last,

- or it does not belong to the in-sequence received list,

- or it receives a commit for a message it has not acknowledged,

- or it does not meet the Majority Rule.

The correct list broadcast phase is followed by the commit phase, which enables all the NACs belonging
to the last correct list to deliver the message to their Host.

3.4. Sender failure

When a broadcaster s fails, the outcome of its broadcast depends on the phase concerned by its failure. Let
M be the message broadcast by s and timestamped <m, s> and </, s’>, L is the current list timestamped
<l.s’>. Let n be the next broadcaster (this one which broadcasts just after s) ; n takes over the pending
broadcast. It is the surrogate of s. The broadcaster s can fail either during the message transmission, or
during the correct list transmission, or during the commit phase. We examine successively these three

Ccases :

- sender failure during the message transmission : some of the correct NACs may have received

the message M and the others may not. Two sub-cases are possible :

- in the first case, if n (the surrogate of s) has received the message M, then it broadcasts
a duplicate of M with the same timestamps <m, s> and </, s’>. It then computes a new
list excluding at least s with the timestamp </+I, n>, and completes its broadcast with
the commit phase. M is committed with the list L provided that the Majority Rule is
met,

- in the second case, if n (the surrogate of s) has not received the message M, then it
broadcasts its own message M’ with the timestamps <m, n> and </, s'>. When a correct
NAC receives two messages with the same scquence number but with different sources,
it rejects the first one and takes into account only the last one. Then, n computes a new
list L+1 excluding at least s with the timestamp <I+1, n>, and completes its broadcast
with the commit phase. M is aborted and M’ is committed with the list L+1, provided
that the Majority Rule is met ;

- sender failure during the correct list transmission : all the correct NACs have received the
message broadcast by s, but some of them have not received the new list computed by s and
timestamped </+1, s>. Two sub-cases are possible :

- in the first case, if n (the surrogate of s) has received this new list computed by s then
it broadcasts a duplicate of M, with the last list L+1 timestamped <I/+I, s> sent by s.
This enables all the correct NACs to receive this new list. It then computes a new list
excluding at least s with the timestamp <I/+2, n>, and completes its broadcast with the
commit phase. M is committed with the list L+1, provided that the Majority Rule is
met,

- in the second case, if n (the surrogate of s) has not received this new list, it broadcasts
a duplicate of M with the list timestamp </, s'> (the last list timestamp known by n).
It then computes a new list L+1 excluding at least s with the timestamp <I+1, n>, and
completes its broadcast with the commit phase. When a correct NAC receives two lists
with the same sequence number but with different sources, it rejects the first one and
takes into account only the last one. M is committed with the list L, provided that the
Majority Rule is met ;

- sender failure during the commit phase : some of the correct NACs have seen the commit phase
and have delivered the message to their Host ; but the others have not seen it, and according to
this protocol, they have not delivered M to their Host. Two sub-cases are possible :

- in the first case, if n (the surrogate of s) has committed the previous message M with
the list L, it can broadcast a new message M+1 timestamped <m+I, n> and <, s'>.
During the collect of acknowledgements, it will notice that some of the correct NACs
have not seen the commit phase initiated by s. Then this broadcaster commits the message
M with the list L. (the Majority Rule is no more required to repeat the previous commit
message) and the message M+1 with the list L+1 (excluding at least s) provided that the
Majority Rule is met,

- in the second case, if n (the surrogate of s) has not received the commit message, it
sends a duplicate of M timestamped <m, s> and </, s’> (the last list timestamp known by
n). Two sub-cases are possible :

- in the first case, if one of the NAC has received the commit message of M
with the list L, then it signals it in its acknowledgement. In any case the
message M is committed with the list L (the Majority Rule is no more required
1o repeat the previous commit message),

- in the second case, no NAC has received the commit message. The surrogate n
computes a new list excluding at least s with the timestamp <!+I, n>, and
commits M with the list L, provided that the Majority Rule is met.

A broadcaster may commit several messages in the same commit phase in case of previous sender crash.
To tolerate omission faults, a surrogate can broadcast a duplicate up to N times.
A duplicate of M is considered valid by a NAC with mlast = <m-1, s> and llast = <I, s'> if :
- either it is the duplicate of the message timestamped by mlast and
- either the list sequence number associated is either [-1 or {,
- or the list sequence number associated is equal to /+7 and the list L+1 is provided ;

- or it is the duplicate of the message with the sequence number m (the sequence number of
miast+1) and the list scquence number associated is /.

3.5.' Maximum drift between correct NACs

Let us consider a correct NAC with a message sequence number equal to m. Due to possible sender
crashes, three cases are possible :

- either all the correct NACs have the same message sequence number m (normal case),

- or some of the correct NACs have the same sequence number m and the others have a sequence
number equal to m-I (the sender fails during the transmission of the message with a sequence
number equal to m),

- or some of the correct NACs have the same sequence number m and the others have a sequence
number equal to m+l! (the sender fails during the transmission of the message with a sequence
number equal to m+1).

Let us consider a cormrect NAC with a list sequence number equal to /. Due to possible sender crashes,
three cases are possible :

- either the correct NACs have the same list sequence number / (normal case),
- or some of the correct NACs have the same sequence number / and the others have a sequence

number equal to /-1 (the sender fails during the transmission of the list with a sequence number
equal to 1),

- or some of the correct NACs have the same sequence number / and the others have a sequence
number equal to /+] (the sender fails during the transmission of the list with a sequence number
equal to I+1).

The number of pending messages (not yet committed) at a correct NAC is at most equal to the number of
successive sender crashes. As soon as a sender commits its broadcast, all the correct NACs which have
acknowledged the commit deliver the pending messages in the same order to their Host.

3.6. Join handling
Only correct NACs are allowed to handle joins. A join is deferred until the end of the current broadcast.
When a previously failed NAC j comes up again, it proceeds as follows :

- j transmits a join request to a correct NAC ¢ . Several solutions can be considered :

- either the correct list L is periodically broadcast. The NAC j waits for this list to
know the correct NACs, and sends its join request to one of them,

- or the NAC j asks each NAC successively until it receives an answer from one of the
correct NACs.

- the correct NAC ¢ computes a new correct list including j and broadcasts it with its timestamp
and with the timestamp of the most recently received message,

Only a correct NAC belonging to the current correct list is allowed to update this list. At the end of the
procedure this new joined NAC has the correct list and has initialized its variables llast and mlast.

3.7. Graceful departure

When a correct NAC wants to exclude itself from the correct group, it updates the correct list and
broadcasts it. After this broadcast, it halts. This procedure allows a zero-latency detection of a graceful
departure.

The procedures for the graceful departure and the join are the only cases where the correct list is updated
in the first phase of this protocol.

3.8. Partition handling

If a NAC f does not meet the weak fail-silence assumption, it can exceed the omission degree without
halting and without knowing about its exclusion. If several NACs behave like f during the same
broadcast (they have the same timestamps), partitions occur. Physical partitioning may occur too.
Partitioning is handled as follows : when a broadcaster s, after the broadcast of its message M, detects
that the Majority Rule is no more met, it halts. The next broadcaster n attempts to recover from s
failure with the broadcast of a duplicate of M, and like s, detects that it belongs to a non-majority
partition (the Majority Rule is no met) and so halts.

4. COMPARISON WITH RELATED WORK

4.1. Advantages of this atomic broadcast protocol

In a failure-free environment, this atomic broadcast protocol completes in two phases. In a failure-prone
environment, the failures of receivers are detected as soon as a message is broadcast. The number of phases
in this atomic broadcast protocol is then three. In case of broadcaster failure, all the comrect NACs take
the same decision on the outcome of the atomic broadcast. No NAC takes an opposite decision, even the
faulty ones.

If n processors are correct at the beginning of a broadcast, our protocol tolerates up to ¢ failures with ¢
the greatest integer smaller than a/2. As soon as a processor is unable to communicate with less than the
majority of the current correct processors, this processor halts. If more than ¢ failures occur, then each
correct NAC detects it and halts,

A correct NAC halts with a pending broadcast if and only if the three following conditions are met :
- the broadcaster fails during the commit phase,

- a majority of NACs belonging to the current correct list has failed since the beginning of the
uncomplete commit phase,

- all the receivers of the commit message have failed.

A receiver detects that it has exceeded the allowed omission degree upon receipt of either a list excluding
it, or an out-of-sequence message with a list timestamp equal to last or a commit for a message it has
not acknowledged. It then halts ; this enforces the weak fail silence rule.

A broadcaster halts if it does not mect the Majority Rule : after N transmissions it has received less
acknowledgements than the majority required.

This protocol allows to manage the dynamic changes (departures or joins) in the correct group
membership.

4.2, Related work

In this paper we do not consider atomic broadcast dealing with Byzantine failures [3], [4]. Atomic
broadcast protocols have deserved considerable attention. Qur purpose is not to give an exhaustive list of
all these protocols, but rather to compare our protocol with the closest ones.

The AMp (Atomic Multicast protocol) in [5] allows transparcnt multicasting inside logical groups.
Logical groups can be dynamically created and updated. The broadcast is successful only if the last
transmission is acknowledged by all group members. The delivery order is then determined by the receive
order of the last transmission. This protocol requires that all the non-crashed receivers acknowledge the
last transmission of the message, this seems to be a too strong condition.

With the ABCAST protocol described in [1] and [6], messages are delivered according to their timestamp
order. The message timestamp is computed by the broadcaster as the maximum timestamp given by the
receivers. This protocol allows concurrent broadcasts from different sources. It is very efficient in a
failure-free environment, but if the broadcaster and a receiver fail, the order property may not be met, as
shown hereafter. If the broadcaster fails during the broadcast of the final timestamp m and if this final
timestamp is received only by the receiver which has proposed m, and this receiver fails, then all the other
receivers agree on a common timestamp smaller than m. Hence the delivery order of this message differs
from the order at the processors failed after having committed.

The Single Value Agreement protocol described in [7) for general omission failures tolerates up to ¢ crash
failures with n>2t processors. As soon as a processor receives less than n-t messages, it halts. When the
failure number exceeds t, correct processors may take inconsistent decisions. Consider the following
scenario. In the first round, the processors do not receive the transmitter message (n-1 receive omissions)
and during the second round, some processors do not receive the transmitter message (receive omissions)
but the others do. Then the first ones abort the broadcast (they have received neither the message nor the
echo), although the others deliver the message. The decision of a processor is valid only if the failure
number is smaller than ¢, The question is how does each processor know that the maximum failure
number ¢ is not exceeded ?

5. CONCLUSION

The design of an atomic broadcast protocol belongs to a more general task : the design of a dependable
distributed computing system [8]. The first step consists in defining the assumptions made concerning the
failure of each component. A main problem is to provide a means for a component that violates these
assumptions during its operational life to recognize that it did it. That is why the comrect list has been
introduced in this atomic broadcast protocol : it enforces the weak fail-silent NAC assumption. As soon
as a processor is unable to communicate with less than the majority of the current comect processors, it
halts. If more than ¢ failures occur, then each correct NAC detects it and halts.

If n processors are correct at the beginning of a broadcast, our protocol tolerates up to ¢ failures with ¢
the greatest integer smaller than n/2. Up to ¢ failures, this atomic broadcast protocol is non-blocking.

10

(1]

(2]

&)

(4]

(51

(6]

(7]

(8]

REFERENCES

Birman K.P., Joseph T.A., "Exploiting virtual synchrony in distributed systems”, 11th
Symposium on Operating System Principles, p.123-138, November 1987.

The Delta-4 Project Consortium, "DELTA-4 Overall System Specification”, edited by
Powell, ISBN:2-907801-00-7, printed by LAAS, CNRS France, December 1988,

Cristian F., Aghili H., Strong R., "Atomic broadcast from simple message diffusion to
Byzantine agreement”, FTCS 15, Ann Arbor, Michigan,USA, p.200-206, June 1985.

Lamport L., Shostak R., Pease M., "The Byzantine generals problem”, ACM Trans. on
Programming Languages and Systems, Vol. 4, p.382-401, 1982.

Verissimo P., Rodrigues L., Baptista M., "AMp : a highly parallel atomic multicast
protocol”, Computer Communication Review, Vol.19, Number 4, p.83-93, September
1989.

Birman K. P., Joseph T. A., "Reliable communication in presence of failures", ACM
Trans. on Computer Systems, Vol.5, Number 1, p.47-76, February 1987.

Gopal A., Toueg S., "Reliable broadcast in synchronous and asynchronous environments”,
3rd int. Workshop on Distributed Algorithms, Nice, France, September 1989.

Laprie J.C., "Dependable computing and fault-tolerance : concepts and terminology",
FTCS15, Ann Arbor, Michigan, p.2-11, June 1985.

Imprimé en France
ar
. I'Institur National de Recherche en Informatique et en Automatique .

ISSN 0249 - 6399

