N
N

N

HAL

open science

Synchronous distributed algoriths: a proof system
Michel Adam, Jean-Michel Hélary

» To cite this version:

Michel Adam, Jean-Michel Hélary. Synchronous distributed algoriths: a proof system. [Research
Report] RR-1269, INRIA. 1990. inria-00075290

HAL Id: inria-00075290
https://inria.hal.science/inria-00075290
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075290
https://hal.archives-ouvertes.fr

N

UNITE DE RECHERCHE
INRIA-RENNES

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de Voluceau
) Rocquencourt
: BP105
< 78153 Le Chesnay Cedex
France |

Tel:(1)39635511

Rapports de Recherche

N° 1269

Programme 3
Réseaux et Systémes Répartis

SYNCHRONOUS
DISTRIBUTED ALGORITHMS :
A PROOF SYSTEM

Michel ADAM
Jean-Michel HELARY

Juillet 1990

B

R l S INSTITUT DE RECHERCHE EN INFORMATIQUE
l ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 - RENNES CEDEX
FRANCE

Téléphone : 99.36.20.00

Télex : UNIRISA 950 473F
Télécopie : 99.38.38.32

Synchronous distributed algorithms: a proot system

Algorithmes Distribués Synchrones: un systéme de preuve

Michel Adam* Jean-Michel Hélary?
Equipe Algorithmes Distribués et Protocoles

Publication Interne n° 538 - Juin 1990 - 20 Pages

Abstract

Simulating synchronisin on asynchronous nciworks allows to design synchronous distributed
algorithms. This design rclies upon a language with a clecar operationnal semantic and an asscr-
tional proof system, consistent and complete. As an illustration, a synchronous election algorithm
on an arbitrary topology network is formally derived and proved.

Résumé

Simuler le synchronisme sur les résecaux asynchrones permet de concevoir des algorithmes dis-
tribués synchrones. Celte conception repose sur une sémantique opérationnelle clairement définie
ct un systéme de preuve par assertions, correct el complet. A titre d’eremple, un algorithme
synchrone d’élection sur un réscau a topologic quclconque est sysiématiquement dérivé el prouvé.

1 Introduction

One of fundamental problems in distributed programming results from impossibility to capture in-
stantancous global statcs. This problem is mainly due to arbitrary propagation message dclay on
channels. To overcome this difficulty, essentially three classes of solutions have been proposed :

1. Building a virtual global time consistent with causality rclation between events [Lam78, MOS3,
Fid88, Matgsg] ’

2. Building & virtual central memory by repeated computation of coherent global states [CL85,
LY87, Mat88, lIPR89).

3. Building a virtual synchronous nctwork, that is to say a network in which an upper bound for
transmission and processing delays of any message is known [Awe85, 1R8]

*ENSTBr, antenne de Rennes, rue de la chataigneraie, BP 78, 35512 Cesson-Sévigné Cedex, France
tIRISA, Campus de Beaulicu, 34042 Rennes Cedex, France

tThis work was supported by the French Research Program C? on Parallelism and Distributed Computing

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE

(U.RA.227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES | LN.S.A. DE RENNES { UNITE DE RECHERCHE DE RENNES)

As can be seen, in each of these approaches a virtual machine is provided, which allows to design
distributed programs within an easier context. This paper relates to the third solution.

Synchronous networks support the design of so-called distributed synchronous programs (SDP).
This concept was introduced by B.Awerbuch [Awe85), which proposed the concept of synchronizer:
the latter allow SDP to be run on arbitrary asynchronous distributed networks (interpretor of SDP
on asynchronous network). Later, synchronizers for different kinds of networks were designed [PU87,
CCGZ87, FLS87] and a comparative study based upon experimentation can be found in [AIR88].

Design and control of SDP is easier than for general distributed programs. Thanks to synchronism,
it is possible to conceive SDP as a sequence of synchronous steps, or pulses, such that each pulse
consists for each process of an emission phase followed by a reception-processing phase and each
received message has been sent during the same pulse. This last property does capture the essentiality
of synchronism hypothesis. Taking into account this kind of global sequentiality leads to extend to
SDP formal methods suited for a centralized sequential context. Our paper focuses on definition and
use of a language and of a proof system for SDP.

In the second section, we define a language for SDPs, whose syntax is similar to CSP’s [Hoa78]. In
the third section, an operational semantic for this language is given, in a formalism similar to Hennessy
and Plotkin’s [Hen79]. The fourth section is devoted to a proof system for our SDP language, which
is illustrated in the fifth section where a distributed synchronous election algorithm on an arbitrary
topology is obtained and proved by derivation steps d {a Gries [Gri81].

Some proof systems have previously been proposed in parallel contexts, e.g. [OG76] for shared-
memory parallel contexts, [AFP80, Sou84] for CSP, etc. To our knowledge, the proof system presented
here is the first publisheed devoted to SDP.

Some results and proofs which are not detailed here can be found in [Ada90]. Let’s recall some
general notations and concepts used throughout of the paper :

The synchronous network supporting SDP is represented by a graph G = (V, E) where V =
{Py, P2, ..., P,} is the set of nodes, E is the set of channels; each node supports a single process with
its own local context; two processes are neighbours if they are linked by a channel in G. Processes share
no memory and only neighbours can communicate by exchanging messages through their connecting
channel.

The specification of a SDP consists of :

e initializing the variables,
e specifying messages to be sent during emission phase,
e specifying actions to perform upon reception of messages during reception phase,

e specifying termination condition.

2 A language for synchronous distributed algorithms

In this section we propose a language for synchronous distributed algorithms expression. The syntax
is similar to CSP’s, as defined by Dijkstra [Dij76] and Hoare [Hoa78]. Apart from the classical
constructions, a new one is added, to take synchronism into account: the pulsation loop.

Locally on each process, the following constructions are avalaible (informal semantic is given; see
next section for an operationnal semantic):

e Null action : skip
e Assignment : x :=e
e Sequentiality : S1;82

e Non determinist choice : [D}’_‘lbj — Sj]
Action Sj is performed only if the corresponding guard b; is true. If several guards are true,

only one corresponding action is performed (choice is non determinist). At least one guard must
be true.
. m ., _.q.
e Local loop : *[Dj=1b,] S_]]
If all guards bj are false, equivalent to skip, otherwise equivalent to the sequence Sy; *[D}{‘lbj —

SJ] where [is such that b; is true.

e Emission of a message : P;le .
The process sends the value e to process P;

® Reception of a message : [Pj'?x — 8]

If P; sends a message, the value contained in the message is assigned to z, then S is performed.
Otherwise, skip

e Pulse loop : ®[b; — S;]
At the beginning of a pulse, if b; is true then S; is performed. Otherwise, the synchronous
process F; is terminated. It is this last construction which takes into account the synchronism.

The following abbreviations will be used to simplify the text of programs :

. [V.lizlpj!e] means Pyle;Pgle;- - Py, _1'e;Pmle
. [v;’zllpj?x — a] means [P17x — a);[P2?x — a];---;[P_17x — a]; [Pm?x — a]

A synchronous distributed algorithm will be denoted [Sy || --- || S; || -+ || Sn), where S; is the
text of the sequential process P;. Each of the S; is of the form A;; ®[b; — S;]. A;j is the initialization
part of S;, involving only variable assignments (communications are prohibited in this part). Boolean
expression b; is the guard of pulse loop. S; is the pulse loop body. It is made of two sequential parts:
S; = EM;; REC;, where

e EM; is the emission part; the only enabled communications are emissions, and at most one
message per outgoing channel can be sent during a pulse,

e REC; is the reception part; the only enabled communications are receptions, and at most one
message per ingoing channel can be received during a pulse.

The operationnal semantic, described below, insures these constraints. It works like a language
interpretor; should one constraint be violated, the system would block.

2.1 An operationnal semantic

To give a language its meaning requires to provide its semantic. Moreover, an operationnal semantic
is sufficient to establish correctness and completness of proof systems. An operationnal semantic is
a language interpretor: the state of a distributed program must be defined, and for each language
construction, the transition to the next state must be stated.

The semantic used here is given in a form similar to Hennessy and Plotkin ([Hen79)). To fit the
synchronous model, we define the state of the distributed program as the collection of states of each
process and of each channel:

< {51,01}, {32162}7 Y {Sn-lyan—l}) {Snyan}ycx R>
where:

e The state of a process P; is the 2-uple {S;, 0;} with S; : sequence of actions remaining to execute
and o; : state of P;’s local context (memory, etc., except adjacent channels). Actually, o; is a
function defined over Var;, the set of P;’s local variables, into a set N of values, e.g. natural
integers. More precisely, the state of P; will be denoted by < S;, o; > during the emission phase
and by < S;,0i >> during the reception phase. {S;,;} denotes either < ... > or € ... >.

o The state of channels is made of two functions C : E — N U Nil and R : E — {true, false}.
Recall that in our synchronous model, a channel has at most one message per pulse, and at any
time between its emission and the end of the pulse it can be read or not yet read. In consequence,
the value of C(F;, P;), denoted Cjj, is equal to Nil if the channel is empty, or to the value of
the message in the channel otherwise. Also, the value of R(P;, P;), denoted R;;, equals true iff
the message contained in the channel has been read by the receptor P;.

Classically,

< {Slaal}’ {52)02}! Tty {Sn,lfn}, {Snxan}ac) R>
l
< {S;"”x}a {5&,0'2}, o ~,{5:1_1,6:,_‘},{S:,,o:\},C',R/ >

denotes a non-deterministic transition from the first state to the second one, during one step of the
computation.

When an assertion p is true with respect to the processes and channels contexts (o1, -, 05, C, R),
it is denoted by | p(o1,---,0n,C, R). The abbreviation = p(o;) means that p is restricted to local
constants and variables belonging to Var;. Finally, oi(e) denotes the value in N of expression e in
the context o;, and o;[e/z] means that context o; is changed into a new one where all variables but
z remain unchanged, and z takes the value e. We use the following abbreviation : Nil instead of
C means that all the channels are empty, and False (resp. True) instead of R means that no (resp
every) channel has been read.

2.2 An overview of the rules

E denotes the empty sequence. It is semantically equivalent to execute E;S, S; E or S. We don’t give
the rules corresponding to the local internal instructions skip, asstignment, choice, loop, sequentiality
which are classical. We restrict ourselves to the constructions specific to our synchronous model
: pulse loop, pulse sequentiality, communication, passage from emission phase to reception phase,
termination. The complete set of rules can be found in [Ada90]

e Pulse loop

= bi(:)
< {Slyal}y"'y< ®[bi - S,'],Oi >»"',{Sman}yC,R>

!
< {Sl,al},"',< Sjo®[b§—'*5;'],ai >)"'1{Sn’on}1CvR>

If the guard is true, the pulse body will be executed. State remains the same. The pulse loop
will be reexecuted at the beginning of next pulse. The behaviour is similar to that of a local
loop.

E —bi(o:)
< {SlyUl}u"'v< ®[bl —*S,'],Uj >»"'y{5m‘7n};C,R>

|
< {51,0'1},"',<< EO®[b,‘—*S{],U,‘ »,"',{Sn,ﬂn},C,R>

If, on the contrary, the guard is false, no action will be performed during the pulse. State
remains unchanged. Since proceses don’t share memory, the guard will remain false for ever: P;
as terminated. However, the guard will be reevaluated at the beginning of next pulse, since the
synchronous program will terminate only when all the processors will have terminated. Empty
sequence E enables the pulse synchronization, denoted here by o.

o Pulse sequentiality

= A?:l(ﬁb«‘ A(/\P,ev. Cij = nil v Rij))(o1,- -+, 00, C, R)
<<< E°®[bl "“’Sx],Ul >>,"',<<E0®[bn —"Sn];o'n >>aCxR>

!
<K E,o1 >, -, K E,op >, Nil, False >

Channels are empty or read, all pulse guards are false, all processes have ended their pulse :
final state is reached.

Vi (A (Apev, G = nilV B)(o1, 90, C, B)
<L Eo®lby — S1],01 >, -, K EoQ[bn — S,],0n>,C,R>

l
<< ®by — Si],01 >, -, < ®bp — Sa],0n >, Nil, False >

Channels are empty or read, at least one guard is true, all processors have ended their pulse
: pulse loop must be executed until all processes terminate. Processes pass from the reception
state € ...>> to the emission state < ... >.

Note that in both cases, channels are empty at the beginning of a pulse.

e Emission of a message.

}: (C,'j = nil)(al,-'-,a,,,C, R)
< {51,01},~~~,< Pj!e,m >,~',{Sn,d,,},C,R>

1
<{S1,01}, . < E,0:>,--+,{5n,0n},Cloi(e)/Ci;), R >

Emission is enabled since channel is empty: if a process sends more than one message on the
same channel during a pulse, it blocks. Note that this rule is similar to the assignment of value
e to the channel ”variable” C;;. Other contexts remain unchanged.

e Passage from<...>to < ...>

< {S],O’l},“',<[})j?$—’5],0'j > "'){Sﬂ)an})cyR>
l

< {51,01},"',<<[Pj?1'—’S],U,' >>1"',{Sn,‘7n}ycyR>

P; checks an ingoing channel. Thus its emission phase is terminated and it goes into its reception
phase.

< {51101}1"';< ®[bl —’S{],U{ >)"'1{Snyan}1C:R>
l
< {S1,0\}, -, < Eo®bi — Si),0l>,---,{S,,0.},C",R >
< {Sl‘dl}y"'\< ®[bt _’Sl‘]yai >a"'y{5nyan}acsR>
l
<{S},01},: -, K Eo®; — Si),0!>,---,{Sh,00},C', R >

P; has terminated a pulse without checking ingoing channels. Thus its emission phase is termi-
nated. It goes into its (empty) reception phase. This is necessary to let other processes read
their received messages (if any).

o Reception of a message. All processes are in their reception phase, in particular all messages
belonging to the present pulse have been sent. P; can check its ingoing channels.

i: (CJ, # Nil/\‘“Rj,’)(dl,“‘,Un,C,R)
<K Slyol >>1"'1<<[Pj?x_45]’ai >>,"‘,<<Sn,(7n >>’C’R>
|

<KL Sy,01 >, -, K 5,0‘,‘[01',‘/13] >, 0, L S, 00 >, C, R[true/Rjg] >

Channel (Pj, ;) contains an unread message, whose value is assigned to z, then sequence S
associated with this reception will be performed. Rj; is assigned the value true, so that P; will
block if it tries to read another value on that channel.

}:Cj.‘: NiI(o’l,”',U",C,R)
<L Sy1,01 >, -, K [Pi?7z — S),00 >, -, K 8,00, >, C,R>

i
<K Slyal >>1"')<<E70i >>,"'y<<sn,¢7n >>,C,R>

Channel (P;, P;) is empty: there is no action to perform.

e Termination

<< Slyal >)"'y< Sn,an >,Ni1,FaISC>
l.
<K E,0\>, -, € E,0!, >, Nil, False >

1™ is the transitive closure of |. Starting from an initial state with empty channels and in
emission state, processes reach a state where no action is to execute and channels are empty.

Now we give some definitions :

Definition 2.1 (Semantic) M is a function which, to a distributed synchronous program on G =
(V, E) with |V| = n and 1o a state associales a state.

M[Sl H ” Sn](al!"’vanaca R) = (U’l:"‘:aiucl’ Rl)
if and only if
< {Slyal}u"'l{snvdn})C7R>
1"
<{E,01}, -, {E,0.},C',R >
Definition 2.2 E{p}S1 -1l Snl{q}
if and only if
V(O’l,'~',0'n,C,R),
tzp(aly"'vo'"vC, R) = q(M[Sl ” ” Sﬂ](al""vo"'c1 R))

A "local” version of this definition can be stated :

Definition 2.3 E {r}Si{q}
if and only if
VY(ey, - +,04,C, R),
= (01, 0, G R) = o(MIE N ISt |- | Eor, -, 0m,C, B))

3 The proof system

3.1 Projection of an assertion

In a distributed context, some assertions may involve variables belonging to different processes. Such
assertions will have to be handled, like purely local ones, by any proof system, whence the need to
state a decomposition concept, based upon the notion of projection of an assertion p onto a process
P;, denoted proji(p). Let Var(p) be the set of variables involved in assertion p, and Var = |J;_, Var;
the set of all variables of all processes. The projection proj;(p) must satisfy two properties:

1. Yv € Var(proji(p)), v € Var = v € Var;

2. Ay proji(p) = p

(1) means that proj;(p) may involve some ”new” variables which belong to no processes. They are
in fact auziliary variables.

(2) is an orthogonality” property, meaning that an assertion can be restored from the set of its
projections over all processes.

Let’s first show on a small example how to define such a projection. Suppose p = a = b, with
a € Var;, b € Var;j, and ¢ # j. Introduce auxiliary variables z,y and consider the assertion

z=aAy=bAz=y

By definition, we have
projilfa=b)=z=aAz=y
projila=b)=y=bAz=y

Clearly, properties (1) and (2) are satisfied.

Definition 3.1 (assertion projection) Let p be an assertion, Var = {xy,...,z¢} be the set of
processes variables, Y = {y1,...,yx} a set of variables, such that VarnY = 0. The projection of p
over P;, denoted proj;(p), is defined by:

proji(p) = /\ z; = y; Atrans(p)

r;eVar,
avec trans(p) = ply;j/z;}, Vi€l -k

It can be easily shown that this definition satisfies properties (1) and (2) [Ada90].

3.2 A proof system

Like other proof systems designed for parallel context, this one is based on a compositional principle:
local proofs are combined together into global proof upon synchronization points. Here, synchroniza-
tion is expressed by pulse sequentiality: local proofs are made during a pulse, where the different
assumptions relative to occurence of message emission are made; these proofs are combined together
at the end of pulse, where the assumptions are solved, that is to say, impossible situations are dropped
out. This resolution is similar to the one used in {Sou84) for CSP, where composition of local proofs
take into account local communication histories which are mutually compared to keep only feaseable
communications (pairs of emission-reception compatible with CSP’s semantic); this technique is well
suited to our synchronous model since local communication histories resume to zero or one message
per channel, and can be reset at the beginning of each pulse (in some sense, this model behaves like
a Markovian system, where the "past” can be forgotten).

Below, axioms and rules are given; two axioms (skip, assignment) and four rules (sequentiality,
choice, loop, consequence) constitute the classical proof system for sequential programs with non-
deterministic choice, as stated by Hoare in [Hoa69)]. To this well-known system, one axiom and two
rules have been added to deal with communication and synchronizatjon. These are :

{ple/Cis1)Pjelp)

emission

This axiom is similar to assignment, namely C;; :=e

{r}S{q}
{p(Cji/=]}[P;7x — SH{(p[C;s/z] A Cji = nil} V ¢}

reception

This rule results from the assignment axiom and choice rule, namely:

[Cji #nil - x = Cji; SDCji = nil — skip]

i=1,...,n,
{proji(p) A bi A APjGVi Ci; = nil}S;{ai},
A?:l(qi \ p'l‘Oj,'(p) A-bi A /\Pjev'(C;j =nil A (Cj,’ = ml)) =>p
{r}[®by — S1]1l ... 1| ®[bn — Sn]{p A AL, —bi}

pulse loop

Assertion p is a loop tnvariant. At the beginning of a pulse, the projection of p over a process
is considered, channels are empty, guard of the pulse is either true or false. When guard is true,
loop body is performed. When guard is false, loop body is void, ingoing and outgoing channels
are empty. This rule is used for composition of local proofs.

We denote H the set of these nine axioms and rules. System H is small. Only one axiom
(emission) and two rules (reception, pulse loop) are added to a classical system. Emission is an
assignment, reception is an alternative involving an assignment and pulse loop is a generalization of
classical sequential loop with an invariant. Moreover, local proofs can be set up separately on each
process. A toy example given in the next section, shows how to use the pulse loop as a composition
rule for local proofs.

Comparatively, the operationnal semantic is more intricate. This results from a deliberate choice,
allowing a more concise proof system. In fact, semantic is but a necessary tool used to establish
correctness and completness of the proof system, while H will be used as often as a synchronous
program will have to be proved.

3.3 Correctness and completness

The proof system H is said to be correct (with regard to a given semantic) if every formula proven by
H is correct in the given semantic :

Fu {p}S{q} =k {p}S{q}

where -y {p}S{q} means that {p}S{q} can be proved with H.
Correctness can be established by showing that each of the nine axioms and rules are correct in

the semantic, e.g. for (7), (8), (9) :
emission [{p[e/Ci;]} P;le{p}?

reception = (p = p1[C;i/z] A {p1}S{a}) =k {p}[Py7z — S){p A Cyi = nil V g7

pulse loop

Vi=1...n,
k= proji(p) A bi A /\Pjev,(cij = nil)S; {q:}
ANZ1(9: V proji(p) A —bi A Ap ey, (Cij = nil V Cji = nil)) = p

E {p}®br — Si] - (| ®bn — Sa]l{p A Aizy ~bi}?

We don’t give the detailed proofs here. They can be found in [Ada90)

Completness of proof system H means that every formula, correct in the semantic, can be proved
with H. It is well known that no proof system is by itself complete. As an example, consider the
formula {p[t/z]}x := t{true}. This formula is correct in the semantic, but cannot be proved with
H. In fact, H cannot show p = true! The classical way to overcome this difficulty consists in using
precondition and postcondition concepts, afterwards proving that each of the language constructions
can be proved in H, e.g. :

emission Fy {p}P;'t{q}?
reception ty {p}[P;?z — S){q}?

pulse loop Fpy {p}&[b1 — Si]|| .- |l ®[bn — Sall{¢}?
Interested reader will find in [Ada90] the detailed proofs of completness.

4 A toy illustrating example

The program is a simple producer-consumer scheme. Process Py produces a sequence of copsecutive
integers from 0 to sup. Only one number is produced during a pulse, and it is sent to a process Ps.
The latter, upon receiving a number, rises it to square and terminates when it receives nothing during
a pulse. The synchronous program is the following :

Plui=0;Qi<sup—i:=i+1; Pl
Py i j := 0;ch:= true; ®[ch — ch := false;[P1?j — j:= j X j;ch := true])

We illustrate the use of proof system H by proving that] =i x 1 = j is a pulse invariant. To this
end, the pulse loop rule must be used. First, each process is considered, then local assertions obtained
at the end of the pulse are combined to make the final result. The projections of I over P; and P
are:

trans(I)=zxz=y
projill)=z=iAzxz=y
proja(l) =y=jAzxz=y

Assertions for P,

10

{proji(I) Ai < sup A Cy2 = nil}
{z=iAzxz=yAi<supACis = nil}
{z+1l=i+1lAzxz=yAi+ 1< sup+ 1 AC)2 = nil}
=i+ 1;

{z+1=iAzxz=yAi<sup+ 1ACy2=nil}
{z+1=iAzxz=yAi<sup+1Ai=i}

Pz!i;

{z+1=inzxz=yAi<sup+1AC2 =i}

Assertions for P,

{proja(I) A ch A C3y = nil}
{ly=jAzxz=yAchACz = nil}
{y=jAzxz=yA-false}

ch := false;
{y=jAzxz=yA-ch}

(

{Cn:Cw/\zxx=yl\—rch}
Py -
{Cra=jAzxz=yA-ch}
{Clngm:jxijx:czy/\ﬂch}
Ji=J]X%J;
{CuXCm:jl\zX.’E:y/\—\C’l}
{CraxCrza=jAz x2=yAtrue}
ch :=true

{Clngn ‘—'j/\IX.’B:y/\Ch}

{y=jAzxz=yA-chACl2=nilVCija x Cr2=jAzxz=yAch}
{y=jArexz=yACp=nlVCi2xCy=jAz xz=y}

Combining assertions This combination is made by the conjonction of the two assertions

z+l=itAzxz=yAi<sup+1AC)2=1
VeE=iAzxXz=yAi1>supACys = nil ACyy = nil

and

y=jArxz=yACyy =nil
vClngw:j/\zx:czy
Vy=jAzxz=yACyy=nil ACy = nil A-ch

which can be simplified (since Cyy and ch are not used in the proof) as Av B, Cv D where

A= z4+l=iAzxz=yAi1<sup+1ACia=1

B= z=iAzxz=yAi>supACi; = nil

C= C,ngu:jAzxz_—.y

D= y=jAzxz=yACi2 =nil

Assertion A holds in the case where P) executes the pulse body (as computed above) and B in the
case where P; has terminated. Similarly, C holds in the case where P, executes the pulse body and

11

receives a message, and D in the case where either P, has terminated or doesn’t receive message
during the pulse.
Now, a straightforward computation shows that

AAC = ixi=]
A A D = false (This case is can never occur in an execution)
B A C = false (This case can never occur in a computation)
BAD=ixi=j
Finally, we have proved
{ixi=j}

[®[i < sup —i:=i+1; Pyl

l
®[ch — ch := false;[P\?j — j := j x j;ch ;= true]]]

{ixi=j) .
5 Derivation of a synchronous election algorithm

In this problem, each site has an identity, and all identities are distinct, so that we assume a total
order on the set of site identities. Moreover, each site knows its own identity. To simplify the
termination condition, we will make the additional assumption that every site knows the diameter d
of the network. This assuption is not essential and could be removed, but more information should
have to be exchanged and at the price of a more intricate derivation : our goal in this section is not
to give the more general or efficient election algorithm, but to illustrate the synchronous distributed
algorithms language and its proof system.
At the end of the algorithm, each site has to know :

e the identity of the site having a maximum identity (the elected site),
e its position within a spanning tree rooted at the elected site.

On each site 7 is located a process whose identity is P;, the site identity. The two informations
learnt by P; during the algorithm will be implemented by variables maz;, father;. In particular the
site whose identity is father; defines a routing function from P; to the elected site maz;, and all the
sites will have the same value for maz;. The result can thus be expressed by the following predicate :

R = Ap ¢y (maz; = maz(P;|P; € V)
A{(father; € V; Ad(maxz;, P;) = d(maz;, father;) 4+ 1) V (father; = P; A maz; = F;)))

The algorithm will be based upon the following property. Let £ (1 < & < d) be an integer and, for
each site 7, let B(i, k) be the subgraph spanned by sites at distance < k from ¢ (the ball of center i
and radius k). Let maz;(k), father;(k) be the solution to the problem on B(i, k), such as P; sees it,
that is to say:

mazi(k) = max(P;|P; € B(i, k))

12

(father; € V; Ad(maz;(k), P;) = d(maz;(k), father;(k)) + 1)
\Y (father.- =P A ma:t;(k) =P)

Clearly, the following recurrence relation holds :
maz;(k + 1) = max {maz;(k), max(maz; (k)| P; € V;)}

. _ | fatheri(k) if maz;(k +1) = maz;(k)
fatheri(k +1) = { fatherjmaz (k) if mazi(k +1) = maz;jmaz (k) where (Pjmaz € Vi)

Furthermore, ¥i : maz;(0) = P; , father;(0) = A,.

From this recurrence relation follows that a process P; learns maz;(k + 1), father;(k + 1) during
a pulse, when itself and all its neighbours P; know maz;(k), father;(k) at the end of the previous
pulse.

Let, for each process P;, denote by cpt; the pulse counter. Consider the predicate

I=IIAI2ZAI3 = /‘\ I1; A I2; A I3; where
P,eV

Il; = maz; = max(P;|d(P;, P;) < cpty)

I2; = ((father; € V; Ad(maz;, P;) = d(maz;, father;) + 1)V (father; = P; A maz; = F;))
I3; = /\ cpt; = cpt;
PieV;

and the initialization part
{true} cpt; := 0;max; := Pj;father; := P; {INIT;} and thus :
INIT; = ept; = 0 Amaz; = P; A father; = P;

We have :

(1) Ap.ev INIT; = I and
(2) IAApevepti=d = R

whence the program skeleton follows:
cpt; := 0;max; := Pj; father; := P;; ®[cpt; < d — S§j]
Now we have to find S; and a predicate ¢; such that I is a pulse loop invariant, that is, for each i:

{proji(I) Acpti <dA \ Cij = nil}S;{g;} and
P,‘EV.

n
/\ ¢V | proji(I) Acpt; > d A /\ (Cij =nilACji=nil) | =1
i=1 Pjev,

13

Let’s compute the projection of I over P;:
proji(I) = zi = cpti Ay = maz; A z; = father; Atrans(])
trans(l) = I{z;/cpti, yi/mazi, zi [father;)

The recurrence relation suggests the design of S;: roughly, during a pulse each P; must learn the
values maz; from all its neighbours. To this end, at each pulse, each P; must:

e during its emission phase send to each of its neighbours its current value maz;

e during its reception phase receive from its neighbours their value maz;, then update its own
maz;, father;.

Accordingly, we obtain:

{zi = cpti Ayi = maz; Az; = father; Acpt; < dA /\PjeV. Cij = nil}
[vpjeVin!maxi];
{zi = cpti Ayi = maz; A z; = father; Acpt; < dA /\PjeV; Cij = ¥}
[ijeVin?m — [m > max; — max; := m;father; := P;
0

m < max; — skip]

]

{R,’ A (Rl; \ R?,’)} where

R; = z; = cpti Atrans(l) Acpt; < d A /\P,ev. Cij = ui}

R1; = maz; = y; A father; = z; A AP,GV;(maz" > Cj; vV Cji = nil)

R2; = Vpkevi(max,‘ =Cri AP = fatherg ACri > Ui A /\P,,Evi(maxg > Cj,‘ v CJ',' = nil)

R1; holds when P; received no value greater than max;, whereas R2; holds when P; received a value
greater than the former maz;, kept by y;.

{Ri A(R1; V R2;)} ept; := cpt; + 1 {Q1; V Q2;} where

Qi=zi=cpti—1Atrans(I) Acpti <d+ 1A /\ Cij = v}
P,‘EV-

QL = Qi ARY, Q2% = Qi AR
Now we have to show that
n
/\(Ql,- VQ2)V T = I whereT; = | proji(I) Acpt; > d A /\ (Ci; = nil ACy; = nil)
i=1 Pj€eV,
We can remark, first, that

VP, P, eV : (QLiVQ2)AT; = false

14

In fact,

QLVQAQUAT; = cpti=zi+1Acpti<d+1Azi=z;Acpti==xjAcpt; 2d
=> rn+l<d+1lAzi=cptjAcpt; >d
= cpt; <dAcpt;j >d=> false

Secondly, observe that, by projection definition:

N |proiiD)Acpti 2dn N (Cij =nil ACji =nil) | =1
Pev P,eV,

Thus it remains only to show /\ QLVQyL)=>1
Pev

This can be split in two parts:

/\(QL‘VQZ')E /\ (QL A /\ Qi v /\ Q2% A /\ Qi

Pev Pev Pjev, Piev PieV;

1) Proof of Q1; A A\ Qi = I1; A T2, A T3
Pev,

QLA /\ Q: = yi=maz; Ay, = max(Pe|d(P;, Pe) < zi)Azi=cpti — 1
P,’GV-
A /\ (ma:r; > Cj,’ \ Cj,‘ = nzl)
P;eV,

A /\ i = z; AY; = max(Pe|d(P;, P) < zj) A A Cie=vy;
PV, PlEV,
= maz; = max(P|d(P;, Pe) < cpti — 1) A /\ maz; > y;
P,EV.
A /\ (cpti = cpt; Ay; = max(P|d(P;, Pr) < cptj — 1))
P,eV,
= mazx; = max(Pi|d(P;, Pr) < ept;) = 11;
Q1; A /\ Q; = z2; = father; A y; = max;
P,le
/\(father,' eV /\d(y;, P,') = d(y,', z,‘) + l) V(z,~ =P Ay = P,‘)
= (father; € V; Ad(maz;, P;) = d(maz;, father;) + 1) V
(fatheri = P, Amaz; = P.) =12

15

QL A /\ Qi = zi=cpt;i—1A /\ =z Azj=cpt; — 1
PeV, P;eVv;

= /\ cpti = cpty = 135

Pyev,

2) Proof of Q2 A [\ Qi = I AT A3,
P;eV,

Q2 A /\ Qi = mari=CiLiACh >y AP eV;
PjGV.

Ay, = max(Peld(P;, Py) < z;) Az =cpti — 1
A /\ (maz; 2 CijsVCji = nil)

PeV,
A N (zj =2 Ay; = max(Pld(P;, P) < =)
PieV,
PeV;

= maz; = yr Ayr = max(Pe|d(Pi, P) < cpti —1)APL €V,
A /\ (cpti = cpt; Amaz; > y; Ay; = max(P|d(Pj, P) < cptj — 1)
PjGV.
= mar; = max(Pkld(P;, Pk) _<_ Cpl,') = J;

Q2N /\ Qi = fatheri=PrAmar;=CiiNCri>yiAPLEV;
P,’EV.

e

Ay = max(P|d(Pi, P < zi)Azi=cpti — 1
A /\ (maz; > Cji v Cji = nil)

PjeVv,

A N (25 = zi Ay; = max(P|d(P;, P) < =)
PyeV,

A /\ Cir =y
PgGV)

= P, € Vi A father; = P, Amazx; > max(P|d(P;, P;) < cpt;)
Amaz; = max(Pp|d(Py, Pt) < cpt;)

= father; € V; A father; = P,
Ad(P;, maz;) > ept; — L Ad(Py, maz;) < ept; — 1

From distance inequality: d(P;, maz;) < d(P;, Pc) + d(Pr, maz;) < cpt; whence, on the one hand,

16

d(P;,maz;) = cpt; and on the other hand
d(Pi, maz;) = cpt; — 1. From these two relations follows

d(maz;, P;) = d(maz;, father;) + 1 = I2;

Q2% A /\ Q: = I3, is obtained like in the first case.
P,GV-

The proof is complete, and the text of the program follows:
P; ::cpt; := 0; max; := Py; father; := P;
®[cpti <>d —v[VPjGVi Pj!maxi];
M —
[ijevi PJ.m

[m > max;
0
m < max; — skip]

— max; := m; father; := P

J;
cpt; :=cpt; +1

]

Note that this rough algorithm is not message optimal in the communication context (arbitrary
topology, global knowledge of diameter, synchronous communications): a process needs to send its
current value maz; only if this value has been improved during the previous pulse. Also, a process
doesn’t neced to send its current value to proceses who know it already, namely those who sent him
this value during previous pulses.

6 Conclusion

Design and understanding of distributed algorithms requires a global view of the set of processes.
This requirement is seldom met, due to the great number of possible behaviors in a distributed
environment. One way to achieve it consists in reducing processes asynchronism. A synchronous
distributed algorithm will thus be designed as a sequence of steps separated by synchronization points.
This conception gave raise to a proof system suited to such synchronous distributed algorithms.

In this paper the design of a synchronous distributed algorithm solving the election problem was
obtained through a derivation method based upon the proof system. The proof was brought to
completion, nevertheless the lack of proof assistance tools is sorely felt. On the other hand, finding
an invariant from the problem specification cannot yet be carried out automatically: this is the part
of imagination left to the designer.

The fact nonetheless remains that such a proof system is a significant step on the way to the concep-
tion of a programming environment offered to distributed application designers. Another improvement
would consist of a compiler allowing programns, expressed in a synchronous language similar to ours, to
be implemented on real distributed memory machines like hypercubes or transputer networks. Such a
software tool would also be in charge of producing and mixing the part of code due to the synchronizer
layer: a good basis for this could be ECHIDNA in its version including superimposition [Cai89].

17

References

[Ada90]

[AFP80]

[AIR8S]

[Awe85]

[Cai89)]

[CCGZ87)

[CL85)

[Dij76]
[Fid8s]

[FLS87)

[Gri81]

[Hen79]

[Hoa69]

[Hoa78]

[HPR89]

M. Adam. Synchronisme des systémes distribués. Thése, Univ. Rennes I, Rennes, Mai
1990.

K.R. Apt, N. Francez, and De Roever W. P. A proof system for communicating sequential
processes. ACM Transactions on programming languages and systems, 2(3):359-385, July
1980.

M. Adam, Ph. Ingels, and M. Raynal. The meaning of synchronous distributed algo-
rithms run on asynchronous distributed systems. In The Third International Symposium
on Computer and Information Sciences, Izmir, pages 307-316, November 1988.

B. Awerbuch. Complexity of network synchronization. Journal of ACM, 32(4):801-823,
October 1985.

B. Caillaud. The superimposition of Estelle programs: A tool for the implementation of
observation and control algorithms. Rapport de Recherche 1102, INRIA, October 1989.

C.T. Chou, I. Cidon, 1.S. Gopal, and S. Zaks. Synchronizing asynchronous bounded delay
networks. In Proc. 2nd. Int. Workshop on Distributed Algorithms, Amsterdam, July 1987.
Springer Verlag LNCS 312 (1988).

K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of dis-
tributed systems. ACM TOCS, 63-75, February 1985.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

J. Fidge. Timestamps in message passing systems that preserve the partial ordering. In
Proc. 11" Australian Computer Science Conference, pages 55-66, 1988.

A. Fekete, N. Lynch, and L. Shrira. A modular proof of correctness for network syn-
chroniser. In Proc. 2d Int. Workshop on Distributed Algorithms, Amsterdam, July 1987.
Springer Verlag LNCS 312 (1988).

D. Gries. The sctence of programming. Springer-Verlag, 1981.

G.D. Hennessy, M.C.B. amd Plotkin. Full abstraction for a simple parallel programming
language. In Proceedings of 8th Symposuim of Foundations of Computer Sciences, Lecture
Notes in Computer Sciences, Springer- Verlag, 1979.

C. A. R. Hoare. An axiomatic basis for computer programming. Communication of the
ACM, 12(10):576-580,583, October 1969.

C. A. R. lloare. Communicating sequential processes. Comm. of the ACM, 21(8):666-677,
August 1978.

J.M. Hélary, N. Plouzeau, and M. Raynal. A characterization of a particular class of

distributed snapshots. In Proc. International Conference on Computing and Information
(ICCI’89), Toronto, North-Holland, may 23-27 1989.

18

o

(HR88]

[Lam78]

[LY87]

[Mat88]

[MO83]

[0G76]

[PU8T]

(Sou84]

J.-M. Hélary and M. Raynal. Synchronisation et contréle des systémes et des programmes
répartis. Eyrolles, Septembre 1988. English translation to appear, Wiley, 1990.

L. Lamport. Time, clocks and the ordering of events in a distributed system. Communi-
cations. of the ACM, 21(7):558-565, July 1978.

T.H. Lai and T.H Yang. On distributed snapshots. Inf. Proc. Letters, 25:153-158, 1987.

F. Mattern. Virtual time and global states of distributed systems. In Proceedings of the
Workshop on Parallel and Distributed Algorithms, Bonas, France, North Holland, Septem-
ber 1988.

K. Marzullo and S. Owiki. Maintaining time in a distributed system. In ACM Operating
Systems Rev., pages 44-54, 1983.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Infor-
matica, 6(4):319-340, 1976.

D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. In 6th Annual
ACM Symposium on Principles of Distributed Compuling, pages 77-85, August 1987.

N. Soundarajan. Axiomaticsemantics of communicatingsequential processes. ACM Trans-
actions on programming languages and systems, 6(4):647-662, October 1984.

19

PI 530

PI 531

PI 532

PI 533

PI 534

PI 535

Pl 536

PI 537

Pl 538

PI 539

LISTE DES DERNIERES PUBLICATIONS INTERNES

SEMI-GRANULES AND SCHIELDING FOR OFF-LINE SCHEDULING
Bernard LE GOFF, Paul LE GUERNIC, Julian ARAOZ DURAND
Avril 1990, 46 Pages.

DATA-FLOW TO VON NEUMANN : THE SIGNAL APPROACH
Paul LE GUERNIC, Thierry GAUTIER
Avril 1990, 22 Pages.

OPERATIONAL SEMANTICS OF A DISTRIBUTED OBIJECT-ORIENTED
LANGUAGE AND ITS Z FORMAL SPECIFICATION

Marc BENVENISTE

Avril 1990, 100 Pages.

ADAPTATION DE LA METHODE DE DAVIDSON A LA RESOLUTION
DE SYSTEMES LINEAIRES : IMPLEMENTATION D'UNE VERSION -
PAR BLOCS SUR UN MULTIPROCESSEUR

Miloud SADKANE, Brigitte VITAL

Avril 1990, 34 Pages. X

DIFFUSE INTERREFLECTIONS. TECHNIQUES FOR FORM-FACTOR
COMPUTATION

Xavier PUEYO

Mai 1990, 28 Pages.

A NOTE ON GUARDED RECURSION
Eric BADOUEL, Philippe DARONDEAU
Mai 1990, 10 Pages.

TOWARDS DOCUMENT ENGHNEERING
Vincent QUINT, Marc NANARD, Jacques ANDRE
Mai 1990, 20 Pages.

YALTA : YET ANOTHER LANGUAGE FOR TELEOPERATE
APPLICATIONS

Jean-Christophe PAOLETTI, Lionel MARCE

Juin 1990, 32 Pages.

SYNCHRONOUS DISTRIBUTED ALGORITHMS : APROOF SYSTEM
Michel ADAM, Jean-Michel HELARY '
Juin 1990, 20 Pages.

CONCEPTION DE DESCRIPTEURS GLOBAUX EN ANALYSE DU
MOUVEMENT A PARTIR D'UN CHAMP DENSE DE VECTEURS
VITESSES APPARENTES

Henri NICOLAS, Claude LABIT

Juin 1990, 38 Pages.

20

Imprimé en France
r
. I"Institut National de Recherche en Informatique et en Automatique .

ISSN 0249-6399

