N

N

A debugging environment for functional programming in
CENTAUR

Samuel Kamin

» To cite this version:

Samuel Kamin. A debugging environment for functional programming in CENTAUR. [Research Re-
port] RR-1265, INRIA. 1990. inria-00075294

HAL 1d: inria-00075294
https://inria.hal.science/inria-00075294
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075294
https://hal.archives-ouvertes.fr

'\

UNITE DE RECHERCHE
NRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche
en Informatique
et en Automatique

Domaine de \oluceau
Rocquencourt
BP105
78153 Le Chesnay Cedex
France

Tel:(1)39635511

Rapports de Recherche

N° 1265

Programme 1
Programmation, Calcul Symbolique
et Intelligence Artificielle

A DEBUGGING ENVIRONMENT
FOR FUNCTIONAL PROGRAMMING
IN CENTAUR

Samuel KAMIN

Juillet 1990

ARV

A debugging environment for functional programming in
Centaur

Un environment de debugging pour la programmation
fonctionnelle en Centaur

Samuel Kamin
INRIA Sophia-Antipolis
June 18, 1990

Abstract

We present a trace-based debugging environment for a lazy, functional
language. We argue that traces are a natural, even inevitable, approach
to debugging of lazy languages, because stop-and-examine techniques run
up against the unpredictability of lazy evaluation. We give a formal def-
inition of trace, describe how the Centaur system was used to build the
environment, and show our system being used to debug a small program.

The more general goal of this work is to demonstrate a “hypertextual”
approach to trace-based debugging. Our argument is that using hyper-
text techniques overcomes one of the most serious problems traditionally
associated with traces: information overload.

Keywords: Functional programming, Debugging, Centaur

Résumé

Nous présentons un environnement de debugging basé sur des traces
pour un langage fonctionnel A évaluation paresseuse. Nous soutenons que
les traces sont une méthode tout A fait naturelle — méme incontournable
— pour la mise au point dans de tels langages, parce que I’aspect chaotique
de 1’évaluation dans ’ordre normal rend inefficaces les méthodes du type
“arrét-et-inspection.” Nous présentons une définition formelle de notre
notion de trace, puis nous décrivons l’utilisation du systtme Centaur
pour construire ’environnement, et nous démontrons ’utilisation de notre
systéme pour mettre au point un petit programmme.

Le but général de ce travail est d’offrir une approche “hypertext” pour
la mise au point A V’aide de traces. Nous croyons que les méthodes hy-

pertext permettront de maitriser le probleme le plus grave lié aux traces:
I’exceés d’information.

Mots Clés: Programmation fonctionelle, Debugging, Centaur

A debugging environment for functional programming in Centaur *

Samuel Kamin

INRIA Sophia-Antipolis
Route des Lucioles
06560 Valbonne
France

June 1, 1990

Abstract

We present a trace-based debugging environment for a lazy, functional language. We argue that
traces are a natural, even inevitable, approach to debugging of lazy languages, because stop-and-
examine techniques run up against the unpredictability of lazy evaluation. We give a formal definition
of trace, describe how the CENTAUR system was used to build the environment, and show our system
being used to debug a small program.

The more general goal of this work is to demonstrate a “hypertextual” approach to trace-based
debugging. Our argument is that using hypertext techniques overcomes one of the most serious
problems traditionally associated with traces: information overload.

Contents
1 Introduction
2 Previous work
3 What is a trace?
31 The language
3.2 Trace semantics
4 Overview of CENTAUR
4.1 CENTAUR tools
4.1.1 The VTP
4.1.2 Specifying abstract and concrete syntax in METAL
413 Pretty-printing via PPML
4.1.4 Semantic definitions in TyPoL
4.15 CENTAUR user-interface tools
4.2 How we use CENTAUR
421 Displaying Traces
5 The debugging environment
6 Conclusions

*This work has been supported in part by AT&T under the Dlinois Software Engineering Project. Author’s current

address is Computer Science Dept., 1304 W. Springfield, University of llinois, Urbana, IL 61801, and his electronic mail
address is kamin@cs.uiuc.edu.

1 Introduction

The difficulty of debugging programs in lazy functional languages has often been noted. The fundamental
problems are:

Visibility. The debugging process in conventional languages involves a careful dissection of the state of
the computation at selected points. In those languages, most of the state can be observed quite
directly: only a small part of it is hidden as a result of scope rules. An important point to stress,
however, is that the visibility boundaries created by scope rules can be a hindrance in debugging,
even when they are otherwise perfectly appropriate. Consider for example the debugging of a
recursive procedure in a conventional language. When the procedure is halted during a recursive
call, only the latest instances of its local variables and formal parameters are visible. Yet it is quite
natural for the programmer to want to see other instances of these variables, such as their values
in the previous call or in the earliest call of this procedure.

Lack of visibility becomes a particular problem in languages in which scope rules are heavily used in
support of high-level abstractions, such as object-oriented and functional languages. In functional
languages, much of the state is hidden in closures and suspensions, and few debugging environments
provide access to these.

Predictability. The discussion of “state” above assumes a predictable order of evaluation in which the
programmer can understand how the computation moves from one state to another (and thereby
compare it to his understanding of how it should move). Lacking this kind of predictability, the most
common methods of debugging — inserting print statements and single-stepping in a debugging
system — are not applicable.

Lazy languages have a deterministic evaluation order. Moreover, that order is not difficult to under-
stand in theory. However, experience shows that applying the theory in specific cases is extremely
difficult. Thus, from a debugging point of view, the execution order is effectively unpredictable.

These issues point to fundamental difficulties in debugging lazy functional languages, yet the situation
is not entirely bleak. Consider the problem of unpredictability. Even though the step-by-step computation
of a lazy program may be impenetrably complex, the overall evaluation, regarded as a tree, has a very
simple structure. This suggests that erecution fraces may be a useful tool, as indeed has been suggested
in [9]. The debugging environment presented here is based on the use of traces.

The problem with traces, as is well known from experience with sequential languages, is that they
are huge. The traditional approach to their use has been, therefore, to run the program, storing the
trace in a file, then print the trace, thereby producing reams of output containing a very small amount
of interesting information. Clearly, single-stepping, when applicable, is a far more efficient and precise
method of debugging.

The visibility issue has a similar characteristic: the state is a large structure only a small part of
which may be interesting at any given time.

Thus, the question becomes: how can we provide a method of interactively navigating over large
structures? Once we have a facility for doing so, the use of traces becomes feasible, as it will allow the
programmer to home in on the interesting part of the trace, much as single-stepping tools allow him
to home in on the interesting execution steps. Access to the whole state can be provided in the same
way. It is precisely its support for display and navigation over large structures that makes CENTAUR an
appropriate system for developing our debugging environment.

CENTAUR (1, 2] is a generic interactive programming environment. A programming environment
for a specific language is constructed by giving formal syntactic and semantic language definitions. A
large library of Lisp functions is provided with which the language designer can further customize the
programming environment.

The “large structures” with which CENTAUR works are abstract syntar trees (AST’s), a concept
supported in the system by the Virtual Tree Processor (VTP). The VTP consists of a set of LisP functions
with which to describe an abstract syntax and then build trees conforming to it; it allows as well for
attaching attributes to AST nodes, limited tree pattern-matching, persistent storage of AST’s, and other
miscellaneous services. .

The abstract syntax of a language is the central part of its definition. A tool called METAL is used
to describe a language’s concrete syntax and the translation of concrete syntax trees to AST’s. Another
tool, PPML, is used to describe the translation of AST’s to character streams — i.e., the pretty-printing of
AST’s. When an AST is pretty-printed, the system maintains a map associating regions of the displayed
text with AST nodes, so that a user can click on the text to select an AST node. The selection thus made

can be used in various ways: it can be clipped or copied, copied into another window, have its display
changed, etc.

VTP trees are not used only for AST’s but for all data that is to be displayed to the user. In
particular, the result of a computation is a VTP tree. Thus, PPML can be used to display the results of
computations and, if those results are too large to fit in the available window, to navigate over them.

Here, then, is how we use Centaur: The semantics of a program in our lazy functional languages
gives, as the “value” of a program, a trace. This is nothing but a (large!) VTP tree. PPML is used to
pretty-print it and allow for interactive navigation. Finally, some Lisp code is added to ameliorate the
programming environment by, for example, allowing for opening multiple windows on the trace.

Our presentation begins with a review of past work in this area and a more careful look at our language
and its trace semantics. We then give a further overview of Centaur, including parts of the language
definition. The major section describes and exemplifies the experimental programming environment we
have built.

2 Previous work

Two recent papers addressing the problem of debugging in lazy languages are O’Donnell and Hall [9] and
Toyn and Runciman [11]. O’Donnell and Hall [9] try several approaches, culminating in an interactive
system in which the user can enter the body of a function and request the evaluation of subexpressions
occurring there. Along the way, they consider the idea of transforming a program to produce a trace as
well as a value, but reject it for technical reasons (the transformation is not semantics-preserving because
the printing of the trace information is an eager process). They do not consider the visibility problem,
and all of their examples in fact involve non-lazy evaluation — that is, the computations are dominated
by strict primitive operations. The main emphasis in their work is on developing the debugging system
within the lazy language itself.

Toyn and Runciman’s work [11] is based on computation snapshots, a snapshot being a picture of
the computation’s state at any chosen moment. (This is not the same as traces, which are much larger.)
The problem they consider is how to modify combinator-reduction code so that enough information is
retained during the computation to enable the snapshot to be presented in a readable form at any time.

Our work differs from these in several ways:

e We base our debugging system on traces. In contrast to [9], this entails no danger of fortuitous
over-eagerness because we accomplish it by changing the semantics of the language rather than by
transforming programs.

o We provide a formal definition of trace.

o Our principal concern is with presenting the trace to the user in a usable form and providing tools
to navigate over it. Toyn and Runciman set the stage for the current work when they say (11, pg.
360]: “A more sophisticated snapshot formatter might act as an interactive browser, unfolding and
folding parts of a snapshot on command from the user.”

e We have made no attempt to compute the trace of a computation as a byproduct of normal evalua-
tion, as is the main contribution of [11], nor to reduce the memory usage entailed by the construction
of traces. Thus, our debugging environment cannot at present be considered a realistic system, but
rather an experiment in structuring such an environment.

3 What is a trace?
3.1 The language

The language we implement is intended to be a minimal functional language with lazy semantics. It is
drawn from Kamin (7, Chapter 5]; as there, it is called SasL in recognition of the SasL language of David
Turner [12], though it shares only its most basic features: being functional and lazy. Its syntax is given
in Figure 1, and Figure 2 is an example, the first-n-primes function.

We assume the semantics of the language is understood intuitively: it is really just A-calculus with
some primitive data types and operations added. In order precisely to define trace, we first give an
operational semantics of the language; the 0 subscript is used to distinguish this from the trace semantics
to follow:

input — expression | {(set variable expression)
expression —— value

variable

(if expression expression expression)

|
l
|
value -— integer | quoted-const | (lambda arglist expression) | value-op

(expression™)
arglist —— (variable*)
valueeop — +|-]=|<|>]|cons|car|cdr|null?|...

Figure 1: Syntax of SaAsL

(set first-n (lambda (n 1)
(if (null? 1) °Q)
(if (=n 0) Q)
(cons (car 1) (first-n (- n 1) (cdr 1)))))))

(set ints-from (lambda (i) (cons i (ints-from (+1 i)))))

(set remove-multiples (lambda (n 1)
(if (divides n (car 1))
(remove-multiples n (cdr 1))
(cons (car 1) (remove-multiples n (cdr 1))))))

(set sieve (lambda (1)
(cons (car 1) (sieve (remove-multiples (car 1) (cdr 1))))))

(set primes (sieve (ints-from 2)))

(set first-n-primes (lambda (n) (first-n n primes)))

Figure 2: Function first-n-primes

Expression =Integer + Symbol + ListConst + Variable + Application + Abstraction

Valuey = Integer + Symbol + Listy + Closurey + Thunko + Primitiveg
Listo = Valuey x Valuey + {nil}

Closurey = Expression x Environmentg

Thunko = Expression x Environmentq

Primitivey = Valuey — Valueg

Environmenty = Variable — Valuey

The closure (resp. thunk) containing expression e and environment p will be denoted {(e, p)} (resp.
e, pb).

evaly : Expression x Environmenty — Valueg
e, p — case type(e) of
constant (integer, symbol, or list) : e
lambda expression : ((e, p))
variable : let v = p(e) in if v = €', p' > then evalg(e’, p') else v
application (eg e;...e,) :
let vo = evalp(eq, p),v1 = o1, pb,...,v, = de,, pb
in if vg = (((Lambda () e'), p')
then evaly(e’, p'[vi/z1, ..., va/24])
else vo(vy, ..., vn)

In the last line, vg is a value of type Primitivey.

This semantics ignores the presence of a global environment. This global environment stores the values
of variables defined by top-level set’s, and also contains the values of variables that denote primitive
functions, such as + and if. We give the definitions of several of these functions:

+: ey, py >, dey, pa > — evalg(ey, p1) + evaly(ea, p2)

if: dey, ;1 b, ez, p2 D>, de3, p3b
— if evalo(e;, p1) # nil then evaly(es, p2) else evaly(es, p3)
cons: z,y— < z2,y>
car: e, pb —let <z,y> = evalg(e, p)
in if z = Qe’, p’ > then evaly(e’, p') else z

As a meta-evaluation rule, we assert that whenever a thunk is evaluated, it is replaced in memory by
its value, so that all environments or lists retaining a reference to the thunk get the benefit of its having
been evaluated. Therefore, the arguments to primitive operations like + may not be thunks; in that case,
just bypass evaly and do the operation. We ignore for now the problem of errors such as an attempt to
add non-numbers.

3.2 Trace semantics

In our trace semantics, the value of an expression is to be a history of the evaluation “steps” of evaly.
This entails a simple modification of the operational semantics in which the evaluation steps become a
part of the value.

XValue = Value x XValue® x XValue® + Thunk

Value = Integer + Symbol + List + Closure + Primitive
List = XValue x XValue + {nil}

Closure = Expression x Environment

Thunk = Expression x Environment

Primitive = XValue® — Value

Environment = Variable — Value

The domain Expression is unchanged.
eval : Expression x Environment — X Value

The components of a non-thunk XValue need some explanation. The first is just the “simple value”
obtained from the evaluation. If 7, is the first projection of a tuple, then we could say (ignoring lists, for
which a more complicated, but intuitively similar, equivalence holds), for all e and p:

m1(eval(e, 71(p))) = evaly(e, p),

where #,(p) = Ax.m(p(x)). The second component of an XValue is the list of traces of all subexpres-
sions of an application. The last component is an empty sequence unless the value was obtained as an
application of a closure; in that case, it contains the trace of the evaluation of the closure’s body (thus,
it contains at most one item).

The definition of List is also noteworthy. Since lists are included in the Value domain rather than the
XValue domain, it might seem more natural for them to be pairs of Value’s. However, this would cause a
problem: Consider the expression (cons e; e3). It results in the XValue: <7, < Qey, pb, deq, pb >
, <>>. If we used pairs of Value’s, the “?” would eventually be the pair

< mi(eval(ey, p)), mi(eval(ez, p)) >,

once e; and e, were evaluated (if ever), but what would it be when first created? It would have to be a
pair the first component of which gets overwritten with = (eval(e;, p)) once e, is evaluated. However,
our meta-evaluation rule only allows for thunks to be overwritten by values produced by eval, that is, by
XValue's. Thus, the meta-evaluation rule would have to be extended in what turns out to be a rather
complex way. To avoid this, we use pairs of XValue’s.

eval : Expression x Environment — XValue
e, p — case type(e) of
constant : < e, <>, <>>
lambda expression : < {{e, p)), <>, <>>
variable : let v = p(x) in if v = <1¢’, p' 1> then eval(e’, p') else v
application (eg e;...0,) :
let vo = eval(e, p),v; = dey, pb>, ..., v, = de,, pb
in if 7 (vo) = {(Lambda (X) &'), p')

then let v/ = eval(e’, p'[v1/z1, ..., vn/24))

in <m(v'), <vg, v1, ..., vn >, <V >>
else let v/ = my(vo)(v1, ..., vn)
in <v', <wg, vy, ..., vy >, <>>

The primitives are defined as follows; note that they define functions from XValue’s to Value’s:

+: dey, p1 b, dey, p2 b — mi(eval(e, p1)) + mi(eval(es, p2))
if: ey, p1 b, dea, p2 >, de3, p3 b
— if m)(eval(e1, p1)) # nil then mi(eval(eq, p2)) else mi(eval(es, p3))
cons : r,y— <z, ¥y>
car: de, pb —let <z, y>= eval(e, p)
inif z = <e', p' > then m(eval(e’, p')) else m(z)

The meta-evaluation rule about replacing thunks by their values (that is, their XValue’s) still holds.

Thus, in general the trace may be regarded as a tree, each node representing the evaluation of an
expression, and its children the trees of its subexpressions, plus, if the expression is the application of a
closure, a child giving the trace of the body of the closure. We think of this last subtree as the “control”
component of the trace of the node.

This tree is not very different from what would be obtained if we considered an eager evaluation
language. The crucial difference is that in the eager case, the tree grows in a simple, predictable order
{namely: pre-order), which is why single-stepping through the execution makes sense. Here, most nodes
of the tree start out as thunks and are later ezpanded on demand. Thus, the tree grows in a far more
complex and surprising way and evaluation is difficult to follow step by step. On the other hand, these
traces are huge. Thus, we view our task as: (1) constructing a language processor that produces X Value’s,
and then (2) providing a “hypertext” interface for the exploration of these XValue’s.

4 Overview of CENTAUR

CENTAUR is a system for defining “formalisms,” that is, languages. It allows for the construction of high-
quality user-interfaces for these formalisms. The best-known examples of formalisms are programming
languages, where the semantic definitions are interpreters and compilers; another class of formalisms are
those representing proofs in formal logics.

It is not misleading to identify “formalism” with “abstract syntax.” Given a formalism, some tools
that help make it useful are:

o Translator from concrete to abstract syntax (a parser). A parser would read a file containing the
characters “(set x (cons 1 ’()))” and produce the abstract syntax tree (AST):

definput
/ \
var(x) applic
: / \
cons exp_s

/ \

integer(1) const_s[]

The CENTAUR utility METAL is used to create parsers.!

¢ Translator from abstract to concrete syntax (a pretty-printer). PPML is the program that creates
pretty-printers.

o Translators from abstract syntax to the same or a different abstract syntax. This includes program
transformers (from one formalism to itself), interpreters (from the formalism of source programs
to the formalism of results), and compilers (formalism of source programs to formalism of object
programs). TYPOL can be used to define such computations.

1 There is also a newer utility, SDF, for the same purpose, but it has not been used in this project and will not be further
discussed.

Thus, the utilities in CENTAUR are used to define new formalisms and the tools that make them
useful.

4.1 CENTAUR tools
4.1.1 The VTP

The Virtual Tree Processor [8], or VTP, is the heart of the system. It is a collection of Lisp functions
with which formalisms can be defined and AST’s in those formalisms constructed. VTP is, in effect, a
data base system for trees, handling not only their construction but also their storage on disk.

The functions of VTP are almost never used directly by the user. Instead, tools are provided, as
described above and in more detail below, to allow the specification of VTP actions at a higher level.
Thus, VTP trees are created either by parsing concrete syntax (using a METAL-created parser) or by
doing some computation (using a TYPOL program).

Note that VTP is used both to create formalisms, i.e. abstract syntaxes (using the {formalism}:make
function), and to construct AST’s in those formalisms (using the {tree}:make function).

4.1.2 Specifying abstract and concrete syntax in METAL

METAL [6] is used to describe both a formalism — i.e. abstract syntax — and a corresponding concrete
syntax. Thus, a METAL specification is divided in two parts. METAL processes the abstract syntax part
by calling the appropriate VTP operations (in particular, {formalism}:make) to create the formalism.
The concrete syntax part of the specification is used to create a parser which, when applied to a stream
of characters, will create the corresponding AST (by calling {tree}:make).

Figure 3 contains part of the METAL specification for our language. The top half is the abstract
syntax, which itself is in two parts: The list of operators, giving the phyla of each operator’s arguments;
and the list of phyla, giving all the operators in each phylum. Thus,

det -> VAR EXP

says that a tree whose root is labeled definput must have two children which are in phyla VAR and EXP,
respectively.

INPUT ::= definput expinput;

says that trees labeled definput or expinput are in the phylum INPUT.

The concrete syntax is defined in the usual way and, in fact, the standard UNIX? utility yacc is used
to generate the parser; that is, METAL produces, among other things, a yacc input file. Following each
concrete syntax rule is an expression computing an AST. For example, consider:

<det> ::= #(set <var> <exp> #) ;
def (<var>, <exp>)

The first line is a BNF rule. The second says that the AST corresponding to this concrete syntax is:

def

where t; and ¢, are the AST’s for <var> and <exp>, respectively.

In summary, a METAL specification contains a description of a formalism, giving both its abstract
and concrete syntax. When METAL is run, it creates the formalism using VTP and also produces a yacc
input file. The user compiles the yacc. After loading the compiled file, CENTAUR has the capability to
read files of concrete syntax, parse them, and translate them to VTP trees.

4.1.3 Pretty-printing via PPML

With the METAL specification, we are in a position to read a file of characters and produce a VTP tree.
However, there is no way to display the tree. PPML is a tool for describing the textual layout of a VTP
tree.]

Our debugging environment uses two PPML files, one describing the display of SASL programs and
the other the display of traces. Figure 4 contains parts of the former. For example, the rule:

2UNIX is a trademark of AT&T.

definition of SASL is
abstract syntax
inputs -> INPUT = .. .;
definput -> DEF;
expinput -> EXP;
def -> VAR EXP;
vars -> VAR = .. .;
exps -> EXP » ...,
var -> implemented as IDENTIFIER;
intconst -> implemented as INTEGER;
symconst -> implemented as IDENTIFIER;
consts => CONST * ...;
values -> VALUE = ...;
lambda -> VAR.S EXP;
applic -> EXP EXP.S;

CONST ::= intconst symconst const.s;
EXP ::= applic CONST VAR lambda;
VAR ::= var;

EXPS ::= exp.s;

VARS ::= var.s;

PROG ::= program;

INPUTS ::= input.s;

INPUT ::= definput expinput;

DEF ::= def;

rules

<input.s> ::= <input>;
input_s-list ((<input>))

<input._s> ::= <input.s> <input>;
input_s-post (<input_s>, <input>)

<input> ::= <def>;
definput(<det>)

<input> ::= <exp>;
expinput (<exp>)

<def> ::= #(set <var> <exp> #) ;
def (<var>, <exp>)

<exp> ::= #(lambda <arglist> <exp> #) ;
lambda(<arglist>, <exp>)

<exp> ::= 8(<exp> <exps> 8) ;
applic (<exp>, <exp_s>)

end definition

Figure 3: Fragment of the METAL specification of SAsL

def(#v,*e) -> [<hv 0, bigtab, 0> [<h 0> "(set " #v] " " [<h 0> #e ")"]1];
lambda (svars, sexp)
-> [<hv 0, tab, 0> [<h 0> "(lambda " #vars] " " [<h 0> sexp ")"]];
vars () => "O";
var_s (sv, #sys) -=> [<h 0> "(" sv (" " xays) ")"];
applic (*op, ®exps) -> [<h 0> "(" sop <h 0> " " sexps ")"];
exps () -> ;
exps (#»exp, *sexps) -> [<hv 0, tab, 0> sexp (" " =+exps)];

Figure 4: Fragment of PPML specification of SAsL

def(#v,se) -> [<hv 0, bigtab, 0> [<h 0> "(set " #sv] " " [<h 0> #e ")"]];

says that an AST node with operator det (which represents a top-level definition) is to be displayed by
displaying the characters “(set”, then the first subtree (the variable), a space, the second subtree (the
expression) and then a closing parenthesis. Furthermore, these are all to be placed on a single line, if
possible; if not, they should be split between the variable and the expression, with a large tab on the
second line.

Another feature of PPML that shows up in Figure 4 needs to be explained. In the second rule for
displaying lists of variables (var_s), we find a variable **vs, which actually represents a list of variables.
When such a list variable is placed in parentheses on the right-hand-side of a rule, there is an implicit
iteration over all elements of the list. Thus, in that rule, the “(** * **vg)” is equivalent to “* " *xvs;
oo s xvs,”, if #xvs has n elements.

4.1.4 Semantic definitions in TypPoL

The semantics of a language is defined using the method of natural semantics {5, 10], as implemented in
the TyPoL system [3]. The input to TYPOL is a set of files containing logical rules of inference. Originally
intended to define type-checking and other context-sensitive syntax of programs, TYPOL can in fact be
used’ to define arbitrary computations on programs. A typical rule is the one defining the semantics of a
while statement in a simple programming language:

BOOLEVAL{(env |- b -> true, env’)

& env’ |- S -> env”’
& env’’ |- while(b, S) -> env’?’’
env |- while(b, S) -> env’’’

This says the judgement below the horizontal line is valid if the three judgements above it are. Specifically,
it says that the while statement, if started in state env, will results in state env?’’’ if: b evaluates to
true, while possibly changing the state to env’ as a result of side effects; S then leads from env’ to env’’;
and then continuing the while eventually leads to env’’’.

By using primitives gettree and sendtree, a TYPOL program can grab a VTP tree and return one
as a result. Thus, the first rule in our SAsSL semantics is:

BASE_ENV(zho)
& rho |- p, lisp "lisp" -> x1, rho’

O ;
provided gettree("k", subject, p);
do sendtree("return-values", x1) &
sendtree("global-env", rho’);

The judgement “()” is just a dummy used to start evaluation. BASE_ENV is a predicate defined elsewhere
which guarantees rho will contain the bindings of primitive operations. The main part of this rule is
the second antecedent, which says: starting in environment rho, program p will result in the list x1 of
XValue’s and global environment rho’. (The “lisp “1isp"” part gives the path to the beginning of the
source program, but this technicality is not of interest here.)

“provided” and “do” allow actions to be taken before and after a rule is used. The gettree says
the TYPoOL variable p is obtained from the VTP tree “k”, and the sendtree assigns the resulting value
of TypoL variable x1 to the VTP tree return-values and the value of rho’ to global-env. The main
point here is that the computation defined by this TyrPoL specification is a function whose input is a
VTP tree and whose output is two VTP trees.

4.1.5 CENTAUR user-interface tools

A great deal of effort has been invested in giving CENTAUR a user-interface that is up-to-date and easy
to use as well as customizable. '

Given a VTP tree and a pretty-printer (i.e. PPML program), the display is placed in a special type
of window called a ctedit. A ctedit allows for structural pointing and editing; that is, a subtree can be
selected by clicking with the mouse, and the selected subtree can then be clipped, copied, and so on. It

xvalue -> VALUE X_VALUES X_VALUES;

xvalues ~> X_VALUE = .. .;

mapsto -> VAR X_VALUE;

envcons -> MAPSTO ENV;

envnil -> implemented as SINGLETON;

thunk -> EXP PATH ENV X_VALUE;

envintro -> ENV PATH X_VALUE;

pair -> X_VALUE X_VALUE;

gate -> implemented as TREE;

PATH ::= gate;

VALUE ::= error intconst symconst pair nil closure
BINARYOP UNARYOP TERNARYOP;

VALUES ::= values;

X_.VALUE ::= xvalue thunk envintro;

X_VALUES ::= xvalues;

MAPSTO ::= mapsto;

ENV ::= envcons envnil diffenv;

Figure 5: Abstract syntax of traces

also allows for varying certain physical aspects of the window, such as pulldown and popup windows and
highlighting.

Connections can be made between trees so that clicking in one ctedit causes highlighting in another.
This is used, for example, in the system for reporting errors in METAL specifications: a window containing
the list of errors is created and clicking on an error causes the source of that error, in the window containing
the METAL specification, to be highlighted.

4.2 How we use CENTAUR

The idea of our system is to compute the trace of a computation as the value of that computation. Thus,
the execution of a program results in the creation of a large VTP tree which is displayed via its own
PPML. The structure of this trace has already been described in section 3.2. To make it concrete, we
give in Figure 5 the abstract syntax of traces. This is actually a part of the METAL specification that
was not shown in Figure 3. A trace is in phylum X_VALUE and can be one of three things: an xvalue, a
thunk, or an envintro. The first two are just as we described in section 3.2; the envintro is a way of
attaching both environments and pointers into source code (the PATH component) to the trace.

QOur TYPOL code has as its input a VTP tree of phylum INPUT.S, and produces two VTP trees, as
described in section 4.1.4: return-values of type X_.VALUE_S and global-env of type ENV.

4.2.1 Displaying traces

The user’s view of the debugging process is that values appear on the display — at first, these are just
the values of top-level expressions — and the user may ask a value to “explain itself.”. She does this by
selecting a value (clicking on it) and then, by selecting a menu item, asking for some information about
how that value came to be. There are three kinds of information that can be provided for each value:

1. The expression whose evaluation produced the value.
2. The environment in which the expression was evaluated.

3. The “history” of the value, meaning the sequence of function applications that led to it.
In addition, for closure values there are two other items:

5. The lambda expression contained in the closure.

6. The environment contained in the closure. (N.B. This is not the same as (2) above.)

This is too much information to present in a single display, so the following decisions were made:

10

e For (1) and (4), where an expression from the original program is to be displayed, that expression
is highlighted in the source window. This is, in any case, preferable to displaying a separate copy
of the expression, since it gives the user more context.

e Environments are displayed by opening new windows for them; this is how we handle (2) and (5).

The main window is the one in which the values of top-level expressions in the user’s program are
originally displayed (as simple values), and it is here that the histories of these values are presented,
at the user’s request.3 We would now like to explain what these history displays contain, how the user
controls them, and how the PPML specification implements them.

First, what is in the display? Assume a generic XValue

v=<s, <vg, V1, ..., Up >, < Upext >> .

At the top level, the user may wish to see only the simple value of v, namely s (though note that if
this is a list, producing its display as a simple value involves traversing all the XValue’s it contains). If,
however, the full history is requested, it would be displayed according to scheme F:*

Fv)=| s
H(v)

H(v) = empty, ifn =10

=(vovy ... tn)
F'(vo)
: , otherwise
F'(vn)
H(vnext)

F'(v) = empty, if n =10
F(v), otherwise

Well, not really. The display given by scheme F is much too big, in general, and can’t be fully
displayed; that would amount to giving the entire history of the computation up to this point. Aside
from the original choice of whether to display the history of the top-level value, the user can control the
display in one way: by deciding which of the v; to display with the F' format within the H format.

To illustrate, suppose the input program is:

(set £ (lambda (x) (+ (* x x) 1)))
(t 3)

The original display of (£ 3) is its simple value:
10
By clicking on the 10 and requesting the history, this is displayed in the F format, which is:

10
(<<=>> 3)
(+91)

“<<=>>" represents a closure value. Here, none of the values in the applications is itself displayed with
F' scheme. Clicking on the 9 and requesting its history gives:

10

(<<->> 3)
(+9 1)

9
:(*33)

3The following discussion on the display of histories also applies to environment windows.
4 This description gives the actual physical layout of the display. F(v), for example, consists of the display of s stacked
vertically, with no indent, above the H(v) display. The outline boxes are not part of the display.

11

This is, in fact, the full display for value 10, since none of the other values in the applications has any
history.

We next consider how to produce this display in PPML, and how to achieve user control over it. We
have a separate PPML specification for the display of traces (including X_VALUE’s and ERV’s). Though the
entire PPML specification contains 97 rules, the essential rules expressing the recursive structure of the
trace display can be readily explained, based on the F and H formats. First, it is necessary to understand
that a PPML specifcation is divided into chapters which correspond to different pretty-printing methods,
or contezts. If we wish tree t to be pretty-printed in context C, we write C::t. The major contexts in
this specification are:

top level: this context is unnamed. It allows for generic XValue v to be displayed in one of two ways:

[s}or| s - the latter corresponds to format F.
RIST(v)

SV: Prints the simple value of an xvalue, i.e. its first component. (In the case of lists, this involves a
traversal of a tree of X_VALUE’s.)

BIST: Displays the history of a value by showing its simple expression, recursively showing its subexpres-
sions, and showing the history of the “next expression,” i.e. the third component of the xvalue.

This corresponds to the H scheme: | SE(v)
SUBEXP(vo)

SUBEXP(v,,)
BIST(vpext)

SE: Prints the “simple expression” associated with an xvalue, which is just the list of simple values of
the subexpressions (second component of the xvalue). These are surrounded by parentheses, to

indicate that they represent an application: |= (SV(vo) SV(v1) ... SV(va)) I

SUBEXP: At the user’s discretion, this is either empty, or is the same as the second top level format; in
other words, it is F'.

To give an example, the central rule of the HIST context is:

*x where *x in xvalue (*v, xvalue s(*#*sel), *h) —>

f<v 0, 0>
[<hv 1, tab, 0> SE::#*x]
f[<h 0> " " [<v O, 0> (SUBEXP::#xsel)]]

(<h 0> HIST::#h!+1]];

Three technical points: (1) The left-hand side “#x where #*x in p,” where p is any pattern, is the
same as p alone, except that the entire tree has a name that can be used in the right-hand side. Of
course, this feature is only useful if the tree is to be displayed in a different context. (This feature
is similar to “as” patterns in functional languages like Haskell [4].) (2) The specification “[<v 0, 0>
(SUBEXP: :##*sel)]” displays each of the items in the list ##sel in the SUBEXP context, broken vertically.
(3) The notation “!+1” on the last line ensures that each history is displayed as fully as the first; other
items (such as long lists) may be holophrasted, but not histories. Having noted these facts, we can see
that this rule implements the H format directly.

There are two places at which the user’s control over the display is asserted: At the top level, the user
chooses between the full display and the simple value; and in the SUBEXP context, she chooses between
the full display and nothing. To communicate the user’s request to the pretty-printer, the VIP/PPML
annotation facility is used. The VTP provides functions with which named annotations can be placed
into AST nodes. The Lisp code that is invoked when the users clicks on a value and selects the “Show
history” menu item places an annotation named “show-hist” on a node. PPML can check whether
the “show-hist” annotation is present at a node by adding “~show-hist” to the left-hand side of a rule.
Thus, we find these two rules at the top level:

*x where *x in xvalue (#v, *se, *h) “show-hist ->
[<v 0, O>
[<h> SV::*x]
[<h 0> HIST::*x]];
x where #*x in xvalue (*v, *se, *h) -> [<h> SV::*x];

12

Cantanr] B} Editor
[File Display Edit

“Read
Write

Write as 1s

RN R |

Figure 6: Before reading source file

Cmt.\rl t[utﬂe.sal
E File Display Edit

(set mod (lambda (x y F) (lambde (2) (if (x z x) y (F X))
(set id (lambds (x)} x))
{set table
(mod “Cyranc “Ferrer
(mod "Hamlet "Oltvier (mod “Holmes ‘Kean 1d))))
{(table "Hamlet) &

T e S e

Figure 7: After reading source file

The first rule says to display an xvalue by giving its simple value and its history, the second to display
only its simple value. These very similar rules appear in the SUBEXP chapter:

*x where *x in
xvalue (*v, sgse, *h) “show-hist ->
(<v 0, O>
[<h> SV::#x]
[<k 0> HIST::*x]];
xvalue (*v, »se, *h) -> ;

5 The debugging environment

We present the system by showing a brief debugging session. In the first screen (Figure 6), we have
started up CENTAUR and opened an editing window. Depressing a mouse button invokes a menu for
reading or writing a file.

We have shown only the editing window, omitting the CENTAUR interaction window and other windows
that happen to be on the screen. When “Read” is selected, we type the name of the file (table.ssl)
in the CENTAUR interaction window. The “ssl” suffix signals CENTAUR to load the SAsL parser and
pretty-printer;, and the “SASL. env” file containing LisP code to customize the interface. The file is loaded,
parsed, and pretty-printed, leaving the window looking as shown in Figure 7.

This sample program consists of the definitions of the functional mod, for function modification at a
point, and the identity function id. These are used to define a function mapping theatrical characters
to the actors who portrayed them. This function, called table, is applied to the character’s name to get
the actor’s name. Thus, (table ’'Hamlet), the expression appearing in the last line, should evaluate to
Olivier. However, there is a bug.

We evaluate the program by depressing the right mouse button which pops up a one-item menu
(Figure 8). The TYPoL code is loaded and the program evaluated. Two new windows are created: one
to hold the values of the expressions in the program, another to hold the values of global variables (of
course, some of the expression values are also the values of globa.l variables). These windows are labeled

“return-values” and “global-env” (Figure 9).

The return-values window contains four values separated by double lines. The first three are
closures. These are always displayed as “<<->>": we will see later how to look inside a closure. The
fourth value is the atom Holmes, which is wrong. The global-env window contains bindings for three

variables, all bound to closures; these three closures are, of course, the same three closures as given in
the return~values window.

1?2

[contau] & table.ssl
 Fil=e Display Edit —

(set mod (lambda (x y F) (lambda (z) (1f (= z x) y (F xI))))
‘set 1d (lambda (x) x)?}
(set table

(mod "Cyrano “Ferrer

(mod "Hamlet "Olivier (mod "Holmes ‘Kean id)))}

(table "Hamlet)

i

Figure 8: Before running the program

Centor & table.ss!
0 File Display Edit
(set mod (lambda (x y F) (lambda (2) (1f (2 2 x) y (F x2))))
(set id (lambde (x) x)})
{set table

(mod “Cyrano “Ferrer

(mod ‘Hamlet “Olivier (mod ‘Holmes ‘Kean 1d))))
(table “Hamlet)

Contar] e !l SASL.return-values
= | erErT
<{=>>
[zaz3sacasssss
Cortaur @ SASL.global-env
<<=>> Bresl
Ezzzzszazsass &l:d-;)(zf;;)
<c>> & [eable - <<-»
j=333333zoazax
folmes

Figure 9: After running the program

[contame B table.ss)
=
I

S File Display Edit

i(set mod (lambda (x y f) (lambda (z) (af (= z <) g (F x)))))
i“set 1a (lambda (x) x))
;!(se'. ~able

IE ‘mog “Cyraeno "ferrer

i (mod "Hamlet “Olivier (mod “Holmes ‘Kean 1d))))
;(table ‘Hamiet)

: c.mu_g} SASL.return-values
: Oisplay) S
<<= 14
1 Contar B SASL.global-env
[Display
s>
’ tmod —> <<(->>
===Ss=T===sz=z3== ‘xd -) <<-))
L table -> <<->»>
= y
Nolrku

Figure 10: Highlighting the incorrect value

The purpose of this debugging session, from now on, will be to determine why (table ’Bamlet)
evaluated to Holmes. To put it another way: what is the justification for the value Eolmes?

We start our exploration by clicking on the value with the left mouse button. This causes two things
to be highlighted: the value itself and the expression, in the table.ssl window. The result is shown in
Figure 10. Having selected this value, we can request to see its “history” by pulling up a menu with the
right mouse button and selecting “Show history” (Figure 11).

The display now changes (Figure 12) to show this history, which consists of the series of applications
which led to this value. That is, it gives the list of values in the second component of the XValue (the
subexpression values) and then the history, in the same sense, of the third component (the “control”
step), if any. In this case, the value was obtained as the application of a closure to the symbol Hamlet
{(a fact we already know), which led to the evaluation of the body of the closure, which is an application
of if. We see that the first argument to this it was (), or false, so that the second argument is of no
interest while the third argument is the value of the application; it is, of course, the (incorrect) value
Holmes. :

The important point to note is that the two applications are applications of values, which can them-
selves be selected and explored. We start by looking at the closure in the first application. The result
of clicking on it with the left button and then pulling up the right button menu is shown in Figure 13.
Because the current value is a closure, the menu includes two extra selections: one to see the body of
the closure and the other to see its environment. Selecting “Show closure body” causes the lambda
expression stored in the closure to be highlighted (Figure 14). Selecting “Show closure env” causes a
new window to be popped up in which the stored environment is displayed (Figure 15). In this case, that
environment contains bindings for the locally-bound variables x, y, and £.

We now know exactly what lambda expression was applied to Eamlet and in what environment. The
body of the lambda is an if application, as shown in the second line of the history of Holmes. We now
go on to explore that application. The first question to ask is what lead to the condition’s having value
false (“()”). To explore this, we click on the “()”, which causes also the expression “(= z x)” to be
highlighted. We know that in this expression the x has value Cyrano (from looking in the closure-env
window) and z has value Bamlet (because it was the argument to the closure). However, to see these facts
at once, we can raise the popup menu and select “Show env.”, as shown in Figure 16. (Note that the
closure-oriented selections have been removed from the menu because the current value is not a closure.)
Another window now appears (Figure 17), giving the environment in which the expression “(= z x)”
was evaluated to produce value “()”.

Up to now. nothing has gone wrong. We expected that the first thing to happen would be the
comparison of Hamlet to Cyrano. Clicking on the small box in the local-env window causes it to

JComtas § table.ss!
il Fiie Cisplay Edit
i{(set mod (lambda (x y F) (lambda (2) (1f (= z %) y (Ff x}))))

iiiset i1d (lambda (x) x))
,i(set table

i (mod “Cyrano ‘Ferrer
= {mod “Hamlet “Olivier (mod “Holmes ‘Xean id)))})
(table ’Hanlet)

ycont gl, SASL.return-values e
0 Display TR 2
<<-3> ¥
=zz2======2p2== Centanr . SASL.global-eny
_ [1 Display
<= Trod -> <C->
I 1d => <{=>>
Fazsssssaanma [cable -> <<->>
<(->> P
[TTS=S=ZTXTT==az
Hoines
Hide history
Show env.
Figure 11: Trace navigation menu
Centaur W table.ss)
O File Display Edit

(set mod (lambda (x y F) (lambda (2) (4F (2 2 x) y (Ff x)))))
(set 1d (lambda (x) x))
(set table
(mod “Cyrano “Ferrer
({mod “Hamlet “Olivier (mod "Holmes “Keen 1d))))
(table ‘Hanist)

- :.-mu; !l, SASL .return-values
. n
<<=>> N [ﬂ I
jaczs3z223323 Centaur . SASL.global-env

Displa
N tds E&a s
L1d ~> <<=»
stablo BB

222z23z323228
{<=>>
[zzzzazzazzzas

Holnes
js (<<=>> Hamlet) \

= (1f () Ferrer Holmes)

Figure 12: Showing the history of Holmes

16

Contaur B tavle.ss
[File Diselay Edit]
(set mod (lambda (x y f) (lambda (z) (if (2 z x} y (F x))))»)
(set 1d (lambde (x) x))
(set table

(mod ‘Cyranc “Ferrer

{(mod “Hamlet ‘Olivier (mod “Holmes “Kean Ld}))}
(table “Hamlet)

contar] | SASL.return-values

0 Display : St
<<=>>

........ zz=zz Contar §y sasL.global-env

Displa
<> ‘GEod BIITT
escezzzz== ae= Lid => <¢=>>
R St.oblo = <<=>>

<<=>>

Holmes [
= (<<=>> H Show history
= GF O F Hide history

Show env,
Show closure body
Show closure env

Figure 13: Exploring a closure

W} table.ss)

(set mod (lambda (x y
(set 1d (lambda (x) x))
(set table

(mod ‘Cyrano “Ferrer

(mod "Hamlet “Olivier (mod “Holmes ’Kean 1d))))
(table “Hamlet)

Bd.cmw.

‘[SASL.return-values

Q. _Digeley

<(=>> I
izac=yxaszazex Contar . S‘SL.Q]&I‘-W

SP1 &

<> TR
‘Palaalex===: 'tgbI: fi-ii_)>
<->> p
=223 SX22R3
Holmes
s (<<=)>> Hamlet)
s (LF () Ferrer Holmes)

Figure 14: Showing the closure’s body

17

1
1Coentamsr
1

§ table.ss!

A" File Display Edit

[1¢set mod (lambda (x y £} (lanbda (2 (I1f (= 2 XO § (F X999)),

(set 19 {lambda (x) x)?

itset table

N (mod “Cyrano ‘Ferrer p:
{(mod "Hamlet “Olivier (mod “Holmes “Kean 1d))))

ilctable “Hamlet) '.
Convons] B} sasL.roturn-values
0 Display | &
<<=>> T
Contour
[DOisplay

Lid => <<=>>
Stable => <<=

kwtu B sasL.closure-snv
Holmes [[] Display
= ({<=>> Hamlet) {x => Cyrano
Ly -> Ferrer
z (1f () Ferrer Holmes) LF =) =
13

Figure 15: Showing the closure’s environment

Contaur @ table.ss)

[3 File Display Edit
(set mod (lambda (x y F) (lambda (z) (41f (2 2 X0 y (F x)))))

(set Ld (lambda (x) x))
(set table
{mod “Cyrano “Ferrer
(mod "Hamlet ‘Olivier (mod "Holmes “Kean 1d))))
(table “Hamlet)

Coantary
|

B} saASL.return-values

0 _Display ‘l‘ﬂ
- I
Cormtaur

Digpla
(=3 ‘Zﬁ_od S hs—

czzz==3s=2=33 Lid => <<=>>

§ sast.global-env

table -> <<->»>

<<=>> F E_‘

zazsszaazazaz Contar B SASL.closurs-env

Holmes ‘ Displa]
({<=>> Hamlet) (x => Cyrano

r 4 => Ferrer

= (if () Ferrer Holmes) Sf => <K=

Show history
Hide history

R TR ST TR TR
(o -

Figure 16: Selecting “Show env.”

1R

!c:m.u B table.ss)
‘U File Display Edit)
[itset mod (lambda (x y f) (lambda (z2) (1f (2 T XD y (F x)))))
:ifset 1d {lambda {(x) x)}
ilset -able
o {(mod ‘Cyrano ‘Ferrer BE
! (mod ‘Hamlet “Qlivier (mod ‘Holmes “Kean Ld}})} e
jftable ‘Hamlet) L
I 4
o 2
1 fi
t Centaur ® SaASL.return-values . .
i Y _Oisplau 1 RN ‘\'l—;n‘_‘;.'w,*
<<= [ﬁ
=zzzzz=z=z=3=== Contaur & SASL.Q]ObI]‘OﬂV
K-35 0 Display

{mod -> <<->)
L id => <<->>
stable => &=

<(=>>
E=’=======’“ Cortaur W SasL.closure-env
olmes 0 Displey
Iz (<<=>> Hamlet) {x -> Lyrano
Ly => Ferrer
= (4F () Ferrer Holmes) 3 =2 <<=2>
Contor] E SASL.local -eﬂv“
=, o i

[_Display |
(z -> Hamlet b
.x => Cyrano
L,y => Ferrer
LF =) <<(=>

o

Figure 17: Display of local environment

disappear, and we go on to select the value Holmes for exploration (Figure 18). It was obtained as the
value of the false branch of the it, “(f x)”, which is now highlighted. Selecting “Show history” in the
popup menu leads to the display in Figure 19. Again, Eolmes was obtained by application of a closure (to
argument Cyrano), whose body was an application of if. Looking at the closure by clicking on the “Show
closure body” and “Show closure env” menu selections, we obtain the display shown in Figure 20.

We may look at the closure bound to £ in the closure-env window by clicking on it (Figure 21)%

Finally, we realize that the problem is in the closure’s argument Cyrano (Figure 22). It should have
been Bamlet, which is to say, the x in (£ x) should have been z.

6 Conclusions

We have presented a trace-based debugging environment for a simple lazy, functional language. We
argued that traces are a natural, even inevitable, approach to debugging of lazy languages, because stop-
and-examine techaiques run up against the unpredictability of lazy evaluation. Our definition of “trace”
was given and our system demonstrated on a small program.

Our prototype was built using the CENTAUR system. This allowed us to defined the trace semantics of
the language using natural semantics and provided various window creation and customization primitives.
Most importantly, it gave us PPML for displaying the traces, which handled customization of the display
as well as pointing. Aside from the METAL, PPML, and TyPoL specifications, we needed about 550
lines of LISP to complete our system.

The overall goal of this work has been to demonstrate a “hypertextual” approach to trace-based
debugging. Our argument is that this overcomes one of the most serious problems traditionally associated
with traces: information overload.) _

It is too early to call this experiment a success, or to say with certainty that trace-based debugging
promises to be a practical alternative for debugging lazy languages in the future. Our system is “highly
experimental,” which is computer science code for inefficient and buggy. There are three serious problems
with the current implementation:

5Note that the closure in the return-values window remains highlighted; this is a bug, not a feature.

1Q

Centamsr

i table.ss)

D File Display Edit

(set mod (lambds (x y f) (lambda (2)
tset 1d (lambda (x) x))
(set taple

{mod "Cyramo ‘Ferrer

(f (= 2 x) gy (F X2))))

"

(mod ‘Hamlet “Olivier (mod ‘Holmes “Kean id)))) f
(table "Hamlet) X
<5
Centaur] Q[SASL.return-values
] _Oisplay = AR SR
<<=>>
zzzzszazsases Centar M) saSL.global-env
Displa
= Tmod -> <<->>
ssz=gx=s Lid =) <<=5>
poaasszssanan L table -> <<->>
«=>> P
Holmes
= (<<=>> Hamlet)}
2 (1f () Ferrer Nol‘.l)

Figure 18: Exploring value Holmes

Contasr

i table.ss!

File Edit

(set mod (lambde (x y f) (lembda (2) (if (x 2 x) ¥ (F XD)))
(set id (lambda (x) x))
(set table

(mod “Cyranoc “Ferrer

. {mod "Hamlet ‘Olivier (mod “Holmes ‘Kean 1d))))
(table "Hamlet)

v
Cantanr]

m-\

Q
<(=>> I
assnsssasnnns Contaur @ SASL.global-eny
1spla
<<=>> od -> <<->>
rzzzzoxszznss :t:b;: f§-ii-)) "
<<->> d :
zazazzxzEzcEaESE ‘
Hoimes i
3 (<<=>> Hamlet) F
= (1F () Ferrer HolNSS) i
Holnes
=z (<<->> Cyrano)

2 (4f () Olivier Holmes)

K

Figure 19: Showing history recursively

20

Centaur

B tavle.ss)

L File Oisplay Edit
(set mod (lambda (x y F)
{set 1d (lambda (x} x))

i (2> (if (2 2 x> 4 (F X355

{set table
: (mod ‘Cyrano “Ferrer
(mod ‘Hamlet °Qlivier (mod “Holmes “Kean id))))
(taple “Hamlet)
! Centar B SASL.return-values
E O Uisplay]
T I
=a=zzzzsc==zzx3 Contaur ‘ SASL.global-env
_ 0 Oispley
€= tmod -><<<->>
e mg=== = Lid => <<=
mEEsS=3sERs=s L table => <<~>»> ap
<<->> p b
pes=sTaszess Contar] B} sast.ciosure-env
Molmes 1 Disple |
= (<<=>> Hamlet) {x -> Hamlet M
=> Oltvie
Iz (if () Ferrer Holmes) ‘:? =) ((-;> "
Holmes D
= (<<=>»> Cyrano) [1
2 (4F () Olivier Holmes)

Figure 20: Exploring a closure

Centar

W@ table.ss!

0 _tile Display Edit
(set mod (lambda (x y F) (
(set 1d (lambda (x) x))
(set table

{mod "Cyrano “Ferrer
(mod “Hamlet
(table "Hamlet)

lambde (2) (1f (=2 2 x) y (F x)))))

‘Olivier (nod “Hoimes “kean id))))

ix===szaza3z
<<=>>
parzgzcoaEITLI

Holmes
B (<{=>> Hamlet)

Holmes
z ({(=)> Cyreno)

Contawr @ SASL.rsturn-values
->>

jrsazosszonasn Contor

<<=>>

2 (1f () Ferrer Holmes)

(4F () Olivier Holmes)

lﬂrﬁt
W saSt.gliobal-env
‘éod s

L1d => <<=>>
iublo => <<=>>

W

SASL.closure-env

x => Hamlet
,2 => Olgvier
: => <<=

Figure 21: Exploring a value in another window

21

[contaur - table.ss)
o Ffile Display Edit

(ser mod (lambda (x y F) (lambda (2) (1f (= z x) y (F X)))))
{set 1d (lambdas (x) x))

{set table

(mod ‘Cyrano ‘Ferrer

! (mod “Hamlet “Olivier (mod “Holmes “Kean i1d))))
ji{table “Hamiet)

: feomad _— W[s4sL.return-values ‘
!E 0 Display T i i s
— Rk 163l
ilzzazszzz=ssas Contour & sAsL.global-env
! <<=>> [Oisplay]
(mod -> <<->>
sss22xzx33==c bad <> <£=>>
[tabie -> <<->>
= P
Seessssassaes Centaur B SAsL.closure-env
Holmes 0 play
3 (<<=>> Hamlet) Disels

(x -> Haplot
= (1F () Ferrer Holmes) ’}' :; et:;éer
Holmes 5

= (=>> Cyrano)

= (1f () Olivier Holmes)

Figure 22: Argument to closure is wrong

e Memory usage is so high that only very small problems can be run. In part, this is to be expected,
since the memory is going to be proportional to the number of computation steps. However,
the current implementation greatly exaggerates the memory needs, for this reason: Despite the
apparently tree-like nature of traces, they are not in fact trees but DAG’s. For example, a single
environment can be included in several closures and thunks; moreover, every reference to a variable
results in a reference to its XValue being stored in the trace. However, AST’s are, by definition,
trees. The evaluation of a SAsSL expression actually is done in PROLOG, and this computation
creates the trace as a DAG, but the sendtree “fiattens” it into a VTP tree, resulting in an enormous
combinatorial expansion. What is needed is support for DAG’s in the VTP, but CENTAUR is unlikely
to evolve in that direction in the foreseeable future. Alternatively, the TYPOL trace semantics could
be modified to avoid sharing, as indeed has already been done to some extent (for example, the
abstract syntax operator envintro was introduced for this purpose); it is not clear how difficult
this would be or how badly it would affect the readability of the semantics.

o The current definition of trace, and the procedures for trace navigation in the system, are not terribly
natural. A good deal of further experimentation is needed to find a natural level of abstraction for
user interactions.

o The system cannot be used to debug programs that loop. When this happens, the program never
produces any trace, so there is nothing to look at. This could be fixed by creating the trace
incrementally — though this is technically very tricky — and allowing the user to interrupt a
program’s execution. The PPML specifications would also have to be modified to account for
partial tfaces.

We have given no consideration to how traces might be computed in a real system. No implementation
scheme will be able to avoid an exorbitant use of memory, but we would calculate that this might average
about four words per execution step, which would allow for quite a few steps considering memory sizes
of modern computers. A method to control the generation of traces could presumably reduce this figure
significantly. .

In conclusion, the hypertext approach to trace-based debugging seems promising. This is a rather un-
usual hypertext application, in several ways: the “document” is computer-generated rather than human-
generated: it is a “small node” document in contrast to most hypertext documents, in which a node
consists of an entire paragraph or screenful of data; it is a DAG, not a tree nor even a tree with occa-
sional cross-references. There does not appear to be any existing hypertext system that is designed to

22

Ny

handle such documents.

Acknowledgements

This work was carried out while the author was on sabbatical from the University of Illinois, working
in the CROAP group at INRIA, which developed CENTAUR. He would like to acknowledge the support
provided by Gilles Kahn, the leader of CROAP, as well as the technical assistance of Gilles, Dominique
Clément, Yves Bertot, Laurence Rideau, Janet Incerpi, Francis Montagnac, Laurent Hascoét, Laurent
Théry, Joelle and Thierry Despeyroux, and Didier Austry.

References

(1] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, V. Pascual, “Centaur:
the system,” Proc. ACM Software Eng. Symp. on Practical Software Development Environments
(SIGSOFT '88), Boston, Nov. 1988, 14-24.

(2] CENTAUR documentation (User’s Guide, User’s Manual, and Reference Manual), Version 0.9, June
1989 (inquire at centaur®mirsa.inria.fr).

i3] T. Despeyroux, “Executable specifications of static semantics,” in Semantics of Data Types,
Lecture Notes in Computer Science 173, Springer-Verlag, June 1984.

{4] P. Hudak, P. Wadler (eds.), Report on the Programming Language Haskell, Version 1.0,
April 1990.

{5] G. Kahn, “Natural Semantics,” in K. Fuchi, M. Nivat (eds.), Programming of Future Generation
Computers, Elsevier, 1988, 237-258.

(6] G. Kahn, B. Lang, B. Mélése, “METAL: a formalism to specify formalisms,” Science of Computer
Programming 3, 1983, 151-188.

(7] S. Kamin, Programming Languages: An Interpreter-based Approach, Addison-Wesley,
Reading, Mass., 1990.

(8] B. Lang, “The Virtual Tree Processor,” in J. Heering, J. Sidi, A. Verhoog (eds.), Generation of
Interactive Programming Environments, Intermediate report, CWI Report CS-R8620, Ams-

terdam, May 1986.

(9] J.T. O’Donnell, C.V. Hall, “Debugging in applicative languages,” Lisp and Symbolic Comp. 1, 1988,
113-145.

[10] G.D. Plotkin, “A structural approach to operational semantics,” DAIMI FN-19, Computer Science
Department, Aarhus Univ., Aarhus, Denmark, Sept. 1981.

{11] I. Toyn, C. Runciman, “Adapting combinator and SECD machines to display snapshots of functional
computations,” New Generation Comp. 4, 1986, 339-363.

(12] D. A. Turner, SASL Language Manual, Computer Laboratory, U. of Kent, Canterbury, England,
originally dated 1976, revised 1979 and 1983.

Imprimé en France
ar
. I'Institut National de Recherche en Informatique et en Automatique .

ISSN 0249 -6399

