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Résolution d’un probléme aux limites non linéaire
par une méthode spectrale

Olivier COULAUD(*) — Antoine HENROT(**)

Résumé : On étudie un probléme aux conditions aux limites non linéaires
posé aussi bien dans l'intérieur que dans l'extérieur du disque unité de R2.
Grace a Popérateur capacité, nous le transformons en un probléme posé sur
le cercle unité. En développant la solution dans la base de Fourier, nous cons-
truisons par la méthode de Galerkin le probléme approché. Nous montrons
la convergence du schéma de point-fixe ainsi qu’une estimation en norme L?
de erreur. Finalement, nous présentons des résultats numériques provenant
d’un probléme de formage électromagnétique.

A Nonlinear Boundary Value Problem
Solved by Spectral Methods

Abstract : We study a nonlinear boundary value problem posed in the
interior or the exterior of the unit disk in R2. Using capacity operator,
we transform it into a pseudo-differential problem on the unit circle. The
Galerkin method together with Fourier expansion, is used to approximate our
problem. We show the convergence of the fixed-point scheme and we give an
accurate bound of the L2-norm of the error. Numerical results coming from
a problem arising in electromagnetic casting are also presented.
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1. Introduction.

The modelization of various problems arising in domains like fluid me-
chanics, electromagnetism, elasticity, acoustics, etc ... lead to exterior or
interior nonlinear elliptic boundary value problem, see [3], [4], {10], [11] and
references given there. Usually, these problems are written in integral form
and then solved using boundary element methods, see e.g. [1], [2], [6], [12).
Our purpose, here, is to develop a different approach based on the use of
exterior or interior capacity operator combined with spectral methods.

We begin by transforming the problem, with the help of the capac-
ity operator, into a pseudo-differential problem on the unit circle, and we
show, in part 2, the convergence of a fixed point scheme well adapted to this
problem.

In part 3, we examine in details the approximate Galerkin scheme de-
fined on a finite dimensional space of trigonometric polynomials. We show,
using the same method as in part 2, the convergence of the approximate
fixed point scheme and we give an accurate bound for the error in terms of
L2?-norm.

We give, in part 4, first a few simple numerical examples to show the
efficiency of our method, then we investigate more deeply a physical example
arising from a free boundary problem in electromagnetic casting.

2. The continuous problem.

Let T be the unit circle of the plane. We are interested, here, in both
exterior or interior boundary value problems posed on I'. In order not to
complicate too much the statement, and because it is the case of our con-
crete application (part 4) we will make explicit all our resuits, for exterior
problems only, but they stay, of course, valid for interior problems where the
only change lies in the use of interior capacity operator instead of the exterior
one. :
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Let, then, Q be the exterior of the unit disk :
Q= {(z,y) € R?, 22 4+ 4% > 1}
and consider the following nonlinear exterior boundary value problem :

Av=0 on §

Ov
2-1 — T —
(2.1) o =f(zv)—f onT
v bounded at infinity

with the following assumptions on the nonlinearity S :

(2.2) o B:T x R — R is continuous and g%(:v,u) is continuous on I' x R.

(2.3) e There exists A continuous, piecewise C'onT, A >0, A £ 0 such that

Veel,YueR Z(z,u)> Mz)2>0.
Moreover, we suppose f continuous on I.

Remarks :

o The fact that the problem is posed on the interior or exterior of the unit
disk is not such a restriction, because every nonlinear boundary value
problem posed on a more general open (! with boundary a smooth
Jordan curve I' can be transformed in a problem posed on € (or §; :
the unit disk) by using a convenient conformal mapping.

In a recent work, see [12], Ruotsalainen and Wendland considered the
same problem as above (with a slightly stronger hypothesis on the non-
linearity : %f(:v, u) > A > 0) weakening the regularity assumptions on
B and f, but it is not our purpose here.

Let us, now, recall the definition and main properties of the exterior

capacity operator (for more details and proofs, we refer to Benilan, ch. II, §
5 in (8]).

We denote by C3(Q) (resp. C(T')) the space of bounded continuous

functions on Q (resp. I') equipped with the uniform norm

ulloo = max|u(z)]  (resp. |ju|loo = max |u(z)]).
teﬂ ZGF

We denote by C1(Q1) the space of functions v € C3(Q) such that the

normal derivative % is defined and continuous on I.
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If ¢ € C(T'), we denote by u.(y¢) the unique solution of the exterior
Dirichlet problem

u € Cp(Q)
(2.4) Au =10 on 2

U= on I

We then define the exterior capacity operator C, by

D(C.) = {p € C(T); ue(y) € CL(D)}

(2.5) Coe Bu(e)

on

With this definition, problem (2.1) is equivalent to

(2.6) v = ue(p)

where ¢ is solution of

(2.7) Cep + B(z,0) = f.

Remark. The case for interior problem is exactly the same, definition of
interior capacity operator being analogous with the interior Dirichlet problem

instead of (2.4).

Here are the properties of the exterior capacity operator we need for
the following :

(2.8) Vo € D(Ce), Vue(p)€ L*(Q) and /(2|Vue(<p)|2d$=/rcpce<pd’y.

Let AeC(T), A >0, A #0 then:
(2.9) The operator AI + C, is one-to-one from D(C.) into C(T").

(2.10) The inverse operator is continuous from C(I') into itself and its norm
is

IAL +Ce) Hloo = 1M + Ce) ™ loo

(2.11) (p €C(T), ¥ >0)=> (A +C.) " >0.
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(2.12) Let ¢ € C(T'), ¢ non constant and z¢ € I (resp. z; € T') such that
p(z0) = maxyp (resp. p(z1) = mine)
then C.p(xo) > 0 (resp. Cepp(z1) < 0).

We will not prove here these properties which can be found in [8]. We
proved in [10], using properties of C, and classical perturbation results that
(2.7) has a unique solution *. Our aim, here, is to calculate it, by a fixed
point scheme.

(2.13)  Let y(z,u) = f(z,u)— A(z)u (according to (2.3) + is monotone in u).

We prove the convergence (in L*°-norm) of the following fixed point
scheme :

Theorem 2.1. For ¢° given in C(T'), the sequence defined by
(2.14) (m+ Az )"t + Cep™! = f — 4(z,0") + my"

converges (in L*-norm) to ¢* solution of (2.7) as soon as the relaxation

parameter m is great enough, and ¢° is in a small enough neighbourhood of

(P .
Proof. Let us denote by F' the nonlinear operator :

F:¢(T) — ¢(T)

(2.15) o — f+mp—1(.,p)

and by T the operator : T = ((m+ A)I + Ce)_l o F. To prove that the fixed
point scheme ™! = T(¢") converges, it is sufficient to prove that

(2.16) | dT ()

<1

Since ((m + I+ C’e) ! is a linear operator, we have to estimate separately
[((m + NI +C.) 1|, and ||dF(e || .-

Let ¢ = ((m + A)I + C.)"'1, and 2, € T such that (o) = max o,
According to (2.11) we have g > 0 and then ||%0]|,, = Yo(z0). Now

(m + )\(xo))’ll)o(xo) + Celf)o(wo) = 1.

If 4y = cst, we obtain immediatly A = cst > 0 and 3y = 1/(m + N).
Otherwise C.tho(z9) > 0 and then yo(z¢) < W}(m So in every case, we
have :

(2.17) 1((m+ NI +C) 7| < =

m
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Now dF{(,.) is the linear operator defined on C(T') by :

(2.18) dF ey (h) = (,\(.) - Z—ﬁ(.,w) +m)h

U

so we have (in the sense of C(T")-norm) :
(219) 4Bl = | = (o(e ()~ X@)|

op . :
Let M = Teai)‘c (%(m,go (x)) — A(x)), because of assumption (2.3) we

have ||dF .|| < m as soon as m > M, whence theorem (2.1) since

(220)  [[dTmll S [ ((m+NI+C) 7| <1m-m=1.

3. The approximate problem.
We denote, as usual, by S, the (finite dimensional) space of trigono-
metric polynomials whose degree do not exceed N, defined as :

(3.1) Sy =span{¢y, = e —N <k <N} .

(the set of functions %, is an orthogonal system over the interval [0, 27]) and
by II,, the projection operator defined from L%(T') into S, and defined for
all v e L¥T) by :

(3.2) (v—Tv,%,)=0 Vi, €Sy

where (., .) denotes the usual inner product (u,v) = 5= foh u(z)v(z)dr and

2w
||, the associated norm.

The use of spectral methods for the resolution of (2.7) is first motivated
by the fact that, if v is harmonic and bounded at infinity, it can be expanded
on { like :

+ o0

(3.3) o(r,6)= > e’

k=—o00

and then by the two following interesting properties of the operator C., :
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(i) In the case of the unit circle, the expression of C, is simple :

+00 )
fpeD(C), o= Y ™

k=—00
then we have :
+o00 .
(3.4) Cep= ) |k|pye*®.
k=—00

(ii)) The commutativity of the operator Ce with the operator II,,, more
precisely S, is invariant for C, and :

(3.5) Vo € D(C.)  Ce(lly(9)) =T, (Ce(y))

(this equality is obvious using formulae (3.3) and (3.4)).

Let us state, now, how the problem (2.7) and the fixed point scheme
(2.14) are approximated in S, by a Fourier-Galerkin approach.

We denote by v, = II, oy the projection of the nonlinear operator v (see
(2.13)) on S, and also, to simplify notation, A, =1II,(A) and f, =11, (f).
The problem (2.14) is written in Sy as :

(3.6) { Find ¢, in S, such that
. myy +HN(AN‘PN)+C€9°N =fN_7N('a‘pN)+m‘PN

and the Galerkin method is defined by the set of equations

(3.7) {‘PNGSN and Vk € {—N,...,N}

(m+ 2y + Cepn,¥.) = (f = (2, 08) + My, 8,).

To solve (3.7), we consider the following fixed point scheme :

©% givenin Sy, @t e S, and
(3:8) (((m + AT+ Ce)op™,9,) = (f = v(z,0%) + mpn,9,)
for —N<k<N.
Equivalently, the Fourier coefficients @;‘“H of cpZ“ are deduced from the

Fourier coefficients A of An, @7 of ¢}, and g, of f—~(.,¢%) by the set of
linear relations:

©% given in S,

N

Z are@ =G, + m@T ~-N<k<N
£=—N '

(3.9)



where

Ne—e fO0<|k—f <N
(3.10) ake =4 do+m+ k| fl=k

0 if [k—¢>N

are the coefficients of the matrix of the system (3.9) which we denote by A4,,.

Remark : In the case where we can choose A = cst, the matrix A4, is

diagonal.

Proposition 3.1. The (2N +1)-matrix A, is hermitian positive definite(and
then invertible).

. N
Proof. Since A, is a real function defined by A, (z) = Z Xk¢k(x), A,
k=—~N
is clearly hermitian. For each ¢ € S, we denote by ¢ the vector of spectral
coefficients @ = T(Z_p,...,Py)- It follows from the properties of the set

{#,} that
(311) (4y3,8) = (((m+ X1 +C)o,0)

where (., .) is the canonical hermitian product on C2¥+1, Hence the strict
positivity of A, follows using (2.8) and the fact that ¢ is a real function.

Then the Galerkin fixed point scheme (3.9) is well defined. We give,
now a convergence result of scheme (3.8) analogous to theorem 2.1. Due to
the Galerkin approach, it is more convenient to use the L2-norm, which we
will do in the following.

Theorem 3.1. For N given, N large enough, and m like in theorem 2.1, the
problem (3.6) has a unique solution and for ¢°, in a small enough neighbour-
hood of I1, (p*) the sequence (p}, )n>o defined by (3.8) converges asn — +o00
to the solution ¢, of (3.6).

We will use in the proof of this theorem as well in the next one the
following lemma :

Lemma 3.1. There exists a strictly positive constant Cy which depends
only on X such that

(3.12) Vo € HL (%) 00/v2 g/m%/ v
r r Q
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Proof of the lemma. Assume that (3.12) is not true. Then there exists a
sequence (vy) of functions vy, € H () such that

loc

1
72 //\vk+/ IVkaZ
(3.13)

Let w = B(0, R)\B(0,1) where R > 1. It is classical that there exists
a constant C' (depending only on R) such that

(3.14) Vv € H'(w) /wv? < C[/rv2 +/wlvv|2}

see, for instance {8], p. 928.
Applying (3.14) to vklw we obtain :

(3.15) | / f<o(i+ %)

hence vy is bounded in H?(w). By Rellich theorem, there exists a subsequence
(still denoted by vi) which converges in L?(w) to v.
Since Vg converges to 0 in L?(w) (according to (3.13)) we obtain Vv = 0
on w and v = cst on w.

Moreover, since vy converges to v = cst in H'(w), using continuity of
the trace application we have ”klr converges to v|F = cst in L*(T). We
deduce, from (3.13) that 0 = f A? = cst [ A. Since [ A # 0 we have

cst = 0, but this is in contradiction with vnlr converge, in L%(T) te 0 and
f v% =1.

r
Proof of theorem 3.1. The sequence ¢}, is defined by

IO, [(m+ Ay )y + Celopt! = I [f — (-, h) + me)]
or equivalently :
(‘Pn+lv¢k)=(TN(‘r’:;)a¢k) _NSkSN

where :

(3.16) T, = [HN ((m+ Ay)Iy + Ce)] T ol o F
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(F is the nonlinear operator defined in (2.15) and I, the identity operator of
Sy ). To prove theorem 3.1, it is sufficient to prove that, for N large enough,
we have :

(3.17) 14T, oo | < 1
Now :
-1
(3.18)  dTyg, ey = [HN ((m+ A )y + ce)] 0T, 0 dF(, (ory).

Let us estimate the L?-norm of the operator
-1
X, = [HN ((m+ Ag) Iy + Ce)] .

Let 4 and ¢ be in S, such that (¢,%,) = (X, ¢,9,) for —N < k < N.

Then we have

(3.19) ((m + Ay )+ Ce‘P,"r/’k) = (¥,%,) for —-N<ELN

Multiplying by @,, the k'® spectral coefficient of ¢, and adding up from
k = —N to N yields to (see (2.8)) :

G20) il + [l + [ 96f = [ <lellivl,
For every v in L*(T"), we set

(3.21) Qu(v) = v — T, (v).

Report (3.21) in (3.20) to obtain :

(3.22) mlpll; + A Alel* ~ /F Qn (Mlel” + /Q IVel® < llell. %,
Using lemma 3.1 and uniform majoration of @, (1) we obtain

(3.23) (m+ Co = 1@x (M)l < N1,

The regularity assumptions (2.3) on A imply that we can choose N large
enough so that

(3.24) Qs Ml < %o_ (see, for instance [5], p. 278).
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Therefore
-1 1
(3.25) | [ (Om o+ 2Ly + €] 7| < R

Now, since dF(,y(h) = (A — Z&(.,p) + m)h, we still have
op
4, < ”/\ — .00+ m“m

and we use continuity of gg to claim that in a neighbourhood of ¢*, we have
”dF("‘,)”2 < m+ Cy/2 as soon as m > M (see (2.20)). So we can choose N

in order that IT, (¢#) be in this neighbourhood. Since ||II,, ”2 <1, we finally
obtain

“ Ny e*)

<|

2

(ML (2 + M) D + €] 7| - 1Ty,

2

(3.26)

A, (o)) L <1

which proves, in the same time, convergence of the sequence ¢} and existence
of a solution for the problem (3.6).

Uniqueness of this solution is easily obtained using the same argument
as in 3.30 below, which proves theorem 3.1.

To conclude our study of the approximate problem, it is necessary to
give an estimate of the difference between the approximate solution ¢, in
Sy limit of the sequence defined in 3.8, and the exact solution ¢*.

We obtain the following resuit :

Theorem 3.2. Let ©* be the solution of (2.7) and ¢, the solution of (3.6).
Then, there exists a constant C' depending only on A, § and ¢* such that

”‘PN - ‘P‘Hz < C(”)‘ - HN"‘”z + ”‘P* - HN‘P*HQ)

Corollary. Assume that the solution ¢* € H*(T'),s > 1 and A € HP(T),
p>1, then

lew = @*ll, < C'N=™P (lo* || gacry + M| mo(ry)

Important remark. This theorem show that the accuracy of the approx-
imation essentially depends on the regularity of A on the one hand and the
solution ¢* on the other hand. If we can’t act on the regularity of ¢* which
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is nearly a data of the problem, on the other hand, we can always choose A
verifying (2.3) with a prescribed regularity (for more details, see part. 4).

Note that the regularity of the data f does not appear explicitely in this
theorem, but it is implicitely “contained” in the regularity of the solution ¢*.

Proof of theorem 3.2. We begin by estimating the distance between IT p*

and ¢, .
@ is solution of (see (3.6), (3.7))

(327) (A Iy +Ce)on +7(on) ) = (fihy) - N<k<N
and by projection of Ap* + Cep* +v(.,¢") = f on S, we obtain

(Ce@yp™) ) = (f =" ~(,9") %) —N<k<SN
so IT,* is solution of

((ANIN + CC)HNQP* +7(‘ ’HN(p*)’d)k)
(328) = (f‘f'/\NHN(P*_)“P*+7(')HN‘P*)_7(-"P*),¢:=)
—-N<k<N

Let us set e,, = I, * —¢, . Substracting (3.27) from (3.28), we obtain:

((’\NIN + Ce)eN + 7(' 7HN‘P*) - 7(' 1PN )a ¢k)

(3.29) RN _
= (AeIe@™ = 2" + 90, Ou0™) = (., %), %,)

Multiplying by the spectral coefficients of ¢, and adding up from —N
to N yields

/\N 2+/Ce N / . H *y . |
(330) /I: 'eN, r eNeN + I (7( y NP ) 7( 4 ))€N
= (/\NHN(PO* - /\90* + 7( )HN(P*) — ’)’( ,so*), eN)

or (see (2.8), (2.13))

(3.31)
/ Aulenl? + / Ve, |?
T Q

+'/I: [ﬂ( JJe™) — Al o* = B(,9%) + A‘P*} (ye* —py)

= [Ow-Niveer+ [ 80Tt - BC,o0]em
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Monotonicity property of u +— B(.,u) — Au (see 2.3) and existence of
constants Cy,C, such that

Iy "Nl < Ci and 1B(., Iy = B(,9")| < Calll, 0 — o7

imply

(3.32) /ANIeN|2+/ |Vey|? < CI/I/\N —AIE'N‘+02/ Hye* —o* ey
T Q r T

Using Cauchy-Schwarz inequality for second member of (3.32) yields :

(3.33) /P Mlen |2 + A Ven” < (C1lIQu (Ml + C2llQu (o)1) llen s

We write now A, = A — @, (A) and we use lemma 3.1 together with uniform
majoration of @, (A) to obtain :

(CO - ”QN()‘)HOO)”eN ”iz(r) < (CIHQN(’\)”: + C2||QN(‘P*)”2)”8N ”Lz(p)

whence theorem 3.2 using the triangle inequality

lon ="l < 1@~ (#")ll> +llenlls
and the fact that ||@Q, (})||.. can be chosen (for great V) as little as wanted.
The proof of corollary follows from estimation of ||v—II, v||, since when
v € Hig,y, we have : (see [5], p. 227)
lo = Myoll, < CN""lvllag,

)’

4. Numerical results.

We begin by giving some remarks about the algorithm described above.
At each iteration of the fixed point scheme, we have to compute the spectral
coefficients of the right hand side of (3.8). Due to the nonlinearity 3, it seems
better to us, and especially cheaper, to use a procedure based on Fast Fourier
Transform (F.F.T.) to calculate them. To obtain the approximate solution
@, We consider the following algorithm :

©% given in Sy
for n > 0, then

step 1 : evaluation of the vector of spectral coefficients, ¢, of the
non-linear term : f +me% — (., ¢%) by F.F.T.
(41) \ n+1

step 2 : computation of 77" by solving the system :

—_—
Ay ‘P:,-+1 =g
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The convergence of the algorithm is obtained when

—_—
n+l

lent = enll, <107

Remarks :

— The error between the exact spectral coefficients and those obtained
by F.F.T. is of the same order as the approximation error, (see [5]).

— The evaluation of the spectral coeflicients of the nonlinearity needs
about N log, N operations

— The resolution of the system in step 2, is done using a Choleski fac-
torization of the band matrix A, , (unless if A is constant, of course !).

4.1. First example.

The two numerical examples we give here are intended to illustrate
the theoretical error analysis and also to prove the accuracy of our method.
They are taken from the paper [12]. We became aware of that paper after
developing our method for example 2 next. We chose to apply it to the same
examples as in [12] in order to compare their efficiency. We consider the same
two types of non-linearities, namely:

Ou :
(4.2) ~n =u+sinu— f onT
Ou 3
(43) —% = |u|u — f onT

Remarks :
— We construct f such that the exact solution is

4rcos9 + 2
. 8 =
(4-4) u(r, 6) 4r? + 4rcosf +1

(we have to choose the exact solution, not in S, , otherwise the results would
be misleaded, the convergence being very fast. Then, we did not choose v = 1
which gives an immediate convergence here, with N = 1).

— Although these nonlinearities do not satisfy the condition (2.3) glo-
bally, in a neighbourhood of the solution u, we have % 2> m = cst > 0, then
our algorithm with A(z) = 0 and m > 0 converges in all the cases we studied.

So the problem is : find u harmonic in Q verifying either 4.2 or 4.3. We
obtain the following results :
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N 8 12 20

L? error
6.81073|2.3107* | 48107
example 4.2

L? error
9.4107% | 471075 {9.7107
example 4.3

Table 4.1
where NV denotes the number of modes (we recall that the number of spectral
coefficients computed is, then, 2N + 1) and the L? error is the L?-norm of
the difference between the exact solution (4.4) and those obtained by the
algorithm (4.1).
We numerically observe that the approximate orders of convergence are ex-
ponential, more precisely we have :

(4.5) L?error < Ce™ N

with a ~ 4.91072 in the first case, and a ~ 4.31073 in the second case. This
result is completely in agreement with our theoretical study, because in these
examples, the exact solution is analytic on I' and then the distance between
u and II, u decreases exponentially with N.

4.2. A physical example.

The study of a free boundary problem arising in electromagnetic casting
leads us to consider the following problem (we refer to [9], [10] for more
details) :

Av=0 on
(4.6) -@- =—g*¢ " +pe* —f on r
on

v bounded at infinity

where p is a constant and ¢ is a known function, analytic on T" in our case.
The physical interpretation of these equations is the following :

We set v(z,y) = €n|®'(z + iy)| where & is the conformal mapping from Q
to the exterior of the free boundary, and the nonlinear boundary condition
express the equilibrium between the pressure magnetic forces and the super-
ficial tension forces.

Since here

(47) 98 (2,v) = (@)™ + pe* 2 2plg(=)
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assumption (2.3) is verified with

(4.8) A(z) = 2y/plg(z)]

Moreover, we can prove, using analyticity of g that the solution v of (4.6)
is analytic up to the boundary, see [9]. The term ||¢* — II ,¢*||, in theorem
3.2 has therefore an exponential decrease. The accuracy of our approximate
solution ¢, depends essentially on the choice of A. In the case when g does
not vanish on T', the choice of A(z) = 2,/p|g(z)| is quite good, since A is still
analytic. But in the most frequent case where g vanish, this choice is not
good, as shown by the table below, and it is much better to choose :

(4.9) N

which is analytic and less than 2,/p|g(z)|. The results below illustrate, in a
convincing way, our theoretical study, and particularly theorem 3.2.

Remark : In our case, we are easily able to choose a function A(z) more
regular than the initial function A(z) because X is the absolute value of a re-
gular function. More generally, one can still make such a choice, using spline
functions which vanish at the same points as A with horizontal tangent at
this points. It is always possible to construct such a spline function, positive,
less than A with a prescribed regularity, using polynomials like (z — z;)?™
(where z; is a zero of X).

We choose the two following functions g which arise when the magnetic
field is created by linear vertical conductors (see [10])

240 cos 2z
(4.10) 91(%) = S " cosaz

128 cos4r — 1
(4.11) g2(z) =4

257 — 32 cos 4z

and we construct f such that the exact solution is still given by (4.4). In
both cases, we are interested in the evolution of the L?-norm of the error
when N increases.

In the first case, where g vanishes, we can observe a significant differ-
ence between the choices of A (given by 4.8) or ) (ngen by 4.9) due to the

regularity of A.
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N 8 12 16 20 24
L? error,
6.9107%58107%|2410°%[1310°%({2410¢
A chosen
L? error,
- 241072 (2110731171074 {1.310°5|4.6 107
A chosen

Table 4.2

The figures below, show the module of the spectral coefficients of the
exact solution and approximates solutions for different values of NV in the two
cases. We observe that the influence of the aliasing terms due to the FFT is
clearly less important in the regular case (choice of A) than in the other.
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Fig. 4.1 a. Spectral coefficients of the solution, with A
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Fig. 4.1b. Spectral coefficients of the solution, with

In the case of g2 (given by 4.11), both functions A and X are regular
and we do not observe any significant difference in the convergence which is
still quite good (see table 4.4 below). We can also choose here A = cst (e.g.
A = 3) for which algorithm (4.1) is quite faster because the matrix 4, is

diagonal.

N 8 12 16 20 24

L? error, with

451072 13.1107* [ 2.1107°|1.4107% | 2.810°°
A (given by 4.8) .

L? error,

46107°% [ 28107%{1.710°%}1210°% | 4210 "
A\ = cst chosen

Table 4.4

Since A is analytic in these two examples, we can observe on tables 4.2
and 4.4 that the convergence is still of exponential order in accordance with
our theorem 3.2.
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