N

N

An exact algorithm for the constraint satisfaction
problem: application to dependance computing in
automatic parallelization

H. Bennaceur, G. Plateau, F. Thomasset

» To cite this version:

H. Bennaceur, G. Plateau, F. Thomasset. An exact algorithm for the constraint satisfaction problem :
application to dependance computing in automatic parallelization. RR-1246, INRIA. 1990. inria-
00075312

HAL 1d: inria-00075312
https://inria.hal.science/inria-00075312
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075312
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE
INRIA-ROCO.UENCOURT

Institut National- -
de Recherche
en Informatique
et en Automatnque

Domalne de Voluceau
Rocquencourt |

.w&mm

. (1)139 635 1

Rapports de Recherche

N° 1246

Programme 2
Structures Nouvelles d’'Ordinateurs

AN EXACT ALGORITHM FOR THE
CONSTRAINT SATISFACTION
PROBLEM : APPLICATION TO
DEPENDANCE COMPUTING IN

AUTOMATIC PARALLELIZATION

Hachemi BENNACEUR
Gérard PLATEAU
Francois THOMASSET

Juillet 1990

AR
RR.1246~*

An exact algorithm for
the constraint satisfaction problem:
Application to dependance computing
in Automatic parallelization

Un algorithme exact de résolution du
probleme de satisfaction de contraintes:
application au calcul de dépendances
en parallélisation automatique

Hachemi BENNACEUR, Gérard PLATEAU *
Frangois THOMASSET !

Juin 1990

*Université Paris-Nord, Laboratoire d’Informatique de Paris Nord CSP - avenue J.B. Clé-
ment 84430 VILLETANEUSE
tINRIA - BP105 - F-78183 LE CHESNAY

An exact algorithm for the constraint satisfaction problem:
Application to dependance computing
in automatic parallelization

Hachemi BENNACEUR, Gérard PLATEAU, Frangois THOMASSET

Abstract:

the contraint satisfaction problem -denoted by CSP- consists in proving the
emptiness of a domain defined by a set of constraints or the existence of a solution.
Numerous applications arise in the computer science field (artificial intelligence,
vectorization, verification of programs, ...).

In the case of the study of dependence computing in automatic parallelization,
classical methods in literature may break down for some instances of CSP, even with
small sizes. By constrast the new method -denoted by FAS3T (Fast Algorithm for the
Small Size constraints Satisfaction problem Type)- we propose allows an efficient
solution of the CSP concrete instances generated by the VATIL vectorizer.

Comparative computational results are reported.

Résumé:

le probléme de satisfaction de contraintes -noté CSP- consiste & prouver la vacuité
du domaine défini par un systtme de contraintes ou l'existence d'une solution. Ce
probléme se rencontre dans de nombreuses applications informatiques
(intelligence artificielle, vectorisation, vérification de programmes,...).

Dans le cadre du calcul de dépendances pour la parallélisation automatique, il existe
des instances du CSP méme de tailles modestes pour lesquelles les méthodes
classiques de la littérature aboutissent & une indécidabilité.

A l'inverse, la nouvelle méthode proposée -notée FAS3T (Fast Algorithm for the
Small Size constraints Satisfaction problem Type)- permet la résolution efficace du
CSP pour les problémes concrets générés par le vectoriseur VATIL. Des expériences
numériques comparatives sont détaillées.

Key Words : Satisfaction of constraints - automatic vectorization - integer

programming - data flow dependency.

1 Introduction

The core element of an automatical vectorizer is the study of data flow dependency
inside a program. It consists in analysing the data used or produced by a statement
with the aim of accepting or rejecting the vectorization.

This problem can be modelizing as a system of diophantine constraints for which the
existence of a solution or the emptiness of the associated domain has to be proved; only
in this second case, the concerned part of code can be vectorized.

As this constraint satisfaction problem -denoted by CSP- is NP-complete, most of
the authors’ studies are devoted to approximate solving technics (approximate
decidability): in fact continuous linear constraint systems are solved after relaxing
the integrality conditions on the variable of the concrete problem [Bledsoe 74,75,
Shostack 77,81},

Although the use of classical linear programming algorithms (simplex [Dantzig 63] or
projective [Karmarkar 84] methods) may lead to exact solutions for some instances of
the CSP (emptiness of the continuous domain, or unimodularity property satisfied, or
detection of an integer solution during the resolution), it remains that when the CSP
instance is satisfiable on R it is impossible to conclude the satisfiability or the
nonsatisfiability on Z; in this general case, the part of associated code cannot be
vectorized.

This paper is organized as follows:

Section 2 gives the principles of dependence computing as implemented in the
current VATIL vectorizer [Thomasset 88}. A preprocessing scheme including the
GCD and Banerjee-Wolfe tests, and linearizations is used before to perform the simplex
method.

Section 3 deals with the description of an exact algorithm -denoted by FAS3T (Fast
Algorithm for the Small Size constraint Satisfaction Test problems)- for the CSP. Thus
the aim of this general method [Bennaceur 89, Bennaceur, Plateau 8%a and 89] is the
proof of the emptiness of the domain defined by any system of diophantine
constraints, or the existence of a solution.

Section 4 details the computational results on a SUN 3/160 computer with a Fortran 77
implementation of FAS3T performed with a lot of concrete instances generated by the
VATIL vectorizer.

2 Dependence computing in automatic parallelization
We give the principles of dependence computing as implemented in the current

VATIL vectorizer [Thomasset 87]. These are exposed for the sake of simplicity in the

case of simply nested loops, but they may be easily extended to multiply nested loops.

2.1 the problem

Consider a FORTRAN loop:

DO1I=1,N
A X(a1 *I+apg)=...
B:: =X(by *I+DbQ) ..
1 CONTINUE

We have to answer the following question:

Does there exist values of the index i j,
subject to loop bounds
such that A(i) (at iteration i) and B(j) (at iteration j)

access the same memory cell.

This is represented by a set of equations of the following form:

aj*i+a)=by1*j+by
1<i<N
1<j¢<N
iopj

in which op is either <, > or = depending whether we look for true-, anti-, or loop

independent dependences:

Let us give a few examples:

Example I:
DO11=1,10
X@2*) =1
Y(I) = X(@2*I+1)
1 CONTINUE

It is easily checked by inspection of index expressions that there is no dependence
here, since the first instruction accesses the even positions of array X, and the

other one, the odd positions: this is an example of application of classical “*GCD test".

Example 2:
DO11=1,10
X(3*1+10) = 1
YO =XO
1 CONTINUE

Here the absence of dependence will result from consideration of the values of loop

bounds: there exists no solution to the system:

3*i+10=j
1¢i¢10
1<¢j€10
Example 3:
DO11=1,10
XM*I+N) =1
YO =X

1 CONTINUE

Now we have no possibility to say anything about the existence of dependences
unless somcthing is known about the variables M and N: indeed if it were known
that M and N take on positive values at execution then we could assert the absence
of dependence; this kind of information may come either from automatic data flow
analysis or from assertions given by the programmer: in VATIL we have
implemented the possibility to assert bounds and linear relations about the variables;
these rclations will be added to system; it is the subject of this paper to describe the
exploitation of such information.

It is worthwhile to notice that the system in the analysis of example 3 is non linear;

M*i+N=j
16110
1¢j$10

iopj

Since the general integer programming problem is known to be undecidable,
the brute solution of such a system is unfeasible, and approximations will have to
be made in order to come to a linear system, allowing an approach to an
approximate solution: the well known Banerjee test is one such test (see further
below); of course such approximations may lead to imprecise results and find
spurious dependences. The vectorizer will make conservative assumptions and

declare dependence whenever the absence of dependence cannot be proved.

Our strategy is exposed below as a succession of tests:

first try the GCD test or symbolized GCD test;
then form the inequations for the Banerjee test using informations from data
flow analysis or programmer assertions;

if these inequations cannot be numerically evaluated, then:

linearize the system;

invoke a procedure such as the simplex method in order to try to prove
the absence of feasible solution;

if the procedure finds that solutions may exist, decide the existence of a

dependence.

i

Note that we make approximations at several levels:

using the Banerjee test, since we relax the constraint on integrity of solutions;
during the linearization process;
possibly on invoking an algorithm such as the simplex since the standard

simplex method works on system with real variables.

2.2 The GCD test

This test looks at the index expression without considering the loop bounds; the

equation to be solved is of the form:
al *i-b1 *j=(bo - ap)

where the a1, aQ, by, bp, i, j, must take on integer values; then it is straightforward to

check that a necessary condition for existence of a solution is that:
the GCD of a1 and by divides (bgp - ag).

This test is easily conducted when the coefficients aj, by and the difference (bg-ag)

are all integer constants; otherwise we can easily perform symbolic manipulations

to determine integer factors of expressions:

find (exp)
--- returns a number in any case
--- exp is an integer multiple of find(exp)
CASE exp OF:
number : return exp
el * 2 : retum find(el) * find (e2)
el + e2 : return GCD (find(el) , find (e2))
el - €2 : returm GCD (find(el) , find (e2))
other cases : return 1
END CASE
END find

Example:
find 2Q*x+4*(y+2)=2

Then the symbolized GCD test becomes:

if bp - ap is a number,
the GCD of find(aj) and find(by) divides (bg - ag).

No conclusion can be drawn when (bg - a)) is not a number.

2.3 Banerjce Test

We relax the constraint on integrity of solutions in order to reduce the complexity of

the problem [Banerjee 76]:

let pand q ! be the bounds of the current loop:
DO11=pg

1 CONTINUE

given any integer expressions a and b we set:
fa,b(x,;y) =a*x-b*y

the given problem is to search a solution x,y of:
fa1,p1(x.y) = bo - ap

in regions of the iteration space:

cither the triangle (op is <):

péx<yfq

or the triangle (op is >):
p<y<x¢q

or the line (op is $=$):
PSx=y<q

1 which may be expressions; classical presentations of this test require p to
be 1

compute lower and upper bounds of fa1 pi1(x,y) in the relevant region

according to formulae below;

- If bg - ag is between the computed bounds for fa),p1(x,y) this implies the

cxistence of a solution in R2; then assume a dependence; otherwise there is no

dependence.

We now have to compute the bounds of fa1p1(x,y); these depend on the signs of the
coefficients aj and bj and of the difference ajy - by.

10

Bounds of fab in the triangle of plane x,y defined by:

pS<x<y<gq
LOWER BOUND | UPPER BOUND

220,620 fap(0

a2b fapla - La)

a<b f@(pv p+ 1)
a>0,b<0 f&b(p:p + 1) f&b(q -1, (l)
a<0,b<0 fa'b(p)(l)

azh fa‘b(pap + 1)

alh fapla - 1)

Bounds of fa,b in the triangle of plane x,y defined by:

pLy<x<gq
LOWER BOUND | UPPER BOUND

a20,b20 f})’a(pﬂ)

a2 b fb,a(q - 1»‘4)

aglh fhalpp +1)

20b<0| fhala-1a) foalpp +1)

a<0,b<0]b'a,(P:(l)

a>b fpalpp + 1)

a<bh fhald — La)

Bounds of f, 1, along the line defines by:

pSx=y<g

LOWER BOUND | UPPER BOUND

2b] (a-b)sp (a-Db)*q

a<h (a=Dh)sq (a=-h)xp

11

2.4. Finding the signs of coefficients

It has been noted that the bounds of a linear function depends on the sign of its
coefficients; when these happen to be non numbers the pure Banerjee test gets
stuck; in order to circumvent this, we use the following heuristics: we perform a
preliminary pass in the set of data flow informations and pick up any relation of the
form:

VopN

with V a variable and N a number.

This information is used to compute bounds on V and expressions using V.

Of course it will happen that some variables are involved whose bounds
cannot be determined; then the test can be only partially conducted; for instance if
we know that aj; and bj are positive, but ignore the sign of by - a7 we can find the

lower bound of f,p on the triangle x<y but not the upper bound.

2.5. Dependence Computing; linearization
Clearly the inequations from the Banerjee test can be non linear; therefore we enter
any inequation coming either from the Banerjee test or from data flow information
into a linearization procedure, this creates new variables to represent the non
linear terms and substitutes in the expressions; therefore the procedure receives
an argument representing the expression to be linearized, and maintains a global
variable which is the current set of new symbols.
lin (e)
CASE e :
symbol or number : return e
el +e2 : return lin(el) +lin(e2)
el - e¢2 : return lin(el) - lin(e2)
- el : retum - lin(el)
el *e2:
let n1 = lin (el), n2 = lin(e2) in
if nl is a number or n2 is a number
then return nl * n2
else return newsymb (e)

other cases: return newsymb (e)
END CASE

end lin

12

3 Method FAS3T for the exact solution of the CSP

This part deals with the description of a new exact algorithm - denoted - by FAS3T
(Fast Algorithm for the Small Size constraint Satisfaction Test problems) - for the
constraint satisfaction problem. The principle of the method (section 3.1) and the
basic theoretical results (section 3.2) precede the description of the algorithm
(section 3.3). A numerical example illustrates the method in section 3.4. The

numerical experiments devoted to this type of system:

(S) Ax ¢b ;xeZ
with A € ZMXN and b € ZM

(automatical program vectorization CSPs' model) are detailed in section 3.5.

3.1 Principle of the method

FAS3T is a new method (for more details see [Bennaceur 89, Bennaceur, Plateau 89a
and 89b]) for the exact solving of the constraint satisfaction problem (CSP). Its
aim is the proof of the emptiness of a domain defined by a system of diophantine
constraints , or the existence of a solution.

FAS3T is a general method which can be used for any type of systems; but due to
the NP-Completeness of the CSP, it has to be performed for adequate diophantine
systems (particular structures, sizes not too large,...).

Given a diophantine system

S) Ax< b xeD

where A is a mxn matrix and D is a discrete set (Z°, N», {0,1}1),
the scheme of FAS3T consists in generating a finite sequence of integer points
x0, x1, x2,.. xk where k { m

until

13

cither xK satisfies the system of constraints S
or the associated domain F(S)={x| Ax¢ b; x € D} is proved to be empty.

Each integer point xh (he {1,...,k}) is an optimal and feasible solution (or the

current best feasible solution for xk) of an integer programming problem with

this form :
min gh(x)
(PN st. Aj x ¢ b viel'c{ 1,..m)
%X €D

Given a starting point x0, the problems (Ph) h=1,...k-1 satisfy the following

properties
(i) 1M is the subset of constraints of S satisfied by xh-1

(ii) the function gh depends on I”={1,...,m}\lh , the subset of constraints

of S non satisfied by xh-1_ 1t is such that xh satisfies at least one new constraint of
the system S (i.e. It cIh+1 with |th+1 | 2 |1h |+1).
Thus, method FAS3T solves a sequence of k (k ¢ m) n-integer variable optimization

problems whose number of constraints increases from a problem to the following

one, but never exeeds m-1.

Note: when the domain of (PM) is unbounded, if an extreme direction is found
during optimization, the adding of a constraint of the type cx 2 -M (with the

positive integer number M sufficiently large) allows to ensure the finiteness of
v(Phy,

3.2 Basic theoretical results

Given h in {1,..k} , by taking into account the current choice of the function gh:

ghx)= 2" Aj x; xeD,
iel

14

the following results give stopping criteria for the method FAS3T: (proofs in [

Bennaceur 89, Bennaceur, Plateau 89a])
Theorem 1:

If one of the following conditions holds

G v(Ph)> 3 b
ie1h
Gi) v(P= Y bj, and
ieTh
Y %+ optimal solution of (Ph) :3 fe Th such that Aj X+ = b;

then F(S) is empty.

Theorem 2:
If the following condition holds :

Ajxh ¢ bj | vie
then xM € F(S)
If the conditions of theorems 1 and 2 do not hold, then the following results are used:
Corollary 1:

i v(Ph) ¢ 2 b;

ieh

(i 3ie T:A;jxN>bjand I je ™. Ajxh <bj

Let us denote

M={ieT|ax"<n)

15

by corollary 1. (ii), 1¢ Jh ¢ I, and

Theorem 3:

Given h € {1,..k-2 }, and xP (resp. xB+1) the feasible optimal solution of (Ph)
(resp. (Ph+1)), then

FS) =& =3 A xhtl > ¥ apxh
ie Jn je N

Corollary 2:

If
Vi € Jh Ajxb=b;

then F(S)=9
3.3 Algorithm FAS3T:

The algorithm FAS3T for the exact solving of the constraint satisfaction
problem is based on the theoretical results described in section 3.2.

empty « false; {the boolean "empty" is true when the emptiness of F(S) is proved}

end « false; {the boolean "end" is true when an element of S is found}

choose x0 in D;
if X0 € F(S) then end « true

else
Ie{i € {1,.,n} | Ajx ¢ bi} ; Te { 1om J\L

solve

(P) min3 A; x s.t. xeDND'
ieT
where D' is such that v(P) € Z
and FP)n FS) = & v F(5)=0; [note of section 3.1]

Xx* « optimal solution of (P);
while - empty and -~ end do

16

if v(P) > 2 bj then empty ¢« true {theorem 1 (i)}
iel
elseJe——{ieT |A1x~$b1];
if J=T then end « true {theorem 2 }
else if x* is unique and v(P)= > bj
iel
then empty « true {theorem 1 (ii)}

else Tlu J ; TeINd

solve

(P) min 2_ Ajy sc. Ajy<b i€l, yeDnD'
ieT

if an element of F(S) is found by solving (P)

then ende vrai

else A
y* « optimal solution of (P);
if 2 Ajy* ¢ 2. Aj %* then
ied ied
empty &« true { theorem 3 }
else x* « y* .
endif
endif
endif
endif
endif
endwhile
endif
Proposition:

The number of iterations of algorithm FAS3T is bounded by m

Proof:
Direct consequence of corollary 1 which proves that at each iteration |J|21 and

thus |T1| decreases by at least one unity.

‘e

17

In the worst case the algorithm stops with the solving of a problem whose
objective function is reduced to one constraint of S subject to the m-1 other

constraints of S.

3.4 Numerical example:

2X]*3X2 $6 (1)

(S) 2X1‘3X2 <3 (2)
'3)(1')(2 £-5 (3)
X1, x2 € &

(let F(5) denote {x € 1R2 | x satisfies (1), (2) and (3) }

X1

the starting point x0 may be choosen by solving

min X1-X2

(PY st xeD

18

X],Xz € 2
where D'={x R2 | x1 2 - 10; x2 ¢ 10}

whose value and solution are
v(P)=-20 and x;*=10, x,*=10

thus
I={2) and T={13}

note: as the right hand-side of constraints (1) and (2) are non negative, the initial point
x0 might have been the origin. But we have taken the above choice for the sake of

explanation in order to show several iterations.

Iteration 1

min -x1+2x,
Py st 2xy-3x9¢ 3
x € D'
x;xp € 2
where D'={ x R2] -x|+2xz 2 - 10}

X2

1
\1 X

19

the value and solution of (P!) are
v(Ph=-13 and x*=33, xp*=-23

thus
I={ 1,2} and 1=(3}

min -3x1-x,
(P?) st 2x+3x5¢6
2x1-3x5 €3
X1Xg € Z

X2

/

1
\1 X

the value and solution of (P2) are
2, = *=
v(P")=-4 and xp*=1, x9*=1
the first condition of theorem 1 holds, thus F(S) is empty.
4 Numerical experiments

The Fortran77 code of algorithm FAS3T has been implemented on a SUN 3/160

computer with a lot of concrete instances of this type

20

Ax {b;xeZ
with A € ZMXI apd b € ZM

generated by the vectorizer VATIL [Thomasset 87].
4.5.1 Resolution of the current problem

The current problem generated at each iteration of FAS3T is solved by the
classical all integer primal simplex method whose principle consists in
moving from a feasible integer point to an other one until a feasible optimal
solution is reached, by using the famous Gomory 's cut [Nemhauser and
Wolsey 88].

452 FAS3T behaviour with an example

The following concrete example (automatical vectorization of a Fortran loop,
[Thomasset 87]) illustrates the behaviour of algorithm FAS3T:

Do 1 i=1h

il=n
ipl=0

2 ip2=ipl
ipl=ipl+il
il=il/2
i=ipl
do 3 k=ip2+2,ipl,2

i=i+1

3 x(1)=x(k)-v(k)*x(k-1)-v(k+1)*x(k+1)

if(il . gt . 1)go 10 2

1 continue

We consider the internal loop which is cut into pieces of length 256 (length of
the vectorial registers of the actual computer). This normalization phase leads

to the following code

21

do 2 k5=1,1+(ip1-(2+ip2))/2,256
k2=min(256,1+(ip1-(2+ip2))/2-k5)
k3=-1+(ip2+k5)
k4=-24(2*k5+ip2)
do 10 k1=1k2,1
x(k1+k3)=x(2*¥k1+k4)-v(2*k 1+k4)*x(-1+k4+2*k1)
1 -v(1+k4+2*k1)*x(1+k4+2*%k1)
10 continue

2 continue

By denoting

So={ k2 € 256,k2 ¢ 1+(ipl-(2+ip2))/2-k5; k5 € L; k5 § 1+(ip1-(2+ip2))/2-kS
k3 = -1+ip2+k5; k4 = -242kS +ip2; 1 < k5 S k2; 1 ¢ kpl € k2; k1 < kpl}

the study of the data dependence leads to the consideration of three constraint

satisfaction problems associated with the following systems :

S1= { constraints of Sg; k1+k3 = 2kpl+k4; all variables are integer}

S2= { constraints of Sg; k1+k3
53

-14k4+2kp1; all variables are integer}

i
L}

{ constraints of Sg; kl1+k3 1 +k4+2kpl; all variables are integer}
For cach system §1,S2 and S3, two iterations of FAS3T prove the emptiness of the
associated domain; this allows to conclude the possibility of vectorization of the

considered Fortran loop.

4.5.3 Results
The following table details for each instance of system S:

the size (m : number of constraints; n : number of variables)
the number of non zero elements (N)
the answer to the CSP problem (empty if the emptyness of F(S) is
proved; non empty is a solution of S is found)
the computational times in 1/100 th of seconds
by using the exact algorithm FAS3T, and

22

by solving directly but approximately the system S by an
implementation of the simplex method (in this case, the instances with non
decidability are pointed out with a star)

the ratio of these computational times .

m n N | answer CPU times ratio
FAS3T | SIMPLEX
10 | 6 15 | empty 8 34 4.2
5 |5 9 |non empty 6 12 2
12 |8 |26 |non empty| 18 44 2.4
12 |8 |26 |non empty] 10 42 4.2
13 7 20 | non empty] 8 56 7
6 3 10 empty 2 8" 4
6 3 10 |non empty 4 10 * 25
19 |11 |29 | empty 16 88 5.5
23 |19 |52 |non empty|] 34 210 6.2
20 {11 |31 | empty 18 158* 8.7

For these instances the algorithm FAS3T is four times faster than an
implementation of the simplex method directly applied to the initial systems.
In addition it should be noted that this approximate solving leads to six cases of
non decidability. On the other hand, the efficiency of our exact method is
explained by the very small number of iterations, although it uses for each

generic problem an all integer primal simplex method.

23

§ Conclusion

The two main characteristics of the general method FAS3T for the solving of
the CSP are

@) it solves exactly each instance of the CSP: an integer solution of
each system is found or the emptiness of the associated domain is proved. Thus

the decidability is now exact with FAS3T.

(ii) in addition, although the CSP is a NP-complete problem, the
numerical experiments detailed in section 4 show that for the instances
considered, FAS3T is four times faster than an implementation of the simplex
method directly applied to the initial systems.

Other experiments are in progress to study the effective impact of using FAS3T

in the vectorizer VATIL.

Références

Anderson R. , Bledsoe W.W. (1970), "A linear format for resolution with
merging and a new technique for establishing completeness”, J. ACM, pp 525-
534,

Banerjee U. (1976) "Data Dependence in Ordinary Programs”, MS Thesis
University of Illinois at Urbana Champaign DCS Report No UIUCDCS-R-76-837.

Bennaceur H. (1989) , "Le probléme de satisfaction de contraintes Synthése et

méthode exacte de résolution ", Thése de Doctorat d'université Paris-nord.

Bennaceur H. et Plateau G. (1989), " Sur le probléme de satisfaction de
contraintes” , Rapport LIPN 8§9-6, université Paris-Nord.

Bennaceur H. et Plateau G. (1989), “An exact algorithm FAS3T for the
contraints satisfaction problem”, Proceeding of the workshop, "constraints

processing and their applications”, Detroit (USA).

24

Bledsoe W.W. (1974), "The SUP-INF methods in Presburger arithmetic",
Research Report , ATP-18, Math. Dept., U. of Texas , Austin,Texas

Bledsoe W.W. (1975) "A new method for proving certain Presburger formulas"

, 4 th Int. joint conf. on Artificial intelligence, Georgia(U.R.R.S.),15-21.

Gomory R.E. (1960), "All integer programming algorithm”, IBM Research
Center, Yorkiown, Research Report RC 189.

Karmarkar N. (1984) "A new polynomial-time algorithm for linear

programming” , Proc. 16th Annual ACM Symposium on Theory of Computing.

Nemhauser G.L. and Wolsey L.A. (1988)," Integer and combinatorial

optimisation”, Willey-Interscience.

Plateau G. (1979), "Contribution a la résolution des programmes mathématiques

en nombres entiers ", Thése de Doctorat d'état, Université des Sciences et

Techniques de Lille.

Shostack R. (1977)," On the SUP-INF method for proving Presburger formulas
", J. ACM 24 (4) , pp 529-543.

Shostack R. (1981)," Deciding linear inequalities by computing loops residues
", J. ACM 28 (4), pp 769-779.

Thomassct F. (1987), "Utilisation du calcul de Prédicats arithmétiques en

vectorisation automatique”, Rapport INRIA,

Wallace D.R. (1988) " Dependance of Multi-Dimentional Array References”,
Alliant Computer Systems, Inc. Littleton, Mass. 01460.

Imprimé en France
ar
I Institut National de Recherche en Informatique et en Automatique

ISSN 0249 - 6399

