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Abstract

We show the identity between sets of fair computations in recursive transition

graphs, sets of cluster points of finite computations for 11° ultra-metrics
~ . . 3 - W :

refining the Baire metrics, and 11 3° subsets of w®. The results are applied to

' . ) (2}
recursive marked trees, fairness definitions, w-regular languages, and ITy scts.

Equité, distances et degrés

Régumé : o

Nous tdentifione les ensembles d'exécutions équitables dans des gra-
phes de transitions récureifs, les ensembles de pointe d'acoumulation
d'exécutions finies pour des ultra-distances IIzo raffinant la distance
de Baire, et les ensembles Hg de o’. Ces résultats sont appliqués aux
arbres marqués récursifs, aux définitions de l'équité, aux langages

w-réguliers, et aux ensembles Hg.

I. Introduction

The dynamics of a machine or program is best represented as a transition graph,
defined as a set of states equipped with a set of binary transitions between states,
possibly labelled on an alphabet of transition symbols [Kellerl. Runs of machines or
programs arc identificd with countable paths in the graph, called computations.
Most transition graphs cncountered in practice are finite if' they arc models of
machines, ¢.g. finite state automata |Hoperoft and Ullman), or recursive if they are
models of programming caleuli, ¢.g. the A-caleulus with f-reduction |Barendrege)
or the Caleulus of Communicating Systems [Milner]. Recursively  enumerable
transition graphs arc a borderline case. A nice example is MEME, a synchronous

process caleulus with unguarded recursion [Austry= Boudol].
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In the case of deterministic programs, one is primarily interested in terminating_"f

computations, but infinite computations play a major role for dctcrmmlstlc machmes‘ o

v"r

and thercby prompt the consideration of topologies. For instance, a'ndwebers

theorem tells us that languages accepted by deterministic Biichi automata are Gg ( H3)
in the topology induced by the standard ultra-metric distance on w-words, because
Gg-scts coincide with Eilenberg limits of sets of finite words [Landweber] [Eilenberg].
With such automata, the set of successful computations generally dnffers from the
set of infinite computations of which it is a subset. The set of infinite computations
Jis the derived set of the set of finite computations in thc natural metric topology
on computations, derived from Baire metric, and thus it 'is 1. The subset of the
successful computations is specified by a I3 predicate on infinite computations,
and it is yet the derived set of the set of finite computations in another metric
topology which refines the natural topology. The above situation is essentially
reproduced for non deterministic machines, which accept w-languages located- higher
in Borel's hierarchy (w-regular languages are in the boolean closure of Gg').

As regafds programming calculi, a metric semantic‘s for non determinis\tic recursive
program schemes, based on the definition of a Baire like metric on computation trees,
has been constructed in [Arnold-Nivat], Similarly, a metric semantics for concorrent
programs, based on the definition of a Baire like metric on streams, has been
constructed in [de Bakker—Meyer] That model is representatnve of unf.urness in
the followmg sense: the race between concurrent agents which compete for engaging
themselves in an interleaved computation is totally free. The role of fairness
is to pLu.c restrictions on that racc. cxprcssed by prcdlcatcs on computatlons.

ail

Thc most popular forms of fairness are weak fairness and strong f'nrncss [Franceczl.
In a weakly (resp. strongly) fw computatton, an agent which is almost .llways
(resp. infinitely often) enabled to act, acts mﬁmte]y often. If the set of agents is
unbounded, the correspondmg predicate on infinite computations is 119 for weak
fairness and ll3 for strong fairness. The set of fur computatlons is more complex

than the set of infinite computations, which is NS for recursive transition graphs

as the derived 'set of the set of finite computations in the natural topology.

&
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Morc essentially, for both weak or strong fairness, the set of fair computations is
the derived set of the set of finite computations in a metric topology which refines
the natural topology. This central property, shown first for weak fairness in the
context of a special programming language [Degano-Montanaril, was established
later on for strong fairness in CCS [Costal. In the light of the papers referred to,
any definition of fairness aims at restricting the convergence of sequences of finite
computations which approximate infinite computations : unfair computations, which
disappear from the derived set of the set of finite computations, are then discarded.
The parallel with sequential machines is almost perfect, and the question arises

whether one can find a counterpart to Landweber's theorem.

In this paper, we will show that any I5 subset of »"” may be seen as the set
of fair computations in a (fixed) recursive transition graph, for a (generic) concept
of fairness based on a (varying) recursive relation which decides whether a given
agent is enabled at a given step in a given computation. Furthermore, we will
identify the I]? subsets of w with the family of the derived sets of " for mny
metrics on »™ refining the natural metric. As a result, the sets of fair computations
in recursive transition graphs and the derived sets of @™ for 119 metrics are the same.
In addition, the correspondence between logical and metrical definitions of fairness
is cffective in both directions: definitions of TS metrics (on ©*®) are translated
uniformly to definitions of fairness, and vice versa. That effective correspondence
fulfills the research program which Degano and Montanari launched into.
By relativizing the correspondence between HF; subsets of ©” and N9 metrics on w®,
we morcover obtain a metric characterization of the class Fg (Hg) in the classical

Borel hierarchy. This is the expected counterpart to Landweber’s theorem.

The remaining sections of the paper are organized as follows. Notations and
definitions are introduced in section 11. The relationships between sets of fair
computations and H? sets of functions are studied in section 111. The applications

are considered in section 1v.
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II. Notations and definitions

In the sequel, © is the set of natural numbers and " is the set of finite
. , s * o . .
scquences of natural numbers. We recall that o = kL—Jo mk is mapped recursively
. * .
onto o by a one-one coding 1 ((x,, ..., X)) = <X, ..., X, k=1> + 1, monotonous in
. . *®
cach one of the x; for sequences of fixed length k>0, where 1" (®) = o [Rogers,p.7il.

This coding gives rise to an isomorphism between the disjoint sums 0" =w v o

and Q=0 u 0" in the category of sets. For each k2o we can therefore define
a function [kl: Q - o truncating objects at depth k according to the definitions:

flol = o and fikl= 1 ({f(0),....flk-1))) for few” and k>o,

xlol =0 and olkl=o0 for xew and k>o,

*
x[k]=T*((xl,...,xm;n(k‘]))) for x=1 ({x,,...,x1)) and k,| >o.
When we deal with arithmetical functions on 1, and more generally with arithmetical

1

relations on ()kx o', we define the arithmetical class of a relation R as the least
upper bound (with respect to Kleene's hierarchy over £, 113 and Ag classes) of the
class of R M (X, x...xX;x...xXy) x wl) for variables X; ranging over {o,0.
We refer the reader to [Rogers] for a thorough presentation of the arithmetical
hierarchy. Thus alk] may be considered as a recursive function from Q xw to w.

By way of definition, « af is the least upper bound of the set (klalk]=FLki}.

The natural metric on Q is the ultra-metric § defined as 8(a,f)=0 if a=,
1/1+(aaf) otherwisc. Because the relation §(o,f)<1/n is recursive in («,B,n),
we call § a recursive metric. Similarly, a metric d on Q is said to be T (resp. £3)
if the relation dlo,£) <1/n is N (resp. £3) in («,B,n). We arc mainly interested in
the derived scts of @ and its recursive (or recursively enumerable) subsets for T3
metrics d on Q refining & (d 2§). We recall from [Dugundjil that in a metric space
(X, d), the derived ser A’ (or Ad' ) of A is the set of the x ¢ X such that any open ball

with center x and radius 1/n contains at least one clement a e A distinct from x.

]
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i oo We will show-that any T4 subset of mQecomcxdes_,thh,..mdi,forl_ some I17

«imetric dvon Q, representing a concept of effective ,fa,irness.‘D,eﬁ,nit_ions)of«.-fgli.‘_mcss'
i vmake:sense with. respeet to computations in. transition .gra_phs.fi»A, transition graph
i 1ids a‘quadruple T=(8,T,6,,6,) where S,T are sets of numbers (representing states
i and: transitions) and. Go,0; are mappings from T to S (indicating .the, source, and

< target of transitions). A transition graph is recursive (resp. recursively 'enur{)e’rab]c)
" if all its components are recursive (resp. I9). For instance, the transition graph

1 =({o},m,0,0) is recursive. A pointed transition graph Tg is a transition graph T

with an initial state s. T T I T

“it .« A computation in a pointed transition graph Ts_ is a finite or.denumerable

'sequence of transitions (t;) satisfying o, (t;) = s, if i=0 and 0,(t;) = 0, (t;_ ) if.i>0,
» “:for-all i in the domain of the sequence. A finite computation t, ...ty _, with length k
+js-represented in (O by the number ™ tg, ... tk—y ), while an infinite compurtation
i (ty) e is represented by the function f(i)=t;. Let Fin(Ts) resp. Inf(7T5). denote
: - the 'set:of the finite resp. infinite computations from s in T, then, of course

Inf(Ts) = (Fin( Ts))g in the topology induced by the natural metric & on Q.

A concept of effective fairness in a transition graph Ty is totally determined by
' an enabling predicate defined as a recursive relation E ¢ (n?,.,i-.lntuit:iv‘clx,, E(fi(k],i)
" fheans thiat agent i is enabled at the kth step in computation. f. An..E-fair
v coniputation is then an infinite computation in which. no agent is' enabled ;infinitely
b often.: In o formulas, [f is E-fair] e [Vi. -9 k. E(fIk], i), ;or, equivalently,
- ifis'E-fair] e [Vi. v k..~ E(f(k],1)], where 3 and-V are the dual infinite quantifiers.

Let E-fair(Tg) denote the sct of E-fair computations in transition graph Ty

;i .1 L Fer recursive (resp. recursively enumerable) transition graphs Ty, Inf(Ty) is ng

(resp. M3), and E-fair(Ts) is 1'1(33 . Similar observations pertain-to the. usual
.+ ‘définitions of weak fairness (I13), strong and extreme fairness (H?), see for instance
1. [Harel]l. We will show that all those variant .decfinitions of fairness may :in fact

be reduced to E-fairness without altering the transition graphs.



III. A connection between II‘,> sets of functions, II? metrics on 0, and E=fairness.

On support of the definitions and notations introduced in thé last section,
* we can evolve a precise statement of the connection announced in the introduction.
,

Theorem I For Fc % the following assértions 1,2 ,3 and 4 are equiw’i/eﬁt:
(1) F is l'I? (as a set of functions), ‘

“(2) " F is the derived set of w for some NS ultra-metric on Q, indiiced

from a recursive distance on o and refining the natural distince’s,

(3) F is the derived set of a 5 subset of w for some £ metric on Q,

(4) F equals E-fair(0) for some (recursive) enabling predicate E.

The above characterization for 11 sets of functions is the main result of the' paper.
x'y7 . e . . . g r O . . . . . )
We state hereafter a variant characterization for I35 sets of infinite computations.
" Theorem 2 For any recursively enumerable (pointed ) transition graph T
»
the following assertions 5,6 and 7 are equivalent:
(s] F is a “2 subset of Inf(Ty),

(6) F is the derived set of Fin(Tg) for some N ultra- metric refining 8,

(7] F equals E-fair(Tg) for some (recursive) enabling predicate E.

In view of that adapted theorem, all the classical definitions of fairness may be
“reduced to the universal form of E-fairness. Fundamental for the proof of both
“theorems is the next lemma, which points out an analogous reduction for ‘Tlg
definitions of sets of functions. This lemma extends a similar characterization’ for
Hg’ sets of numbers, established by Kreisel, Shoenfield and Wang,.see [Rogers).
Lemma'l (normal form for 1l 30 sets of functions )

' Any l'l? subset F of o may be represented in the normal form o

{r" ‘ Vi. vk. -E (frkl, i)} where E is a recursive binary relation on numbers,

defined uniformly from a I]c; - index of F.
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o proof  Assume F={fIVi. Jj. Vk. R(f,i,j,k)} for some recursive relation R.
For all i and j, the set ﬁl.i defined as (f| 3k. - R(f,1,], k)1 is clearly -equivalent to
«(f 1.3k, ~S(fLk],i,j)t for some recursive relation S defined uniformly from ' R.
.. For,all /i, the set:F; defined as {f13j. vk. S(fIk],i,i)t is in turnequal to
{f13j. ¥k2j. - E(fk],i)} for some recursive relation E defined uniformly from S.
.A decision procedure defining E(x,i) is the following:
for k in o:wy loop
if Yh<k. S(x[hl,i,j)
then (if xIk1=x then return ~E(x,i) else j+«j)
else ( if x{kl=x then return E(x,i) clse j«j+1).
. In fact, fe F; if and only if the following process outputs eventually always o,
which was brought to our attention by A. Louveau:
for k in orm loop
if Yh<k, S(fLh),i,j)
then (outpue(o); j«j)
else (ouepue (1) j «j+1).

Altogether, F= (f1Vi. Vk. - E(fk], i)}, and the result is obtained . I

Let us .return to the main theorem. The above lemma may be read as (1) =(4).
If we can prove (4)=(2), the theorem will follow from (3)=(1) and (2)=(3), which

are immediate. The remaining implication (4)=s(2) is established below. 7 <.

Assume Fa(fI Vi, 3j. Yk 2j. -E(flk],i)}. For «,f € () and j¢ o, defines. -~ .~
(8) donecla,j) = max{i<jl Vi'€i. vk2j. ~Elalkl i)},
(where max © equals o by the usual convention)
(9) dlo,p) = o if a=f, and otherwise

max{1/1+ doncle, anf)), 171+ donel(f,aaf)) ).

Intuitively, done(a,j) is the number of the last agent whose all predecessors

are done at stage j in computation «, for they are never enabled beyond that stage. -



$
Now done(a, j) is monotonously increasing in j, thus the following equivalence holds:

(to) (feF) e 11m donc(f,j) = w

- 1)

On that basis, and assuming that d is a metric refining §, we now prove:

(1) F= ("’d‘ .

Assume o € 6 " then by definition: Vj. 3xje w. o<d(a,x;) <1/j.
As d 28 and (x;); is a non stationary scquence of numbers, we know that o e o,

then llm d(a,xj)=0 = lim donela,anxj)=w = lim (aax;)=w, and aeF by (10).

) o
Assume fe F, then by (lo):i]i.rr‘lddonc(f,i)ao
fafljl=j = d(f,f[j1) = max(1/1+donelf,j), 1 /1+done(f[jl,j));
(iéi = flj] = (f'liJ)[i'J) = donel(fljl,j) = max{i €jIVi'<i. Vj' 2j. ~E((fLiDLi1,1'))
=max{i <jIVi'€i.~E(fljl,i")} > max{i<jlVi'<i.Vj' >j.-E(f [j'1,i')} =done(f,j);
thus lim d{f,f[j]) =0 entails fe o.)d' . O

In order to complete the proof of (4) = (2) and thereby establish the main theorem,
we still have to show that d is a 117 ultra-metric on Q, induced from a recursive
distance on » and refining the natural metric 8. Relation d(«,B) > 8(«,B) is clear °

from the inequality done(o, aaf) < aaf. The following lemmas 2,3,4 provide the rest.

Lemma 2 For o,B,veQ: dlo,p) € max{d(a,y),d(E,v)}.

proof  The triangular incquality to be shown may be equivalently restated as
(1z) min{done(o, anf), done(f, anf)t 2

min{ done(a, aay), done(y, xay), done(f, Eay), donel v, yaf)}
We proceed by case analysis.
case 1. aay = fay S aaf:

anfi 2 aay = doncla,anf) > donela, aay),

oanf > Eay = done(f,anf) > done(B, Eay).
€ASe 2. Al = any < PaY:

T anf = aay = donela,anp) > donela, aay), ST »

andwe ‘claim that:

done(f, aaf) > min{ done(f, Bay), donely,xay) ). n



.

Il

Suppesethe contriary,-and let us: search for a contradiction. 'Deﬁneg::yu?-'.v
I=1+donelE,anf),

then one may assert:

(r3) 3k > oaf. E(B[k], D) et SRR
because -1 = done(B,anp) <1,

(14) Yk Eav. ~EELK], 1)
because 1< donelf,fay),

(15) Vk > any. ~E(y[ki, 1)
because 1< donel(y,oay).

In .view - of . relations oy = aaf < Pay and vIEav)=FIBav]l, and by (15):
~E(GLk], D for any k satisfying oaf < k < fay.

Hence a contradiction is reached between (13) and (14).

case 3. anl = Bay < any:

exchange o and £, and proceed as in case 2. U

. fo) . . .
Lemma 3 d is a 1| metric on Q, recursive on .

“proof . We will give equivalent 1$ formulae for the three types of relations
proof. 8 I yp

Cdif,gl<i/n, df,x)<i/n, and d(x,y)<1/n ( where f,gem(‘) and x,y,nen).

By definition of d: dlo,fl<i/n =

(16) oa=f v (done(a,om,@)zn A done((s‘,om;‘»;n).

By definition of done: a=§ v done(o,anf)2n <

(7) Vi(laljl=plil & alj+1]#Blj+1) - Vi<n. Yksj. ~Elalk],i)).

Thus d(ea,f)<i/n is a TS relation.

- iAs a: matter of fact, the relations dif,g)<i/n, d{f,x)<1/n, and dix,y)<i/n

are. respectively 115, 119, and recupsive (since x=x[k] = x[kl=x[k+11). T[]

Lemma 4 Let o,f € QO be such that a#f then:
dlo,fl<i/n e 3p . Ymap . dlalm],flm]) <1/n.
proof  The above, equivalence is trivially satisfied for aap <n.

Suppose now aaf =1 >n. By definition of d-and done:



Cd(e, B 2r/n e (done(oz,a/\ﬁ) <n v done(B,anp) <n)
= Jisn. Jk>L (Elalkl i) vEEIk]D)
= dp. Vmzp. Jign. Jkxl.
(E(alml,i) vE(EImLi)) v (ksm 2 (Etalk),i) v E(@LKD,i)))
= 3p. Ym>p. Jicn. Fkel (E(aimilkl,i) v E(BImITk],i) )
= 3p. Vm>p. Jign. Fkemin(l,m). (El«lmlik],i) v E(EIm]Ik],i))

= Jp. Vmzp. dlaiml,EIml)>1/n Ll

The proof for theorem T is complete. We now sketch a proof for theorem 2.
Let Ty be a recursively enumerable (pointed) transition graph. Since Inf(T) is
the derived set of Fin(Ty) for the natural metric 8, (5) =(6) =(7) by straightforward

adaptation of (1) =(2) =(3).  Finally, (7)'=(5) is immediate.

As a concluding remark, let us underline the uniform construction of d from F,

and conversely. ‘Applications are discussed in the final section.

. i
. .

IV. Applications

. . . g (1) . .
In the above section ;| we have identified the ﬂ%’ subsets of - with the derived

* . . . . le) . * ()
sctsof @ (=™ ) in metric topologies .induced by MY distances on Q (=w*u w®).
We will now examine applications and extensions. The main fields of application gone
through are recursive marked trees, fairness expressions, and w-regular languages.

. . . . . - . o] . "
The climax is a metric characterization of the family Fgs (II3) in the classical

Borel hierarchy, established in two different ways.
Recursive marked trees
In [Harel] was defined a language for stating properties of infinite paths in .

. N * P .
recursive marked trees. An w-trec T is a subset of o closed under left factors,

. P
represented by a corresponding set of numbers f={t*(( x,,...,x ) Ix,...x} € T1. o



el
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The setofiinfinite paths.in T, represented by the set of functions {f e o?1vk.flkle iy
is 115 if t+is a recursive tree. A recursive marked tree (£,M) is a .recursive tree b
whosé set: of 7leaves. is recursive and whose nodes are labelled by (possibly infinite):

'

sets of numbers, fixed by a ‘recursive predicate M. ¢ tx .

Infinitc paths .in a. recursive trec may. be seen as infinite computations in
a ‘recursive transition. graph with arecursive set of sink states. Marks may be
thoughtof as -identifiers for .computing agents and. in the sequel, we shall interpret
M(frkl,a) as the affirmation that agent a is disabled at the kth-step in computation f.;

The complement ' 6f a marking predicate M is. thus.an enabling predicate.

Harel's language L is-the union of an alternated hierarchy of languages L;, L
constructed -as follows. The basic language L, provides four species of atomic.formulas
3a,.Va, 3%a; ¥=a where. a ranges over the  sct of marks (aew). For izo, L'j is
the- closure “of L under - finite' conjunction and disjunction and :under. recursive
w=conjunctiony and: L., "ist the closure of L'; ~under recursive w-disjunction.,
Formulas 'in 'L -are interpreted over infinite pathes in recursive ‘marked trees.
An‘infinitc path f in ({,M) satisfies the formula 3a, respectively 3%a, if and only. if
MifLkJ; a) for.some k, respectively M(fTk1,a) for infinitely many k. Formulas Ya, ¥®u

are theodualsofi 3a;3%a and the logical conncctives have the standard interpretation.

In"a recursive marked tree (£, M), the atomic formulas Va, 3a,VZa, 3% are
interpretel respectively by 119, =9, £9, 113 sets of infinite paths ;- and each -formula
¢ L'y is therefore-interpreted by .a H? set of. infinite paths.. Conversely, any Hg
subset of 0 'may be represented as (f Vi.'vk.’m(f[k],i)} for some recursive relation
M;-and thus coincides with the interpretation of the formula /i\v°°i, in theirecursive
markéd tree - (o,M). Altogether, for n>o, a .subset of " is: T9uy, resp. 11504,
if and.only if it coincides with the interpretation of some formula.p.e L, resp. 9 e L'y
in some recursive marked tree (f,M). Furthermore, the .tree -and-.the marking

predicate arc defined uniformly from the =% or T index of the set. - vy



Logical expressions of fairness

In view of the above, there arc at least three equivalent ways of defining fairncss
in recursively enumerable transition graphs:
i) state an arbitrary II? predicate acting as a filter on infinite computations,
ii) state a rccursive distance d on finite computations, refining the natural
distance 8, and dcfine fair computations as natural limits of d-Cauchy
sequences of finite computations,
iii) statc a recursive marking / cnabling predicate M for finite computations,

and rest on the general normal form F=ifivi.vk. mdfrki, i for Hg scts.

Furthermore, there is a uniform translation between any two types of definitions
of fairness, and each type of definitions may be equipped with effective operators
rcalizing the conjunction, disjunction, or w-conjunction of fairness conditions.
For instance, the union of the derived sets of o for two different 119 distances
dy and d, on Q is again the derived set of o for some 11§ distance d, vd, on Q.
That specific property of 119 distances is not trivial, and we have not heard about

similar cases in topology.
w-regular languages

A well known theorem duc to Mac Naughton states that the family of w-regular
languages over A is the boolean closure of the family of deterministic w-regular
Iangiungcs over A [Mac Naughton]. Since any deterministic w-regular language is
113, any w-regular language is ll? . Thus, any w-regular language over A is the
derived set of A* for some 119 metric distance on A%®= A%y A”. This fact is not
surprising, since recognition criteria used in Biichi/Miiller automata are essentially

fairness conditions.



.

A metric characterization of Fog (1173) S

" There exists a tight relationship between the classical Borel hierarchy of sets of

“funetions and the effective Kleene hierarchy, see for instance [Rogers, p.356} and

[Moschovakis, p.i6o]. Namely, if " is a (lightface) pointclass in the effective hierarchy

and T is the corresponding (boldface) pointclass in the classical hierarchy, then:

r= u I'[e],

g e m™

where a set of functions is T'le] iff it is I relative to the oracle e. More precisely,
= et-forms and [1J[¢] - forms are defined in the same way as Tj-forms and

115~ forms, except that rccursive relations arc replaced by relations recursive in e.

Thus, by relativizing thcorem 1 to an arbitrary oracle ¢, we get that a set of

functions is 1'1(;J if and only if it is the derived set of & for some IIT ultra-metric

ron Q, refining the natural metric 8. A more accurate characterization of H,,?.scts

. may ‘be given .in terms of inductive distances on Q, defined as follows: a distance

d on Q is inductive if it takes valucs in {otuti/n | newt, is weakly continuous in

the sense that d(a,@):liﬁn d(alkl,£lk]), and has only §-closed d-balls.

() o . . .
Theorem 3 For Fguw' the following assertions 1,2 and 3 arc equivalent:
(1 F is a H? set (or F is Fgs),
(2) F is the derived set of w for some inductive distance on Q,

(3) - F is the derived set of w for some inductive ultra-metric refining §.

.. . proof  First of all, let us recall that the class of §-closed scts is. just ne,

. :see.[Rogers, p.342] or [Moschovakis, p.z2o]. The proof is then straightforward.

-Suppose (1), then F is l"lc; le] for some ee w” A remake of the proof for
theorem 1 relative to ¢ shows that F is the derived set of o for some 119]g]
distance d on. (), taking values (1/n) and furthermore weakly continuous,
Now, for each «, each d-ball {gid{a,E)<1/nt is N1yl for some +

determined from e and o, hence it is §-closed. Thus (1) =(z2).



Suppose (2). There suffices to show that "d(a;g) s £9 ir:i(""(fd',"'[j,n),
which entails (1). By definition of an inductive distance, d(«,B) <i/n
cocn Jie Vs dladjl, B1)H <1/ n. For " x éw, cach d-ball {[:Sl'd'(x,ﬁ)'{:/ n
is closed and thus TS, .1 for 'Sorme sr,‘("n" in w”. Heénce 'd(x)y) <i/n

e s el forsome ‘global oracle e gathering the €x.n» and dio,fr<i/n

13

is 'S9[el and thus % in («,,n). Thus (2) ().

‘F~ir'ml]y', (2) 5(3) by the relativized version of theorem 1. [
DTS ST A o i : H o ! SRR
An cleoant proof for (1) =(3) by purcly topolog:cal treatment was dcvmed by

A. Arm)ld yielding an mdepcndent proof of the theorcm, as (3) =>(l) is 1mmcdmtc

We skctch here thc construction of the distance. Let F bc a II -—subsct of n®, thus
= <flV|. :—]1 vk. R(f i J,k)} for some relatlon R recursive in & for some oracle €.

Dcf‘nc F f|31 ;Vk R(f:,;,k)} and F’., Fij v (xemlﬂf x:feF,,)

where xu:f lf X is a prcﬁx oF f, i.e. x=0 or X=1 ((f(o),...,f(k)) ) for some k>o.
D

For cagh 1em the F Form an mcrcaamg scqucncc of 8 closed subscts of Q.

Sow for ;mv cxe() dcf'nc ga( )—mf{jlmeFl ,}, whcre 1nF((D)-— and oo_gm

Lo

then 8o li)= hm(ga,k]( ), and (aeF) if and only if (aem’ and g;em"’)

The distance d(«,£) is finally defined as 1/1+A(«, £) letting A(oc %) =co and for cx:;ep.
Ao, B)=maxin ganf 1g,ln] =g8plnl = gonplnle o™t where om( _Ot[ou\{’]—plcx/\(l

Then d is indeed an inductive ultra-metric and F is the derived set of o for that metric.
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