N

N
N

HAL

open science

Linear complexity of transformed sequences
H. Fell

» To cite this version:

‘ H. Fell. Linear complexity of transformed sequences. RR~-1168, INRIA. 1990. inria-00075390

HAL Id: inria-00075390
https://inria.hal.science/inria-00075390
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075390
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 1168

Programme 1
Programmation, Calcul Symbolique
et Intelligence Artificielle

LINEAR COMPLEXITY OF
TRANSFORMED SEQUENCES

e e I T

Harriet J. FELL

AN TN R R N P NN S AT A

Février 1990

DU

S P AN 2 % e, e Y AR T2

=

%
B
3

Linear Complexity of Transformed
Sequences

Complexité linéaire de suites
/ transformées

Harriet J. Felll

Juin 1989

1 This work was completed with support from the College of Computer Science at Northeastern
University, Boston, Massachusetts, USA and from The Institut National de Recherche en
Informatique et en Automatique, Rocquencourt, France.

Abstract

This paper deals with the effect of bit change errors on the linear complexity
of finite sequences. Though a change in a single bit can cause a large change
in linear complexity, it is shown that on the average the change will be small
even when many bits, e.g. 10%, are changed. General bijections and k-fold
mappings on the set of sequences of length n are studied and tight bounds
are found on the average difference in linear complexity between a sequence
and its image. It is also shown that any mapping, on sequences of length n
that take most sequences to images of low linear complexity must take many
sequences to images that are far away from them in Hamming distance.

Cet article traite des effets des erreurs de changement de bit sur la
complexité linéaire des suites finies. Malgré le fait qu’un changement d'un
seul bit peut causer un grand changement dans la complexité linéaire, il est
démontré qu’en moyenne le changement sera petit, méme quand plusieurs
bits, par exemple 10%, sont changés. Les bijections générales et les fonc-
tions qui n’envoient pas plus de k éléments sur le méme point image sont
étudiées et des bornes précises sont trouvées pour la moyenne de la valeur
absolue de la différences entre la complexité linéaire d’une suite et son
image. Il est démontré aussi qu'une fonction quelconque sur les suites de
longueur n telle que la plupart de ses valeurss ont une complexité linéaire
assez petite doit envoyer beaucoup de suites sur des images qui sont éloignées
d’elles en distance de Hamming.

1 Introduction

The linear complexity of a finite sequence can change drastically if a single
bit is changed or deleted. For example, the sequence 0,0,...,0,1 of length
n has maximal linear complexity, n, while deleting the last bit or changing
it to a 0 results in a sequence of linear complexity 0. A shift register that
generates a given sequence can be found in time linear in the linear com-
plexity of the sequence [1], so sequences of low linear complexity are not
cryptographically secure. At the Workshop on Siream Ciphers, at Karl-
sruhe, Germany, January 9-12,- 1989, W. Diffie suggested that for many
finite sequences, it might be possible to find small linear feedback shift reg-
isters (LFSRs) that generate nearby sequences. That is, if we can tolerate
some errors, we might find it easy to generate a sequence close enough to
a given sequence for cryptanalytic purposes.

In this paper, we first look directly at the effect of bit change errors
on the linear complexity of sequences. We then look, more generally at
functions that take sequences of length n into sequences of length n and
study the average difference in the linear complexity of a sequence and its
image. Finally, we apply these results to analyze the average change in
linear complexity when errors, caused by changed bits, are introduced into
a sequence.

2 Notation

We restrict our attention to sequences over the field with two elements, Z.
Let Sy := {0,1}" be the set of all strings of zeros and ones of length n. If

s€Sy then s = s, 82,...,5, where each s; is either 0 or 1.

An infinite sequence s = {s;}iz1..0 is s2id to be generated by a linear
feedback shift register of length k if there exist constants ao, ..., a1 such
that :

Sipk = Qpo1Sizko1 + ...+ G18i41 + aos; fori 21

For seSp we define the linear complezity, A(s), to be the length of the
smallest linear feedback shift register that generates a sequence whose first
n terms are 8y, §2,...,Sy. If k£ < n, we will use Ax(s) to denote the linear
complexity of the sequence, sy,52,..., k.

If 5,teSy, we define A(s,t) = |A(s)—A(t)jandfor 1 <k <n Ak(s t) =
|Ak(s) = Ax(B)]-

3 Early Differences

Intuition says that changes near the start of a sequence should not have -
too much effect on the linear complexity of the sequence. This is true, in
a sense, even if bits are lost or added, and the result is summarized by the
following theorem.

Theorem 3.1 Let seSy and teSm be such that Sp—; =tm_i fort =1...k <
n, m. Then

— | An(s) = An(t) | £ max(n —k,m —k).

Proof:

Intuitively, an LFSR, of length £ that generates s can have its register
enlarged to house the first m — k discrepant bits of ¢. After these bits are
pushed out, the register will continue to work as it did before, tapping only
the high £ bits of the register to produce the sequence, t. Formally, assume
that A(s) = £ and ao, ..., a,-1€Z2 are such that

Sitt = Qt1Sipi-1+ ...+ @1Siq +aosi fori1 2 1,
let bp_gei=a; fori=0,...,landb;=0 for0<j<m—k. Then
tivmekat = Ompat-1tismeketa1 + ...+ bitiv1 +boti, fore 2 0
so An(t) < An(s)+m—k.
a

If two LFSRs have generated the same bits for a while, although not
initially, we might expect them to continue producing identical bits. The
following lemma formalizes this statment and will be of use in the next
section.

Lemma 3.1 Let seSy, and teSnyr be such that s; = try; fori=3,...,n. If
Anca(8) + Apsra(t) Sn— 3 then either

An(s) = Apoa(s) and Angr(t) = Angraa(t)

2

or

An(S) =n . - An—l(s) and A.n+.,-(t) =n-+r — An+r_1(t).

Proof: . .
Suppose A,_1(s) = £ and Antro1(t) = m. Then there exist ao,...,ar_;
and b, ...bn_1 such that

3i+l=zaj3«'+l—j n—-1-£>:>1

m=1
tism = 3 bjtigm_; nAr—l—-m>i>1.
7=0 '
We examine the next bits produced by these linear recurrences (or LFSRs)
ana sce that they must be the same. Let

{1 m—
i = Zajsn_j and ‘tn+,. = Z bjtn+r-j~
=1 i=1

Now, using the fact that s and t have had n — j identical bits, we have

-1

£-1
Sp = Zajsn_j = Zajtn_j
=1 . j=1

-1 m-—1
= ZGJ Zbktn..;, = ZbLZaJ n—j—k
=1 k=1 k=

m-—1

bitnor =

P

=1

Hence, by the Berlekamp-Massey Synthesis Algorithm, (1], addition of one
more identical bit either leaves the linear complexity of both sequences the
same or changes them both as indicated in the statement of the lemma.

a

o

4 Changing Bits

The drastic increase in linear complexity caused by changing the last bit of
a sequence of n zeros brings up the question of the general effect of a single
bit change on the linear complexity of a finite sequence.

Fix an integer k ,1 < k < n and for each seSp be such that sy =0, -

let ¢Sy be defined by tx =1 and t; = s;, for i = 1...n, ¢ # k. Define

> 1A —A@®)]

3¢Sn,5x=0

3 (n) :=

2n—1

This is the average change in linear complexity caused by a change in the
E** bit.

Although a change in the n** bit can cause a severe change in linear
complexity, on the average, the effect is surprisingly small.

Theorem 4.1 The average change in the linear complezity of a n-bit string
caused by a change in the last bit is given by

§+§3,—;'.:—_ir — 2 1 oeven

n 9
A(n)=
2o 2 ot
Proof: :
The distribution of A(s) [3] is given by
1 k=0
card{s: A(s) =k} ={ 2-4*1 k<n/2 . (1)
gr=k k>n/2
Suppose s,teSy are such that s; = #;,7 = 1,...,n — 1 while s, = 0 and

t, = 1. Then A(s,t) =| A(s) — A(¢) | is given by

_J0 Anca(s) = Ana(t) > 2
A(33t) - {n—k A”'—l(s):An—l(t)<l21- .

The average difference in linear complexity when only the n'® bit is changed
1s given by

A(n

M
=[n-14 d(n— 2k)(2»4""1)]

k=1

where M = -2- — 1 when n is even a.nd M = 251 when n is odd. Observing
(once and for all) that

§:4k-1k — (3M — ;)4M +1 . . (2)

k=1

we have,

K = g [r + 2 (£150) - (@4z02721)

Finally, substituting the appropriate values for M gives the desired re-
sults.

O

It would be interesting to know the average change in linear complexity,

k . ,
A (n) for each k between 0 and n. Though we have not derived closed
formulas for each of these averages, empirical data suggests the following
conjectures [see tables].

Conjecture 1 A change in the first bit of an n-bit sequence causes an
everage change in linear complezity given by

a: A(2n) =A (2n—1) n > 1

Partlal Proof:
" a: Suppose that s,teSy differ only in the first place. Then by
Theorem 3.1, Agn_1(s,t) < 1. If Asn_i(s) and Az._1(2) are both greater

5

than or equal to 2 = n then Ag(s) = Azn_1(s) and Ag(t) = Azni(t)
and so Ag,s,t = Agn_1(s,t). If, on the other hand, Azn_1(s) and Azq_;(%)
are both less than n, then Azn_1(s)+ Az2n-1(t) < 2n — 2 and by Lemma
3.1, Azn(s,t) = Dgn-1(s,t). There is only one other possibility, that is,
Azn-1(s) =n — 1 and Agn_1(t) = n or vice versa. But then we must have,
Asn(t) = Agn_1(t) =n and

Azn(8) = Azn1(8) = n—1or Agn(s) =2n = Agna(s) =n+1

which, in either case, implies A, (s,t) = Azn_1(s,1).
¢: From (a) and (b) we have

1 1 - 1 1
. A(2n) =A@2n-1) = A(Zn—2)-—22n_2.
By induction, we see
1 1 =l 2 o1
— _ - = Z .
A(2n) =A(2) ;4 3+3.4n—1

Conjecture 2 Let C be o positive constant. Then

lim Azsg(n) = 1.

n— Qo 2

The limit is approached from above.

Though these remain conjectures, an upper bound (4/3 when n is even

k
and 5/3 when n is odd) on the values of A (n), k = 1...n is obtained in
the following section.

5 Bijections

Changing the k*» bit (or m bits in fixed positions) induces a bijection on
Sn. We obtain a fairly low upper bound on the change in linear complexity
caused by such bit flips by looking at the change caused by an arbitrary
bijection.

position of average in
difference difference - decimal
1 683/1024 0.6669921
2 941/1024 0.9189453
3 1027/1024 1.0029297
4 1067/1024 1.0419922
5 1107/1024 1.0810547
6 1111/1024 1.0849609
7 1067/1024 1.0410922
8 1037/1024 1.0126953
9 971/1024 0.9482421
- 10 885/1024 0.8642578
11 1141/1024 1.1142578
overall average 11037/11264 0.9798473

Table 1: Average Difference in Linear Complexity for strings that differ in
only one bit: String Length = 11

-1

position of average in
difference difference decimal
1 10923/16384 0.666687
2 15019/16384 0.916687
3 8193/8192 1.0001221
4 8405/8192 1.026001
5 8475/8192 1.0345459
6 16955/16384 1.0348511
7 16993/16384 1.0371704
8 17115/16384 1.0446167
9 17097/16384 1.0435181
10 17019/16384 1.0387573
11 2115/2048 1.0327148
12 16703/16384 1.0194702
13 8137/8192 0.9932861
14 15249/16334 0.9307251
15 7283/8192 0.889038
16 7283/8192 0.889038
overall average 255545/262144 0.9748268

Table 2: Average Difference in Linear Complexity for strings that differ in
only one bit: String Length = 16

Theorem 5.1 Letgb : S, — Sy be a bijection. Then the average value,
A, of | A(s) — Ale(s)) | is bounded above by

4 1
53— 37y T even

-:5;_ - 3(7,1,_1')' n odd.
For each n, there ezists a bijection that attains this bound.

Proof:
The average of the absolute value of the differences in hnear complexity
between s and ¢(s) is given by

pa——

Do = o Z | A(s) = Alp(s)) |

scSn

< 5= 2 (1A= 31+ 1A -3 1)

3¢Sn

> 1 As) —-I

3¢Sn

2n—

since ¢ is a bijection. So we evaluate the sum

= 2 IAGs)——I

2eSn

From the distribution of linear complexity, (1), we see that if n is even,

n/2
s—§+22 4"‘1(——L)+ Z 4nk(k — %)
k=14n/2
and if n i1s odd,
(n-1)/2 n .
s=3+ 3 247Gt 3 e 2)
k:(n+1)/2

Let us first consider n even. Replacing n — k + 1 with k in the last sum
and combining terms yields

n/f2
S = 2+Z4k-1 ((1+3—73)-—3k) .
2 k=1 2

Evaluating the geometric sum and using equation (2), we obtain

2
S =2(2" - 1).
S =)
and finally, S .
4
Bo S 55 = 3 7 Fioee

A similar calculation yields the result for n odd.

It is easy to describe a bijection that obtains the upper bound of The-
orem 5.1.- Start with the strings of highest and lowest linear complexity,
working inward, and always choosing for an image the string most distant

in linear complexity and not vet used. By the above proof, this bijection,

¢, attains the maximum value for A,.

O

6 Other String Functions

A bijection on S;, will have a beneficial effect (i.e. lowering of linear com-
plexity) on some strings, a detrimental effect on others and no effect at all
on the rest. An algorithm that, given a string, seSp, tries to produce an
LFSR, of “low” linear complexity which generates a sequence whose first n
terms differ from s in only a small percentage of its bits, will surely not be
a bijection. Ideally, bits will only be altered when the change is beneficial.
In general, such an algorithm will induce a function ¢ : Sp — Sp but
will not be a bijection. Here, we first consider such a function ¢ with the
restriction that ¢ transforms only a bounded number of strings to the same
image string. It is probably reasonable to expect that a useful algorithm
will not transform too many strings to the same image, for example a func-
tion that alters no more than k bits. Later, we will drop this condition and
require only that linear complexity of the image strings be “low”.

10

Theorem 6.1 Let 1< k < n and let ¢ be a funciton, ¢ : Sy — Sp such
that card{¢~(s)} < 2F for all s¢Sp. Then an upper bound for A, 1s given
by

4/3 n even k even
k 1 + 2k 3/2 nodd k odd
Be S 5= 3751 T) 3/2 neven k odd

5/3 n odd k even

For each n and k, there ezists a function, satisfying the conditions above
such that A, attains this upper bound.

Proof:
As in- the analysis of bijections, we have

A, = 5]:7: ST IA(s) - A(w(s)) |

s¢Sn

< =2 (180 = 51+ 1 AG(s) -

seSn

)

= 5 T IAG) -2+ X A -5 -

3¢Sn 3¢Sn

ol 3

The analysis for bijections gives an upper bound on the first of these
sums so we have,

| 1 n 1 2/3 n even
D<o 2 AN -5 — g + {5/6 nodd - &

seS-n
. Now we nust find an upper bound for

S = T IAWs) -3 1.

32¢Sn

This will be maximal when the image values, ¢(s) are as far as possible

from Z. Since each s can have up to 2% pre-images, we start with the

11

elements of Sy, farthest fron 3, assuming each has 2% pre-images until we

have enough pre-images to cover the 2" elements of S,. We obtain
n —k odd:

M . 3
s <2 [-’5 P R)
. j:l

with M = "—‘;‘-‘—1- as for this value of M,

2k

M
1+ 14+ > (2-¢-1 +4,)} = 2"

J=1
n — Lk even:

s < o [-’%Tg— + (J\f(%—j)(z-d,ﬁ%zﬁ)) + (%—M) (2-4"4-1)}

3=-1

with M = "—;ﬁ as for this value of M,

Jj-1

n;k_l
2k [1 + 1 + (@Y+ 4—")\ + 2-43‘?*} = 2"

Regrouping terms, we now obtain

n — k odd:

r M
s < 2 [n + 2-2-41'(- j)}

i=1

o] 3

_ o [n N 3_n<4”+13— 4) _ 2((3M—-1)4M+1>].

4 3
By substituting M = 2=2=1 and reducing we obtain
s < 2 [n + @k 2 1) - %((X’l;;_—_l_)_l) proke1 1)]

12

»

5 2
= 2 [2 (k + 3) 3]

and dividing by 2" yields

2k
3. 2n-1

2k
3. 21

S 1 5
2 o< Sk + 2y -

l_k.*.?.
2 6

n—k even:

S < 2k

e

i=1 ‘

n +. (Z‘? 6 - j)) A G M)J
272 2

_ ok CoM-o1 3n 4M 4 3 2(31\4_4)41\{-1_*_1
_2[n+2 3 M)+4<3 3 -

By substituting M = 25* and reducing we obtain
8 2
s < 2 [2"-"-2 2k + 2) - -]
< ok + 2) - =
and dividing by 2" yields

s r 9 ok

— < .
2r T 2 3 3.2r-1

Finally, substituting these upper bounds into the inequality 3 gives the
desired results.

As in the case of a bijection, we can construct a function, ¥Sn — Sn
that satisfies the conditions of the theorem and attains the upper bound
by starting with those elements of S;; which have highest and lowest linear
complexity, working inward and always choosing for an image the element of
Sp which is still available and maximizes the difference in linear complexity.
The only difference is that each element of Sy can be used as an image s*
times.

O

13

We now look at things from a slightly different angle. We assume that
we have an algorithm that takes n-bit strings to n-bit strings and assume
that all the image strings are of “low” linear complexity. The following
theorem tells us that there must be a string that has “many” bits changed
by the algorithm.

Theorem 6.2 Let ¢ : Sy —'Sy be such that

Ap(s)) < P(béz' n)
for all seSp and some polynomial p. Then there is a string, seSy such that
the Hamming distance,

_ H(s,0(s)) 2 pn

where p tends to -;- as n tends to infinity.

Proof:
The number of strings within Hamming distance pn of a fixed string,
s€Sy is given by

len] 7
Z (L) < onHa(k)

k=0
where Hy(z) = —z log,(z) — (1 — z) log,(1 — z) is the entropy function, [2].
If o : S, — Sy is such that
n
A(#(s)) < pllogyn) < 5

for some polynomial, p, then the number of candidates for ¢(s) is given by

{p(log, n)) {log, n) 2{p(log, n)] -1
4rllogn) __ 1 1 + 2 82
1 + 2.4%1 = 1 2| —m] =)
kz=:1 * 3 3

If M = maxcardy™! then, as there are 2" strings of n bits, we have

(22;:(105, n)-1 +1

5) M > 2" ’(4)

14

From this we see that M must satisfy

3-2" n + 1 — 2p(log, n)
M 2 22p(loga n)-1 4 1 Z 2 ’

If all the pre-images of s are within Hamming distance un of s then

2an(p) > M > 928 + 1 ~ 2p(log, n).

Comparing the exponents, we see that

: 2p(log, n) — 1
Hyy) » 1 220omm) =1
So Hy(i:) — 1 and hence, p — 1 as n tends to infinity.
O

From the following two corollaries, we see that any function ¢ : Sy — Sp
such that most of the images of ¢ have low linear complexity must take
many strings to images which are distant in Hamming distance.

Corollary 6.1 (to the proof of Theorem 6.2) Let X be a subset of S with
card(X) < 2" 1 Lety:Sp — Sy be such that

Alp(s)) £ pllogy(n))

for some polynomial p and for all s€Sy, — X. Then there is an element
seSp — X such that the Hammang distance

H(s,¢(s)) > pn
where p — 3 as n tends to infinity.

Proof:

The proof follows as for Theorem 6.2 with two changes. First, we look at
the number of candidates for ¢(s) with seSy — X. Second, the right-hand
side of the inequality (4) becomes 2" — 2"~ = 2"~1, The rest follows.

O

15

Corollary 6.2 Let X be a subset of Sy with card(X) = ¢ < 2"71. Let
¢ : Sn — Sy be such that

A(p(s)) < p(logy(n))

for some polynomial p and for all seSp — X. Then there are at least 2" —c
elements seSy — X such that the Hamming distance

H(s,p(s)) > pn
where y — -;— as n tends to infinity.

Proof:

Enlarge X to cardinality 2! by adding the 2"~* —c elements of Sy — X
that have the largest values for H(s,(s)). The result then follows from
the last corollary.

O

7 Conclusion and Future Work

The results of this paper tell us two things, of cryptographic importance,
about the difference in lincar complexity of strings and their neighbors
vis-a-vis Hamming distance.

1: For large n there are strings in Sp which are cryptographically secure
in the sense that they are far, in Hamming distance, from any string of
“low” linear complexity. '

2: There are enough such secure strings that we cannot expect to find an
algorithm which for “most” strings produces nearby strings (in Hamming
distance) of “low” linear complexity. -

There are two paths open for future investigation. One is to classify
those sequences which are close (in Hamming distance) to strings of “low”
linear complexity. The results of this paper put bounds on how many such
strings there are but do not indicate what they look like.

The other line of future research is to study the effect of synchronization
errors on the linear complexity of strings. If we say that two strings are
k — close if one can be obtained from the others by a sequence of no more
then k errors where we now include added and lost bits as well as changes

16

2

of bits, then a string is k-close to many more strings than it is within k
of in Hamming distance. Theorem 6.2 does not immediately generalize in
a useful way. As with Hamming distance, we should classify those strings
which are k-close to strings of “low” linear complexity.

References

[1] J. M. Massy. Shift-Register Synthesis and BCH Decoding. IEEE Trans.
Information Theory 15, 122-127 (1969).

[2] F.J. MacWilliams and N. J. A. Sloane. The Theory of Error- Correcting
Codes. North-Holland Mathematical Library, Amsterdam, 1977.

[3] R. A. Reuppel. Analysis and Design of Stream Ciphers. Springer,
Berlin,1986. :

Imprimé en France
v . par . .
I’ Institut National de Recherche en Informatique et en Automatique
q q

