\

Functions as processes
Robin Milner

» To cite this version:

‘ Robin Milner. Functions as processes. [Research Report] RR-1154, INRIA. 1990. inria-00075405

HAL Id: inria-00075405
https://inria.hal.science/inria-00075405
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075405
https://hal.archives-ouvertes.fr

UNITE DE RECHERCHE |
18-SOPHIA ANTIPOLIS

|
‘en nformatioue
@ﬁ@mAuﬁ

de @Iuco:ea

uman@am |

Rapports de Recherche

N° 1154

Programme 1
Programmation, Calcul Symbolique
et Intelligence Artificielle

FUNCTIONS AS PROCESSES

Robin MILNER

Février 1990

IIIIIIHIII!II|||lll|l|IIlH|II\I!IIIIIIIIII\

Functions as Processes
Les Fonctions vues comme des Processus

Robin Milner
University of Edinburgh
June 1989

Abstract This paper exhibits accurate encodings of the A-calculus in the n-
calculus. The former is canonical for calculation with functions, while the latter is a
recent step [12] towards a canonical treatment of concurrent processes. With quite
simple encodings, two A-calculus reduction strategies are simulated very closely;
each reduction in A-calculus is mimicked by a short sequence of reductions in =-
calculus. Abramsky’s precongruence of applicative simulation [1] over A-calculus is
compared with that induced by the encoding of the lazy A-calculus into 7-calculus;
a similar comparison is made for call-by-value A-calculus.

The part of m-calculus which is needed for the encoding is formulated in a new
way, inspired by Berry’s and Boudol’s Chemical Abstract Machine {3]. The new
formulation is shown to be consistent with the original.

Résumé Ce papier montre des codages précis du A-calcul en m-calcul. L’un
est canonique pour faire des calculs avec des fonctions; l’autre est une tentative
récente [12] en direction d’un traitement canonique des processus concurrents.
A Paide de codages assez simples, on simule trés exactement deux stratégies de
réduction; on imite chaque réduction en A-calcul par une série bréve de réductions
en m-calcul. On compare la précongruence sur le A-calcul d’Abramsky [1], simula-
tion applicative, avec celle qu’induit le codage du A-calcul paresseux en 7-calcul;
on compare également les deux précongruences dans le cas du A-calcul avec appel
par valeur.

On présente une formulation nouvelle de la partie du w-calcul qui sert au
codage, inspirée de la Machine Abstraite Chimique de Berry et Boudol [3]. On
montre que cette formulation nouvelle est fidéle & la formulation originelle.

Remerciements Cet article a été écrit pendant un séjour de quatre mois &
PINRIA Sophia Antipolis, & la fin de 1989. Je voudrais remercier ’INRIA pour
son hospitalité, le Ministére de la Recherche et de la Technologie pour son soutien,
ainsi que PUniversité d’Edimbourg qui m’a accordé ce congé sabbatique.

, Functions as Processes

Robin Milner
University of Edinburgh
June 1989

1 Introduction

The main purpose of this paper is to exhibit accurate encodings of the
A-calculus in the 7-calculus. The former is canonical for calculation with
functions, while the latter is a recent step [12] towards a canonical treatment
of concurrent processes. We show that, with quite simple encodings, at
least two A-calculus reduction strategies can be simulated very closely; each
reduction in A-calculus is mimicked by a short sequence of reductions in
w-calculus. For the encoding of lazy A-calculus, we compare Abramsky’s
precongruence over A-terms known as applicative simulation [1] with that
which is induced by the encoding; we also make a similar comparison for
the call-by-value A-calculus.

Recently, several generalisations of process calculus to embrace higher-
order objects have been proposed; examples are by Boudol [4], F.Nielsen [13]
and Thomsen [16]. Explicitly or implicitly, they have enabled embedding
of the A-calculus. The 7-calculus, which builds upon work by Engberg and
M.Nielsen (7], differs in the following respect: It replaces the paradigm in
which an agent can be transmitted as a value and bound to a variable, which
we may call the function paradigm, by a significantly different paradigm.
In the latter, which we may call the object! paradigm, that which is trans-
mitted and bound is never an agent, but rather access to an agent. It
is only as a special case that one agent may have sole access to another.
The object paradigm is hardly new, but there has never been a canonical
encapsulation of it, in the way that A-calculus encapsulates the function
paradigm. But there have been signs of its power; for example, following

!The connotation here is with object-oriented programming — in particular, the idea of
objects with independent state interacting with one another.

an early ideas of Hewitt {6, even a humble data value can be modelled as
an independent agent - one which remains constant (i.e. invariant under
access.)

Both paradigms seem equally basic and significant. Without arguing
naively in favour of the object paradigm, our aim in the m-calculus has
been to present it in undiluted form. Since higher-order parameters are
sacrificed, a succinct translation between the paradigms is by no means
preordained; all that we know is that some translation from the function to
the object paradigm must exist, since functional languages are successfully
implemented on machines which - with their arithmetic units, programs
and registers — can be seen just as assemblies of objects.

Another theme of the present paper is a new way of formulating the 7-
calculus, or at least the fragment of 7-calculus that we need for encoding -
calculus, inspired by Berry’s and Boudol’s Chemical Abstract Machine 3].
Their analogy of an aggregate of processes moving and interacting within
a solution has probably occurred vaguely to many people, but Berry and
Boudol have made the analogy technically robust. We reflect their intuition
here by means of axioms for a structural congruence relation over process
terms; this yields a welcome simplicity in presenting the reduction rules.

The paper is self-contained as far as its main purpose, encoding -
calculus, is concerned; no knowledge of our original presentation of 7-
calculus [12] is needed. However, we also give results which state that
the new presentation is fully consistent with the original.

2 The m-calculus: Terms

We presuppose an infinite set N of names. We shall use z,y,z,... and
sometimes other small letters to range over N.

The m-calculus consists of a set P of terms, sometimes called agents,
which intuitively stand for processes. We shall use P, Q, R to range over P.
We shall write P{¥/z} to mean the result of replacing free occurrences of z
by y in P, with change of bound names where necessary, as usual. (T'here
will be two ways of binding names.)

The first class of terms consists of guarded terms g.P, where P is a term

and g is a guard; guards g have the form
g == Ty | (W)

Informally, ZTy.P means ‘send the name y along the link named z, and then
enact P’; on the other hand, z(y) means ‘receive any name z along the link
named z, and then enact P{?/y}’. Thus the guard z(y) is like the A-prefix
Ay in that it binds y; it is unlike Ay in that every name z € N is a binder
like A, but that only names (not terms) may replace bound names.

The second class of terms express concurrent behaviour. The princi-
pal form is composition P|Q, which, informally speaking, enacts P and Q
concurrently allowing them to interact via shared links (i.e. shared names).
Interaction can occur in the case

z(y).P | T2.Q (1)

and we expect the result of interaction to be P{#/y}|Q. This differs from §-
reduction (AzM)N — M{N/z} in one essential: the ‘sender’ Zz.Q pursues
an independent future (as Q) after the interaction, while in B-reduction the
future behaviour of the argument N is controlled by M via the variable z (in
a way which varies from one reduction strategy to another). This exactly
reflects the crucial difference, mentioned in the introduction, between the
function and object paradigms.

Allied to composition is replication, ! P; roughly, it stands for P|P|- -,
as many concurrent instances of P as you like. Also allied is inaction, the
degenerate composition of no processes, denoted by 0.

The third class of terms has only one form: the restriction (z)P. It
confines the use of z as a link to within P. Thus, no intraaction, i.e.
interaction between components, can occur in

z(y).P | (2)(T2.Q) (2)‘

On the other hand, if (z) is applied to (1) then no interaction at z can occur
between this term and any terms which may surround it; one therefore
expects the equation

@)(zw).P | 22.Q)) = (2)(P{?/y}| Q) (3)

for some congruence relation ~.
To summarise: for this paper, the syntax of P is

P = zZyP | ZpP.| O | PIQ | 'P | WP

There are a few differences from the m-calculus given in [12]. Only one is
a novelty: the presence of ! P. Replication? replaces recursion; for many
purposes replication does the job of recursion (perhaps even for all useful
purposes), and is simpler to handle theoretically. Otherwise, we are dealing
with a sub-calculus. We have omitted 7.P (silent guard), [z=y|P (match-
ing) and P+ Q (summation). The first two present no difficulty for the
present formulation, nor does summation in the limited form ¥, g;.P; (sum
of guarded terms). It is open how best to handle full summation in the
present formulation; but see the method adopted by Berry and Boudol in
the Chemical Abstract Machine [3].
Some technical details and terminology:

There are two forms of binding: z(y) and (y). Note that z is free in
z(y).P. We use fn(P) for the free names of P, and n(P) for all names
occurring in P.

We call z the subject and y the object of the guards z(y) and Zy.

We say that an occurrence of a term @ in P is guarded if it occurs
within any guarded term in P, otherwise it is unguarded.

We shall often use Z to mean a sequence z;,. .., r, of names; similarly
P for a sequence of terms. Without risk of confusion, we also treat
Z sometimes as a set. We also write (%) for the multiple restriction

(Z1) - (Zn) -

We shall use several convenient abbreviations:

ZLater in the paper we formally state results comparing the two presentations of -
calculus. For that purpose, we assume that the rule for replication

PSP
P S ppp

is added to those in Table 2, Part II of {12].

— We shall often omit ‘.0’ in an agent, and write for example Zy
instead of Zy.0.

— We shall elide several guards with the same subject, for example
z(y)(2) means z(y).z(z) and Tyz means Ty.Zz.

— The agent (y)Zy.P can be thought of as simultaneously creating
and sending a new private name, when z # y; we abbreviate it
-to ZT(y).P.

So with all these abbreviations we shall be able to write agents like
z(y)(2).Y2(z) , meaning z(y).z(2).§z.(z)z.0 .

3 The m-calculus: Equations and Reductions

Our operational intuition is simple: if term R contains two unguarded
subterms z(y).P and Z2.Q, and each restriction (z) contains both or neither
(so that z means the same for both subterms), then they can interact; this
interaction yields a reduction R — R'. A few examples:

(1) Let R be z(y).P | £2,.Q, | £2;.Q;. There are two reductions

R — P{a/y} | Q1 |ZT2:.Q,
R — P{z/y}|%2,.Q: | Q:

(2) Let R be w(z).(z(y).P | 2.Q). There is no reduction; the subterms
are guarded.
(3) Let R be z(y).P | (z)(Zz.Q). There is no reduction.

(4) Let R be z(y).P | (2)(Zz.Q). Assuming z not free in P there is a
reduction

R — @(P{¥v}| Q)

We call this phenomenon extrusion (of the scope of a restriction); the
name z is private to (2)Zz.Q, but its transmission has enlarged its
scope to embrace the recipient.

To simplify the form of the reduction rules, we first define a structural
congruence relation over terms. This approach is inspired by Boudol and
Berry (3|, though our formulation differs from theirs. The idea is that one
should separate the laws which govern the neighbourhood relation among
processes from the rules which specify their interaction.

3.1 Definition Structural congruence, written = , is the smallest con-
gruence over P satisfying these equations:

1) P=Q whenever P is alpha-convertible to @
2) Plo=P, P|Q=Q|P,P|(QIR)=(P|Q)|R

4) ()0 =0, (z)y)P = (y)=z)P

(1)

(2)
3)'P=P|!P
(4)

(68) @(P|Q)=P|®Q ifz not freein P =
A few facts are easily seen:

e Using the equations, all unguarded restrictions can be moved outer-
most. Note particularly: ! (z)P = (z)P | ()P = (z)(P | ! (z)P).

e The interaction condition mentioned at the start of this section is

invariant under =.

¢ Using the equations, any two potential interactors z(y).P, Tz.Q can be
brought together as z(y). P | 2.Q, but possibly with alpha-conversion;
for example, if z is free in P then

zy).P | (2)(z2.Q) = (2)(zw).P | Z2'.Q{#/2})

where Zz' is new.

3.2 Definition Reduction, written —, is the smallest relation satisfying
the following rules:

COM: z(y).P|Z2.Q — P{¥/y} | Q

PAR PP
AR : P ' Q Ny | Q
RES P P
) WP —)P
=P P P =
STRUCT : Q P Q

Q—-Q

It is worth noticing that, just because of equation (3) in 3.1 for replication,
structural congruence may be hard to determine (perhaps even undecid-
able), and this may cause some alarm in seeing the rule STRUCT, since we
certainly want — to be computable. But we are saved by the invariance of
the interaction condition under =, noted above; the interactions possible
in a given term are quite manifest. In fact:

3.3 Proposition A finite set Red(P) of agents can be recursively com-
puted from P, such that P — P' if and only if P' = P" for some P" ¢
Red(P).]

The present formulation of m-calculus differs strikingly from that in
[12]. The essential difference is in the use of structural congruence. This
is inspired by the Chemical Abstract Machine of Berry and Boudol (3].
Their insight is that the rules of structured operational semantics, as used
in [11] or [12] for example, treat in the same way two concepts which it is
worth separating: the physical structure of a family of concurrent agents
and their interaction. Of course, one advantage of avoiding the imposition
of structural congruence equations as axioms is that, once a behavioural
congruence is defined - as in [11] - it turns out that the structural equations
are obtained as theorems, and this gives added confidence. But then these
equations are not kept clearly distinct from other theorems which only hold

because of the particular way in which observation is characterised in the
behavioural congruence. (For example, observation congruence in [11] is
based upon the idea of a sequential observer, and yields equations which do
not hold in a model which respects causality.) By proposing the structural
laws as axioms, one makes the distinction and achieves some simplicity at
the same time (at least, when summation is not considered); one also offers
the challenge to find an interesting behavioural congruence which fails to
satisfy the axioms (strongly suspecting that there is none!)

But now we have an obligation to show that the formulations agree. In
(12] there is a labelled transition system -5, where the actions o are of four
kinds:

a == 71 | TYy | ¥ | EW)

Of these, the r-actions - i.e. the intraactions — correspond to our reduc-
tions; we do not need the rest yet. (This is another reason for the greater
simplicity of the presentation here, as far as we have taken it; we have so
far told enough of the story to encode A-calculus, but no more.) In fact,
the correspondence is nearly exact:

3.4 Proposition Over P, the relations 5= and — are identical. =

For the next section we shall need the following:

3.5 Definition P is r-determinate if, whenever P —* @ and also @ — Q;
and Q@ — @, then Q, = Q,. Also, P converges to @, written P | @, if
P —* Q +4; we write P | to mean P converges to some @, and P]
otherwise. []

4 The lazy MA-calculus

Let the set of Variables, X, be an infinite and co-infinite subset of N. For
this section, we shall let z,y, z range over X, and u,v,w range over N —X.
Our encoding of A-calculus into m-calculus will be all the simpler because
we treat a variable z of A-calculus also as a name of m-calculus.

We shall use L, M, N to range over the terms L of A-calculus, which are

4

defined as usual by:
M 2= =z | XM | MN

the last two forms being abstraction and application. The free variables
fv(M) of a term M are defined in the usual way. {N/z} means substitution
as usual. We shall frequently need the the sequential composition of several
substitutions (note: not simultaneous substitution); so, understanding the
members of Z to be distinct, we introduce the abbreviation

{N/z} stands for {N/z,} - {Ni/z, }
We shall use the standard terms

e zz
def Azdyz
& Af(Az f(z2))(Az f(22))

0 € (zzz)(z zz)

KRR -

There are many reduction relations —, many of which satisfy the rule
B: (AzM)N — M{N/z}

The relations differ as to which contexts admit reduction. The simplest, in
some sense, is that which admits reduction only at the extreme left end of
a term. This is known as lazy reduction:

4.1 Definition The lazy reduction relation — over L is the smallest
which satisfies 3, together with the rule

M- M

L: —
APP MN — M'N

With the usual convention that LM N means (LM) N, this implies that in
any term M, writing it as

M= MoMle"'Mn (nZO)

where M; is not an application, the only reduction possible is when n > 1
and M, = Az, and then the reductum is

N{My/z}M,--- M,

Thus — isr-determinate — i.e every M is r-determinate; given M, there is
at most one M' for which M — M'. We write —7 for the transitive closure
of —, and —" for the transitive reflexive closure.

4.2 Definition M converges to M', written M | M', if M —* M' 4;
also, M| means that M converges to some M'. n

If M | M', then M’ can only be an abstraction AzN or else of the form
zN;---N, (n > 0). Writing L£° for the closed terms, if M € L£° then
M' € £° also, so M’ must be an abstraction.

Abramsky [1] defines an important preorder < , which we shall call
applicative simulation, as follows:

4.3 Definition Let L,M € £° Then L <M if, for all sequences N in
Lo

LN | implies MN |
Furtherryore, if L,]LJ € L with free variables %, we define L S M to mean
that L{N/z} S M{N/z} for all N in £°. .

Abramsky continues to study both the model theory and the proof theory of
< and of applicative bisimulation, = (i.e. SN 2). We need very little of
this here, but should remark that it firmly establishes the importance both
of lazy reduction and of these relations, and hence provides a natural point
at which process calculus may try to make contact with A-calculus. We
recall from (1] that (AzM)N = M{¥/z} ,and that < is a precongruence.
The latter follows from the result that, defining a context C[_.] to be a term
with a single hole,

M N iff, for every closed context C[..}, C[M]| implies C[N] |

We now turn to the encoding of L into P. Perhaps one hardly expects
to find a more basic calculus than the A-calculus. All the same, it takes as

10

primitive the remarkably complex operation of substitution (of terms for
variables). Two important means have been found to break this operation
into smaller parts. In combinatory algebra [5], Curry found combinators
which progressively distribute the argument of an abstraction AzM to those
parts of the body M which will use it (thus, in fact, eliminating variables
altogether). On the other hand, implementations of functions and pro-
cedures in programming languages have traditionally used the notion of
environment, a map from variables to terms; thus, instead of executing
M{N/z} one executes M itself in an environment which binds N to the
variable z. The encoding which follows can be seen as a formalisation of
the latter idea.

Each M € [is encoded as [M], a map from names to P. Thus [M]u
is a term of 7-calculus, and will have free names given by

fn([M]u) = fv(M) U {u}

The name u is the link along which [M] ‘receives’ its arguments.

Now, suppose that M will itself be used in place of an argument repre-
sented by the variable z. Each time M is ‘called’, via z, it must be told by
the caller where to receive its own arguments. (In more familiar terminol-
ogy, it must be given a pointer to its arguments.) The ‘environment entry’
binding z to M is therefore the 7-term

[z:=M] & ' z(w). [M]w

In passing, note particularly the replication. This is not needed if M will be
called at most once; therefore the linear A-calculus, in which each variable z
must occur exactly once in its scope, may be encoded in the fragment of 7-
calculus without replication. The link with Girard’s ‘of course’ connective
‘I’ of linear logic [8] should be explored; his notation for it has been chosen
here deliberately.

How does [AzM]u receive its arguments? Along u it receives (as z) the
name of its first argument, and also the name of a link where the rest will
be transmitted. This explains the first line of our encoding, which we now
give in full:

PzM]u & wzyw).[M]v

11

=]
[MN]u

Tu
W)([M]v | v(z)u.[z:= NJ)
(z not free in N)

Let us look at the reduction of a simple example, in which we assume z not
free in N (recall the abbreviations listed at the end of Section 2):

[(Azz)N]u

m 44

l

~

@) (v(z)(w).Zw | B(z)u.[z:= N])

w)(@)(v(w).Tw | vu.[z:= N]) (4)
(3 | [3:=N]))
@)(Tu | ! z(w).[N]w)

[N]u | (@)[z:=N] (6)

Il
Ju (7)

2

[

The following remarks will help in reading the above calculation:

(1) In obtaining (4), recalling that 7(z).Q means (z)7z.Q, equation (5) of
Definition 3.1 must first be used to allow COM to be applied.

(2) The restriction (v) is dropped in (5) because v no longer occurs. For-
mally, if v & fn(R) then

wR = w)(R|0) = R|w0 = R|0 = R

(3) In (6), (z) has been moved inwards, since z ¢ fn([N]u).

(4) The last step, to (7), is the only one which goes beyond = ; it is
a simple case of strong bisimilarity — see [12] - and represents the
garbage-collection of an environment entry [[z:=N] which cannot be
used further (since the subject z of its first action is restricted).

We are now ready to embark upon a proof that the reduction of [M]
in the 7-calculus simulates that of M in the A-calculus very closely. The
essential difference, as was mentioned earlier, is that substitutions {M/z},
which are actually performed upon A-terms, are represented in P by what
we have called environment entries [z:=M] which are agents in their own

right.

12

We shall frequently need the parallel composition in 7-calculus of several
environment entries. So we introduce the abbreviation

ﬂ%::ﬁﬂ stands for [z1:=Ni] |--- | [z :=Nk]

We now define the correspondence between closed A-terms and w-terms
which is the basis of our simulation:

4.4 Definition Let the relation § C £°%P contain all pairs (L, P) such
that for some k > 0, some M, N,,...,N; € L and distinct z,,...,z: € X:

(i) fv(M) C %, and fv(N;) C {zi1,...,2s} for all 1 << k. (So, in
particular, fv(N;) = 0.)

(i) L = M{N/z)
(iii) P = @([M]u | [z:=N]) n

4.5 Lemma For any (L,P) € S, P is r-determinate, and one of the
following conditions holds:

A. L is an abstraction, and for some (L',P') € §

L=L and P|P

B. For some (L',P'} € §

L—L and Pt P

Proof Let (L,P) € S, and let us use the notation of the definition. The
determinacy of P will emerge during the proof that A or B holds. Let M
be MyM --- M, where My is not an application.

Case 1: n =0 and M, is an abstraction AzoM]. Then clearly L is an
abstraction, and by inspection

P = @& (wzo)).[Mi]v] [F:=N])

13

has no reduction. Thus condition A holds with (L', P') = (L, P).
Case 2: n>0 and M, is an abstraction AzgM|; w.l.o.g. we can assume
To € . Then L — L' where
L' = (My{Mijzo}M; - M) {V/7)
= (MM - - Ma){My/o} {V/%}
On the other hand we have
Mu = @ ([Molor | Tawuva.[ys:=M]
| T2(y2)va.[y2:=Me]

| vn(yn)u'ﬂyn:=Mn]])
where (V) = (v1) -+ (vn); also
HMO]]’UI = vl(xo)(v).[[Mé]]v

Now it is clear that P has two successive interactions at v;, with no alter-
natives, whose effect is to replace [M]u in P by

(@o)wa) - (vn) ([MsJvz | [zo:=Mi]
| Ta(y2)vs.[ya:= My

| ?jn(yn)u“ﬂyn = Mnﬂ)

and now, respecting = , the restriction (zy) can be moved outermost in
P, and the component [zo:= M;] to a new position just before [z;:= N;].
Calling this new term P', we have that P —* P' and (L', P') € S, satisfying
condition B.

Case 3: M is a variable z;. Then we proceed by induction on k—1. First,
we have

~

L = (N:M, - M,){N/z}
while within P we have

My = @) (—ffvl | (yn)ve-[lyr = M)
I 7jn(?;’m)'u“Hyn::1\471}])

14

(which is just Zu when n=0). Then the only action of P is an interaction
with the replicator [z;:= N;], generating a copy [N;]v; which (up to =) can
be moved inwards to replace Z;v;, yielding in place of [M]u

[M]u = @) ([N:Jvr | Tawoyve.[yr:=Mi]

| Tntmu[yn:=M,])

Now this is exactly [M']u, where M' is N;M;---M,. So we have shown
that P — P" with (L, P") € S. But N; must be of form M}.-- M',, M,
being either an abstraction or a variable Zj, J > t; so by Case 2 or by
induction either A or B holds for (L, P") in place of (L, P). But P — P",
so the corresponding condition holds for (L, P) too.

Finally, P’s reductions have in every case been determined, leading to
P' with (L', P') € § for some L'; so P is determinate. =

4.6 Theorem (Lazy encoding) For all L € £° [L]u is r-determinate,
and one of the following conditions holds:

A. L|L' and [L]u|P', where
L= xyM{Nz} and P'= @(DuM]u | [2:=N])
B. LT and [L]ut.

Proof Immediate, by iterating the lemma starting from (L, [Llu)e S m

5 The w-calculus: Actions

The reduction relation — only tells part of the story of the behaviour of
a m-term P; it describes how P’s parts may interact with each other, but
not how P (or its parts) may interact with the environment.

At first sight, the same remark applies to reduction in A-calculus; re-
duction takes a term up to an abstraction, but what happens later depends
upon what argument the environment supplies. But the analogy breaks
down, at least for the lazy A-calculus; no interaction between a A-term and

15

the environment can take place until it becomes an abstraction, and at
that point nothing but interaction with the environment can occur. On the
other hand, the essence of concurrency is that interaction and intraaction
(= reduction) can freely intermingle. Take for example the 7-term

Ry = (z)(gz.P | z(w).0 | Zv.0)
As far as reduction is concerned, it is no different from
R; = (z)(z(vw).0 | Zv.0)

But in a context where y(w).Q is present, R; may behave very differently
from R, since its interaction with the context may remove the guard from
P.

We shall use the term action to embrace such potential interactions, as
well as reduction. We naturally expect two kinds of potential interaction,
input and output, and they are represented by agents of the form

E(zw)P|---) (z¢%7)
&H(Ty.P|--) (z,y¢3)

But there is also a third kind, when the object of an output guard is re-
stricted. This is represented by an agent of the form

WEEZyPl-) (z,y¢3)

Thus, including reduction, there are four kinds of action. We represent
them by the action relation > , where '

a u= 7 | zy | Ty | ZT(w

Thus - will mean the same as — . To define - we modify and extend
the reduction rules of 3.2:

5.1 Definition The action relations > are the smallest which satisfy
the following rules:

IN: z(y).P =) P

16

OUT: Ty.P p
CoOM: z(y).P|Z2.Q - P{%/y} | Q

P3P _
PAR : AN (n(a) Nfn(Q) = 0)

PSP
RES : — (y € n(c))
)P — P

P3P
OPEN : —— (z#y)
(ypP = P
Q=P P p P =Q

STRUCT : -
Q—-Q

Comparing with 3.2, note that IN, OUT and OPEN are new — being respon-
sible for generating the three new kinds of action — while PAR, RES and
STRUCT are extended. Now, up to = , we have recovered the relations
defined in {12], and have faithfully recaptured — as - :

5.2 Proposition

(1) I ' are the relations defined in (12], and alpha-convertible terms
are identified, then = is identical with 2=

(2) 5 is identical with — .

Proof In each case, a routine induction on the inference of an action from
the rules. =

Returning to the translation of A-terms, we need to strengthen slightly the
property of determinacy which we need for [M]u:

5.3 Definition P is determinate if it is r-determinate and also, whenever
P—-*Q3 fora#r,then Q4 . n

17

5.4 Lemma [[M]]u is determinate.

Proof By inspection of the proof of Lemma 4.5.]

6 Observation precongruences

As is often done for process terms, we wish to define a notion of atomic ob-
servation of a m-term’s behaviour, and then compare two terms according
to the pattern of their observed behaviour. This typically yields a pre-
order or precongruence over terms. We only wish to go far enough to see
to what extent our translation preserves the distinguishability of A-terms
under observation. To be precise, for what precongruence C on 7-terms do
we have
[M]u C [N]u implies M SN

or indeed its converse?

Since applicative simulation takes no account of the number of reduc-
tions taken to converge, the relevant precongruences over P will be those
in which reduction — is not directly observable. Thus we are interested
in actions a# 7 as atomic observations. This motivates the following:

6.1 Definition = ¥ -2 .

Then the weakest reasonable preorder and precongruence are as follows:

6.2 Definition
(1) PEQ if, for all a#7, P> implies Q & .

(2) PCE Q fif, for all contexts C[_], C[P|& C[Q] .]

It is worth noting that although the preorder & is obviously weakened
by restricting the range of «, the precongruence T remains unchanged
even if we restrict the range of a to a singleton, which could be called
‘termination’. But we are not primarily concerned with this refinement
here.

Now, we can show that even this weak congruénce over P is strictly
stronger than < as far as A-terms are concerned:

18

6.3 Theorem (Lazy precongruence) Let L;,L; € £°. Then
(1) [L1]u C [L:]u implies Ly < L,
(2) LiS L, does not imply [LJuC [L;]u
Proof For (1), assume the hypothesis and let LM, ---M,|,say * -
LM, - M, — AyL!
Now

[LiMy---MpJu = @) ([Li]vr | TauoveJyr:=M]

| Tnnfyni=M,]) |
Let this be C[[L;]v,] . Then by Theorem 4.6 we have
CllLaJon] =" @ (Ll | [2:=N]) #
(assuming y ¢ %) where AyL) = (/\yL’l’){N/E} . Hence C[[Li]w] e , SO
by the hypothesis C{[L:]v]) also. So
[LoMy---MJu = C[[Ls]vi] —»* P A

by Lemma 5.4, since P wa) . Hence by Theorem 4.6 again L, M; ---M, | as

required.

For (2), we adapt a counterexample of Ong [14], which strengthens
Abramsky’s result that his canonical model of the lazy A-calculus is not
fully abstract [1]. Ong defines

Ly ¥ z(ayzENY)E

z(zEN)E

where E.Nl for all N; for example, take E¢YK. (Recall that Q27 .)

19

He shows that L, SL; . On the other hand, he shows that L,{¢/z} |
and L;{¢/z} 1, where ¢ is a new combinator — not definable in lazy A-
calculus — such that

cMII if M|
cM1 if M1

Now we can interpret ¢ (convergence-testing) in m-calculus thus:
def o
[e]e = wz)v).T(w). wy).[I]v

and then show o))
Ll S CllLa]u]
where C[.] is the context (z)(-| [z:=c]). Hence [LiJuZ [Lyu. =

7 The call-by-value A-calculus

We shall now, more briefly, repeat our programme for the call-by-value A-
calculus [15], where reduction in £° may only occur when the argument
is an abstraction. The terms L are as before, and it is also convenient to
define the values V by

V u= z | AzM

We shall let U,V,W range over V.

7.1 Definition The call-by-value reduction relation —, is the smallest
which satisfies the rules

B,: (AzM)V —, M{V/z}

. M=, M
APPL: MN S, M'N
APPR : ——————N — ¥

; MN >, MN'

20

Reduction —, is no longer determinate, but it is well-known that con-
vergence |, is;if M |, M' then M'is unique. Moreover, convergence is
strong: if M |, M' then all reduction sequences are finite. (The definitions
of |, and T, are analogous with those for the lazy calculus.)

The corresponding applicative simulation relation <, is a precongruence®,
and (AzM)VZ M{V/z}.

7.2 Fact < and <, are incomparable.

Proof ISKIQ ZQ,andI £ KINS 0. .. : . .

We now turn to encoding in m-calculus. For the rest of this section, for
legibility, we shall omit the subscript ‘v’ from relational symbols, and also
from our translation function [_._], (though it differs from [._] for the
lazy’calculus). We shall continue to let z,y, z range over X and now let
p,q¢,7,u,v,w range over N —X. In our new encoding [M]p , the name
p will have a different significance. The reason is that two ‘events’ which
coincided for the lazy calculus must now be separated, namely

e the signal at p that M has reduced to a value (needed when M is the
argument of an application);

e the receipt of arguments by an abstraction M (needed when M is
applied).

Further, our ‘environment entries’ will now contain only values. So we
. begin by defining [y:=V]:

ly:=AzM] &y y(w).w(@)p).[M]p

ly:=z] = !'yw)zw

Now the first action of a (translated) value, [V]p, must be to announce

3For this, we have to prove: If M < N then C[M]|, implies C[N]|,. Allen Stoughton
has pointed out that there is a simple direct proof of the corresponding ‘context lemma’
for lazy A-calculus, following Berry and Levy [2] or Milner [10]; the same holds (with a
little more trouble) for the call-by-value case.

21

its valuehood, thus providing access to an ‘environment entry’.* Note that
[y:=V] is here a subterm of [V]p ; whereas the.opposite was true in
the lazy encoding. And, in contrast with the lazy calculus, the translation
[MN]p of an application must allow M and N to ‘run’ in parallel:

Vip def w)-[y:=V] (y not free in V)
[MN]p € @) (ap(p,q,7) | [M]q]| [N]r)
ap(p,q,r) ¥ q).gw).r(2).92p

We now define the property which we wish [M]p to possess, in place
of determinacy.

7.3 Definition P is weakly determinate if, whenever P —* @ , then

(i) f @ —> @, and Q@ — Q;, then either @; =Q,,0r Q; » Q' and
Q2 — Q' for some Q'.

(i) If Q> for a# 7,then Q A . N

We now set up a relation very closely analogous to that for the lazy calculus
in Definition 4.4, as the basis for our simulation:

7.4 Definition Let the relation § C £°xP contain all pairs (L, P) such
that for some k£ > 0, some M € [, distinct Uy,...,Ur € V and some
Tyye. o, T € X:

(i) fv(M) C %, and v(U;) C {zi1,--., 2k} for all 1 <71 < k. (So, in
particular, fv(U) = 0.)

4There is some doubt as to whether a variable z should be considered as a value. It
turns out not to matter much; this is because our semantics is based upon closed terms.
There is, in fact, an encoding which agrees with the idea that a variable is not a value; one

defines |z]p def Pz instead of [z]p def P(y).[y:=z] . This has an interesting effect, for those
who like the fine detail of transition systems. In our present encoding, variables behave
like buffers or indirect references, and long computations build up chains of indirection;
in particular, the infinite reduction of {1 takes longer and longer over each cycle, while in
the alternative encoding the cycle is of fixed length. We chose the less efficient version,
because it is easier to outline the proof of simulation to follow.

22

(i) L = M{U/z)
(i) P = @([M]u][z:=0]) »

7.5 Lemma For any (L, P) € S, P is weakly determinate, and one of the
following conditions holds:

A. L is an abstraction, and for some (L',P') € §

L=L and P|P

B. For some (L',P') € §
L—-L and P-* P

Proof (outline) Let (L,P) € S, and let us use the notation of the defini-
tion. The weak determinacy of P will emerge during the proof that A or
B holds.

Case 1: M is a value. Then clearly L is an abstraction, and P | P, so A
holds with (L', P') = (L, P).

Case 2: M has at least one subterm of the form My =V N, (V a value)
which does not lie within an abstraction, and P has the corresponding
unguarded subterm

[Mo]po = @) (ap(po,a,7) | [VIg | [Nolr)

It is clear that all reductions of P arise from subterms of this kind, in
which Ny may or may not be a value. Now V must either be an abstraction
AzM] , or be associated via ﬂ:’z’::zﬁ]] with such an abstraction through a
chain of variables V =z, , U, ==, ,..., Uy = AzM] . So, picking
Y,z & %, for some m there is a reduction

[Molpe =™) (win) (2720 | v2@[Mylp | [Nolr) | [u:=V]) (%)

with no alternatives.® In fact these reductions — for all subterms like M,
- can occur within P independently of each other (since accessing an envi-
ronment entry does not change it).

®As in remark (4) after the example of reduction in Section 4, the new environment
entry here could be garbage-collected, but we wish to respect = so we retain it.

23

Furthermore, for at least one such subterm Mg, Ny must be a value
W say (by an easy induction on the structure of terms). Now these cases
M, = VW correspond precisely to the redexes of L, and for such a redex
we have the reduction® in £

L — L% MYV {1z} (+)
where M’ results from M by writing M in place of M,.
Now recalling that [No]r = [W]r = 7(2).]z:=W] , we continue the
reduction from (#), yielding altogether
[Molpe =™ i) ([Ma]mo | [y:=V] | [2:=W])

again with no alternatives. (And again, the reductions of this kind can
occur independently within P.) This yields the following reduction for P:

P —m (y)(z)(?:)([[M'HpI ly:=V]|[2:=W]| [[i:ﬁ]]) (%x)

since [M']p results from [M]p by writing [M{]p in place of [My]po .
Now, comparing (*) with (*%), we have achieved condition B.

Finally, we have seen that no reduction within P ever preempts another;
also it is clear that - for a # 7 is only possible in Case 1 where P has
converged. Thus P is weakly determinate. n

The encoding theorem follows just as for the lazy calculus. To avoid con-
fusion we re-adopt our subscript ‘v’ in stating it:

7.6 Theorem (Call-by-value encoding) For all L € £°, [L],p is weakly
determinate, and one of the following conditions holds:

A. L|,V and [L],pl. P, where
v=w{lU/z} ad P=@(Wlelz=0])

B. L1, and [L]p1, .]

We also find the same relationship of precongruences as in the lazy case:

SThe substitution of V for y is irrelevant, since y is not free in M'; we insert the
substitution to exhibit our simulation. (See also previous footnote.)

24

7.7 Theorem (Call-by-value precongruence) Let L;,L; € B?. Then
(1) |IL1]]VP E uLzﬂv[) 1mplies Ll Ssz
(2) L1 <,L: does not imply [L],p C [La],p

Proof For (1), the proof is just as in Theorem 6.3. For (2), consider the
following:

Ly ¥ 2z((z1)(zK))
L ¥ Az((Ayy(zK»(1)
Ly = xz((Ay(a1)y)(zK))

They are all equivalent under =, . But in L,, z will be applied to I first,
while in L; it will be applied to K first. (In L, either may happen.) So in P
we construct a fickle ‘function’ which behaves differently on successive calls;
it will behave like KI the first time it is called, and like I the second time.
When (the encodings of) L, and L are ‘applied’ to the fickle function, the
results will be respectively (the encodings of)

(KID(IK) =, K
I)(KIK) =, I

In fact, we define

fickle(r) def F(y).y(u).(u(z)(p).[[KI]]vp | y(v).v(z)(p).ﬂl]]vp)

and place each [L;]¢ in the context

(q)(r)(ap(p,q,r) | ﬁckle(r))]

8 Conclusion

We have only begun here to explore the treatment of functions in the 7-
calculus; the reader will already have posed many questions. For example:
Exactly what is the preorder C induced upon A-terms by

LCME[MpuC [Mu ?

25

And are other reduction strategies easy to encode?

On the latter point, close examination of strategies reveals what may
be called an oddity, seen in the light of the process paradigm. Consider
any strategy in which all the rules 8, APPL and APPR hold. Suppose that
M|z, z] is a term in which z occurs twice not within an abstraction, and

suppose
NEN1—~)N2——)---——)N];"—’"’

Then of course
(AzM)N — -+ = (AzM)N, — M[Ni, Ni] =" M[Ngyi, Niyj) = - -

For the first k steps, N’s reduction is ‘shared’; thereafter, two separate
reductions of Ny can continue within M, at different speeds (and in different
directions too). This familiar situation looks odd if N is modelled as an
agent; why should it clone into two or more copies just because access to
N is transmitted through z? (Of course, it is reasonable for N to clone
when it is eventually applied to two or more different arguments within
M.) Naturally, the strategies which have been most deeply studied are
those most easily expressed using the textual substitution which is basic
to A-calculus. One effect of providing w-calculus as a substrate may be to
intensify the study of other strategies, such as those with shared reductions.

A question which should be pursued is: How badly do we need more
than the fragment of 7-calculus used here? This fragment, mainly because
summation is absent, has yielded pleasantly to our new formulation. If
summation is not needed for these encodings, when is it needed? In [12],
it was used to encode computations over structured data types. But closer
inspection suggests that it is not essential for this purpose. Without di-
gressing too far, we can show how we may do without it. As in [12], we can
encode truth-values thus:

where the final u is short for u(z). (Note the similarity with a standard
encoding in A-calculus. A more useful encoding may also use replication.)
Then an agent P which wishes to use the truth value at z to choose its

26

Y

future path may take the form
P = f(u)(v).(ﬂ.Pl l va)

where again %. is short for @(2). For it turns out that up to strong bisimi-.

larity ,
(z)(P | t(z)) -3 P and @) (P | f(z)) .y

In fact, the use of | in P, in place of + as suggested in [12], yields wha
is needed. :

One use of summation has been to provide normal forms, and thence
complete axiomatisations, for agents under various congruences [9,11]. At
the same time, a price has been paid in that the congruences themselves are
harder to define in the presence of summation. We leave the importance of
summation as an open question.

As far as application is concerned, we hope that the results of this paper
will throw some light on the semantics of programming languages which
contain both concurrency and non-trivial use of procedures or functions.

References

(1] Abramsky, S., The Lazy Lambda Calculus, to appear in Declarative
Programming, ed. D. Turner, Addison Wesley, 1988.

(2] Berry, G., Modéles Complétement Adéquats et Stables des lambda-
calcul typés, These se Doctorat d’Etat, Université Paris VII, 1979.

(3] Berry, G. and Boudol, G., The Chemical Abstract Machine, to ap-
pear in Proc 17th Annual Symposium on Principles of Programming
Languages, 1990.

[4] Boudol, G., Towards a Lambda-Calculus for Concurrent and Commu-
nicating Systems, Proc TAPSOFT 1989, Lecture Notes in Computer
Science 351, Springer-Verlag, pp149-161, 1989.

[5] Curry, H.B. and Feys, R., Combinatory Logic, Vol 1, North Hol-
land, 1958.

27

6]

7l

8]

(9]

[10]

1]

[12]

[13]

[14]

[15]

[16]

Clinger, W.D., Foundations of Actor Semantics, AI-TR-633, MIT Ar-
tificial Intelligence Laboratory, 1981.

Engberg, U. and Nielsen, M., A Calculus of Communicating Systems
with Label-passing, Report DAIMI PB-208, Computer Science Depart-

ment, University of Aarhus, 1986.

Girard, J.-Y., Linear Logic, Journal of Theoretical Science, Vol 50,
ppl11-102, 1987.

Hennessy, M. and Milner, R., Algebraic Laws for Non-determinism and
Concurrency, Journal of ACM, Vol 32, pp137-161, 1985.

Milner, R., Fully Abstract Models of Typed Lambda-calculi, Journal of
Theoretical Science, Vol 5, pp1-23, 1977.

Milner, R., Communication and Concurrency, Prentice Hall,
1989.

Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Pro-
cesses, Parts I and II, Report ECS-LFCS-89-85 and -86, Laboratory
for Foundations of Computer Science, Computer Science Department,
Edinburgh University, 1989.

Nielsen, F., The Typed A-calculus with First-class Processes, Report
ID-TR:1988-43, Inst. for Datateknik, Tekniske Hojskole, Lyngby, Den-
mark, 1988.

Ong, C-H.L., Fully Abstract Models of the Lazy Lambda Calculus, Proc
29th Symposium on Foundations of Computer Science, pp368-376,
1988.

Plotkin, G.D., Call-by-name and Call-by-value and the A-calculus,
Journal of Theoretical Science, Vol 1, pp125-159, 1975.

Thomsen, B., A Calculus of Higher-order Communicating Systems,
Proc 16th Annual Symposium on Principles of Programming Lan-
guages, ppl43-154, 1989.

28

Imprimé en Francc
par
I"Institut National de Recherche en Informatique et en Automatigue

o

[N}

