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Résumé

Dans cet article, nous établissons des formules générales quantifiant 'impact sur les
performances d’une modification des parametres d’un réseau BCMP [3]. Ces formules
montrent que la dérivée par rapport a n’importe quelle intensité de service/arrivée de
'espérance mathématique de n’importe quelle fonction ® de I’état du réseau, s’exprime
simplement en terme de fonctions connues de ’état du réseau. Des résultats de sen-
sibilité portant, en particulier, sur les débits et sur les distributions des longueurs des

files d’attente sont alors facilement obtenus par différents choix de la fonction ®.

Mots-Clés: Théorie des Files d’Attente; Réseaux de Files d’Attente & Forme Produit;

Sensibilité; Monotonicité.
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Product-Form Queueing Networks
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Abstract

General formulas are proposed to quantify the effects of changing the arrival and service rates
in the so-called BCMP network [?]. These formulas relate the derivative of the expectation of
any function @ of the state of the network with respect to any arrival/service rate in the network,
to known functions of the state of the network. As an application, sensitivity results of interest
bearing on throughputs and on the moments of queue lengths can be derived by appropriate

choices of the function ®.

Keywords: Queueing Theory; Queueing Networks; Product-Form; Sensitivity; Mono-

tonicity.



1 Introduction

Although the use of queueing networks in the modeling and analysis of telecommunication networks
and computer systems was initiated with the work of A. K. Erlang [9] a‘t the beginning of the
century, it became widespread only after the pioneering work of Jackson [11], Gordon and Newell
[10], Baskett, Chandy, Muntz, and Palacios [3], and Kelly [14] on a special class of queueing networks
known as product-form queueing networks. The nice feature of product-form queueing networks is
that for certain classes of Markovian networks, the solution of the balance equations is in the form
of a product of simple factors. Afterwards, various generalizations were obtained that extend the
product-form property to state-dependent routing [26], non-differentiable service time distribution
functions [21], stationary dependent service times [12], and concurrent classes of customers (6], [15].

A fairly complete survey on product-form queueing networks can be found in (8].

Besides these theoretical results, efficient computational algorithms for computing the main
performance measures (expected number of customers at a given node, mean waiting times, mean
sojourn times, utilization factor of each node, throughputs, etc.) have been proposed by Buzen
[4], Reiser and Kobayashi (18], Chandy and Sauer [5], Reiser and Lavenberg [17], and Conway and

Georganas [7].

More recently, “first-order qualitative properties” of queueing networks are receiving attention
in the literature. These studies aim to determine the sensitivity of various performance measures
of the network with respect to particular parameters such as arrival rates, service rates, number of
servers, number of customers for closed networks, etc. For closed product-form queueing networks
with a single class of customers, Stewart and Stohs [25] have shown that if the service rates are
load independent, then the system throughput increases when the service rate of one of the queues
increases. This result has been generalized by Shanthikumar and Yao [22] to the case where the
service rates are nondecreasing functions of the queue lengths. For the same network, Shanthikumar
and Yao [23] have also investigated the effect of increasing the customer population on the queue
lengths. Monotonicity properties in product-form queueing networks with loss of customers have
been established by Nain [16] and Ross and Yao [19]. Monotonicity results have also been derived
lately for non-Markovian queueing networks by Adan and Van der Wal (1], Shanthikumar and Yao
[24], and Tsoucas and Walrand [27].

These properties have been obtained using stochastic comparison techniques involving different
stochastic orderings, coupling and pathwise arguments. However, these probabilistic methods do
not provide formulas enabling one to quantify the impact of a model parameter modification on

the network behavior (e.g., rate of increase /decrease of any monotonic function of the state of the



network, etc.).

In this paper, we consider the network studied by Baskett, Chandy, Muntz, and Palacios [3],
referred to as the BCMP network, and we analyze the sensitivity of an arbitrary function ® of the
state of the network with respect to the arrival and service rates at any node. More precisely, we
show that the derivative of the expectation of any function & of the state of the network with respect
to any arrival/service intensity, provided this quantity is well-defined, can be expressed simply in
terms of known functions of the state of the network. A similar approach has been employed by

Jordan and Varaiya [13] to get sensitivity results in a generalized Erlang loss system.

Our results can be used to analyse both quantitative and qualitative effects of modifying model
parameters. For instance, monotonicity or nonmonotonicity properties for the moments of queue
lengths at a given node, the throughput of a given class of customers at a given node, etc., can be
found. In particular, some of the monotonicity properties obtained in [22] can easily be derived
from this approach. Furthermore, these results can also be used for optimization purposes by

appropriately choésing the “cost function” .

' The paper is organized as follows. In section 2 we recall the main features of the BCMP network
and introduce some definitions and notation. Section 3 contains the key results of the paper. In

section 4 we present some applications.

2 The Model

The network considered in this paper is similar to that analyzed in [3], the only difference being in

the modeling of the exogeneous arrivals (see below). ,

There are N > 1 stations and R > 1 different classes of customers. Customers travel through
the network and change class according to transition probabilities. Thus a customer of class r which
leaves station i upon its service completion will enter station j as a customer of class s with the
probability p;,.;s. The transition matrix [pi;;s] defines a Markov chain whose states are labeled
by the pairs (4,7). This Markov chain is assumed to be decomposable into L ergodic subchains.
Denote by Ey, Es,...,Er the sets of states in each of these subchains. ‘A customer of class r at
station 7 is called a customer of type (¢,7). A customer of type E; is a customer whose type belongs’

to E;.

Customers may arrive at the network from NR external sources according to independent
Poisson processes. To be more specific, define M;(S) to be the number of customers of type E;

when the state of the network is S (to be made more precise). Then, the exogeneous arrival rate



of customers of type (i,7) € E; is Airvi(Mi(S)), where Air > 0 and that v is an arbitrary mapping
IN — [0,+00) that does not depend on {); }i (here IN := {0,1,2,...}).

If Aiy =0forall 1<¢< N,1< 7 < R, then the network is closed. If there exists a partition
(La,Lp) of the set {1,2,...,L}, such that

Vi,rye U B M =0,
l€L 4

and
Vie Lg 3(i,r) € E Air >0,

then the network is mized. If for all 1 < | < L there exists (i,7) € E; such that \;; > 0, then the
network is open. We say that E; is closed if A;; = 0 for all (i,7) € E; and that Ej is open if for
some (i,7) € Ey, Air > 0.

In case Ej is open, then we assume that there exists at least one state (i,r) € E; such that

0< Y Pims <1 (2.1)
(jl‘,)eEl

Thus, 1 = 32(; s)eE, Pirr;j,s is the probability that a customer of class r leaves the system upon its

service completion at station .
Four distinct types of service stations are considered:

Type 1. The service discipline is First-Come-First-Served (FCFS) and multiple servers are allowed.

All customers have the same service time distribution which is a negative exponential.
Type 2. There is a single server and the service discipline is Processor Sharing (PS).
Type 3. There is an Infinite number of Servers (IS).

Type 4. There is a single server and the service discipline is preemptive resume Last-Come-First-
Served (LCFS).

When station ¢ is of type 1, we write 1 € FCFS. The notation i € PS, 7 €IS and ¢ € LCFS will

have the obvious meaning.

For 7 € FCFS, let p; ai(n) be the service rate at station ¢ when there are 7 > 0 customers
at this station. For stations of type 2, 3 or 4, each class of customer may have a distinct and
arbitrary service time distribution (Gl-servers). For i € {PS, IS, LCFS}, let 1/u;, denote the mean

value of the service time of a customer of class r at station i. We further assume that «; is an
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arbitrary mapping IN — [0, +00) with a;(0) = 0, which does not depend on the model parameters

{’\ira 223} ﬂir}ir~

Let X;, denote the number of customers of class r at station i. The state of the network is

S = (X1, X,... ,X~N) where X; = (X1, Xiay .- Xip)fori=1,2,...,N. Set |X;| = Zf:l Xir.
The joint equilibrium distribution of queue sizes in the network is [3], [14],
P (S = (21,22,...,2n)) = Cd(5) g1(z1) g2(22) - - - gn(n), (2.2)

where C is a normalizing constant and d(S) is a function of the number of customers in the system.

If the network is closed then d(S) = 1, otherwise

My(S)-1 ‘ |
d($) = I {AW’ I w(m)}, (2.3)

leLo m=0

where Lo := {l| 1< I < L, E, is open} and where A; := E(i,r)eE; Air foralll € Lo.

Let z; = (ni1, ni2,...,7R) and n; = Zf:l nir. Each gi(z;) in (2.2) is a function that depends

on the type of station i:

o if station 7 is of type 1, then

ni R ni
([ ) (£2):

m=1

o if station 7 is of type 2 or 4, then

gi(z:) = n;! f[ {(%) " (ni!)}; (2.5)

r=1

e if station ¢ is of type 3, then

o= {(2) ()

r=1

The e;;’s satisfy the following set of linear equations [3]:

eir = gir(1) + Z €js Pj,siirs (2.7)
(j,S)EEl



for all (i,7) € Et, 1 = 1,2,...,L, where

'\ir .
—, if Ay > 0

g():={ A N0 (28)
0, if A;y = 0.

3 Sensitivity Results

From now on we assume that the network is in equilibrium. Two types of sensitivity results are
derived in this section: sensitivity results with respect to service rates (Theorem 3.1) and those

with respect to exogeneous arrival rates (Theorem 3.2).

N
Let us introduce some notation. Let & be a mapping (INR) — [0,400). We say that @

satisfies assumption A1l (resp. A2, A3) if

8%d(z) _, [88(S) IE[S(S)] . .
1. 97 ,E[ py ]and——az—'—eXISta

OE 0 P(S=
o, PO _ 5~ 20WR(S =)

yEF

for z € {p;}; (resp. z € {pir}ir, 2 € {Nir}ir), where F denotes the set of all feasible states for the

network under consideration (i.e., open, closed, or mixed).

Wé now state the first result of this section.

Theorem 3.1 Assume that ® satisfies assumption A1. Then, for i € FCFS,

9E [2(5)] 99(S)]  cov(®(S),|Xi])
=E - . (3.1)
Opi. Op; Hi
Assume that ® satisfies assumption A2. Then, for i € {PS, IS, LCFS}, 1< r <R,
JE [®(9)] _E [8@(5)] B cov(@(S),X;r)' (3.2)
Oty Opir Mir

Proof. Assume first that i € FCFS. It follows from (2.2) and assumption A1 that

OE [8(5)] 9 1
o = ga_m{Cd(y)q’(y)ggk(zk)}’

0



- czd()(a‘l’f))ngk( 0+ (5o )Ed(y)é(y)ngk (21)

yeEF yEF
+ C)dy)8(y) ( II gk(zk)) (3.3)
yeF Hi k=1

Using (2.4) it is easily checked that

H gr(a) = - H gr(ni). (3.4)

B pa e
Now differentiating the identity

1

) 2yerd(y) H;cv'=1 gk(-’L‘k), (3.5)

we obtain

i vEF

gi ( Y dy) H gk(mk))

which, together with (3.4), yields

oCc  C
3 = Pl (3.6)
Consequently, cf. (3.3), (3.4), and (3.6),
OE[9(S)] _ [34’(5)] E[IX:[IE(2(5)] _E[2(S)|X]
A i Wi Hi ’
_ o [2R(8)] _ cov(@(8),1X:])
- E[ Opi ] i '

The proof of (3.2) follows similarly by observing that from (2.5) and (2.6),

Hgk(-’vk =—-— Hgk (k).

au“" k— 11" k= 1
This yields
oc C

=—E X:"r )
auir Hir [ ]

for i € {PS, IS, LCFS}. g

Let us assume that the network is either open or mixed. We now state the second result of this

section that establishes sensitivity results with respect to exogeneous arrival rates.



Theorem 3.2 Assume that ® satisfies assumption A3. If there erists an external source of cus-

tomers of type (i,r) € E, then

JE[®(S)] _ 3%(S)] , cov(®(S), M(S)) de;r \ cov(®(S), Xir)
N, £ [ Air + A I + (3/\ir) €ir ' (3-7)
In particular, if By = {(i,7)}, then
OE[®(S)] _ [09(S)] , cov(®(S),M(S))
v e T (35)

Proof. Assume that (i,r) € E;. We have, cf. (2.2) and assumption A3,

aEaEi(rS)] = cY (3@(9)) d(y) Hgk(:ck) + (a,\ ) Z ®(y) d(y) H ak(zx)

yEF

+ CY e (ad(”)) [Lowz0) +¢ T 20)d) ( o 11 gk(mk)) (39)

yeF yeF

From (2.2), (2.4)-(2.6), it is easily seen that

9 N Nir aeir N
BAir kglgk(xk) - —C: \aAir> Hgk(xk)° (3.10)

It follows from (2.3) that

9d(y) M(y)
e = L2 d(y). (3.11)

By differentiating (3.5) with respect to A;; and by using (3.10) and (3.11), we obtain

oc _ (E[MI(S)] N (3%) E[Xir]) c

OAir A ANi:) e (3.12)

Substituting (3.10), (3.11), and (3.12) into (3.9) yields (3.7).

It remains to check that
aeir

Dy 0

in (3.7) whenever E; = {(i,7)}. In this case, g; = 1 from (2.8), 50 €;r = 1/(1 — pipyir) from (2.7),
and therefore de;, /0\;; = 0, which completes the proof. g

¥
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Remark 3.1 The qua,ﬁtity deir |0);r involved in (3.7) can be computed by solving the linear
equations, cf. (2.7),

a ' s a ' 8 l 38 ' ! .
b% = _gjx.(__) + Z Pj'\s'i4,s —é—;—'_-’ V(],S) € El, (3.13)
r r (j,s)eEl ir
where (cf. (2.8))
A=-Qis L, . .
y if (4,8) = (i,7);
danll) _ | "R

aAir 1 . ; .
—XIE’ if (.7’3) # (l,’l‘).

It follows from assumption (2.1) that {9e;,/dXir}(;,s)eE, is the unique solution of (3.13).
Remark 3.2 As mentioned in (3], pp. 256-257, the product-form (2.2) is preserved when various
forms of state-dependent service rates are incorporated in stations PS, IS and LCFS. If so, formulas

(2.4)-(2.6) have to be modified accordingly but Theorems 3.1 and 3.2 remain valid provided the

introduced service dependencies do not involve the model parameters {A;r, i;, tir }ir-

4 Applications

Many results of practical interest can be derived from Theorems 3.1 and 3.2. We point out some of

them below. Recall that any point z in the domain of definition of the function ® can be written as

z = (21, %2,...,2N) With ; = (n;1, 742, ... ,n;R), where n; € IN. Also recall that n; = Z?:l Nir.

4.1 Sensitivity of queue lengths

Let f be any nondecreasing mapping IN — [0, +00).

1. 8(z) = f (Tjeny 7)» Nz € {1,2,..., N}

Then, for i € FCFS, cf. (3.1),

OF [J (Tjen 1Xil)]  cov (£ (Siens 1%51) ,1X:)
EW ST : : (4.1)
My Hi

Assume that Nz = {¢}. Then, the right-hand side of (4.1) is nonpositive since the random
variable f(|X;|) is stochastically increasing in |X;|, which implies that cov (fUXi),1X:)) >0
(see [2], Theorem 4.7, p. 146). Therefore,



® |Xi| is decreasing in p; in the sense of stochastic ordering ([20], pp. 251-252) for all
: € FCFS.

o As a consequence, )4, |X;| is increasing in y; in the sense of stochastic ordering when

the network is closed, for all i € FCFS.
2. ®(z) = f(njs) with (j,8) € E,.
Then, for i € {PS, IS, LCFS}, cf. (3.2),

OE [f(Xjo)] _ _ cov(f(Xjs), Xir)

. 4.2
aﬂir Hir ( )

Similar to case 1 above, we deduce from (4.2) that

¢ X, is decreasing in u;, in the sense of stochastic ordering;

® > (.s)#(ir) | Xjs| is increasing in p;; in the sense of stochastic ordering when the network

is closed,
for all i € {PS, IS, LCFS},1< r < R.
3. Assume now that E; is open and that E; = {(j,s)}. Then, cf. (3.8),

OE [f(Xjs)] _ cov(f(Xjs), X;s)
9 s ’

(4.3)

which shows that

® Xj; is increasing in A, in the sense of stochastic ordering, forall1 < j < N,1<s<R.

The interested reader can also derive formulas for 9E [f(X js)]/Op; for i € FCFS, and for
OE[f(X;))/Buir for i € {PS, IS, LCFS}).

Note that the results in applications 1 and 2 generalize earlier results of Shanthikumar and Yao
(see [22], Corollary 3.1) to arbitrary state-dependent service rates (see Remark 3.2) and multi-class

closed/open/mixed queueing networks.
4.2 Sensitivity of throughputs

N,s . .
1. ¥(z) = yj,-;’j— 1(n,,>0} With (j,s) € E.

10
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Then E[®(S)] = u;,E [(st/lX,-l) 1{X,»,>0}] is the throughput of customers of class s in
station j if j € PS and if E; is closed.
For ¢ € PS, we have, cf. (3.2),

IE [2(5)] E[®(S)]  pis
—y— =1 i,r)=(J,s - —C0
aﬂ’ir _ {Gn=G)} Hir Hir

Xis
v (I—-’_(]ﬁ 14 xj,>0};X,-,) . (4.4)
If only customers of class 7 may visit station i and if (j,s) = (i, r), then (4.4) becomes

OE[®(S5)]

op = F (Xir > 0) - E[Xir] P (Xir = 0).

2. ®(z) = pjs njs with (j,3) € E;.
Then E[®(S)] = p;sE[X;s] is the throughput of customers of class s in station j if j € IS
and if F; is closed.

We have, for i € IS, cf. (3.2),

OE [®(S 'R
-—a[u—;(;—)l = 1{(,",):(‘,‘,.,)}}3 [Xjs] — -/—‘—ff cov (Xjs, Xir). (4.5)

If (¢4,7) = (4, s), then (4.5) reduces to

OE [8(S)]

o = E [Xir] — var (X;,).

3. ®(z) = pja;(n;) with (4,s) € E;.
Recall that @;(0) = 0. Then E[®(S)] = u;E[a;(|X;|)], and E[$(S)] is the throughput of
station j if j € FCFS and if E; is closed.
We have, for : € FCFS, cf. (3.1),

@%SJ = Lgims) Bl (1,1)] = 2 cov (e (151, X0 (4.6)

If ¢ = 7, then (4.6) simply becomes

OE[8(S)] _

O E [o;(IXi)] = cov (eu(]X3), 1 X:1).

The reader is encouraged to establish cross term derivatives, e.g., the derivative of an FCFS

station with respect to the service rate of an IS station.

11



4.3 Numerical approach to optimization problems

Many optimization problems in queueing networks are formulated in terms of the search for an
optimal value of a system parameter so that some cost function is minimized/maximized. In
general, the cost function is expressed as the mathematical expectation of a function of the system

state.

One of the most direct ways of solving this kind of problem is to compute the derivative of
the cost function with respect to the system parameter and to find the minima/maxima of the
cost function. Unfortunately, this approach is often unfeasible because the derivative of the cost

function is hard to obtain.

In product-form networks, however, owing to the Theorems 3.1 and 3.2, the determination of the
derivative is reduced to the computation of the covariance of certain state variables. This provides
a new approach, at least from a numerical point of view, to the solution of certain optimization

problems.

As an example, let the cost function be E[a]|X;| + by;], where a and b are nonnegative real
coefficients representing holding and service costs, respectively, and where | X;| is the queue length
of an FCFS station ¢ in a BCMP network and u; is the service rate. One might want to find a

value of p; that minimizes this cost function. Using Theorem 3.1, one obtains

oE [IZX,~ + bu;]

a
= b~ —var(X;). 4.7
Op; Hi (X3) (4.7)

Thus, the problem reduces to the computation of the roots of the right-hand side of equation (4.7).

4.4 Correlation between state variables

Let us choose ®(z) as in application 1 of section 4.1. Assume that the network is closed and that
there is only one class of customers. Let T; denote the throughput of station 7, 1 < i < N (cf.
section 4.2). Then,

cov (f(1X;]), 1X:]) < 05 (4.8)
cov(T},|Xi]) <0, (4.9)
for all ¢ # j, and
cov (f ( > |X,~|) ,|X,-|) >0, (4.10)
JENT

»

n
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for a.ll i€ NI, prov1ded the service rate at each statxon is a nondecrea,smg function of the total

number of customers at that station.

" The proof of (4.8) and (4 10) (resp (4 9)) follows dlrectly from (4. 1) (resp (4 4)- (4.6)) together
with the following result due to Shanthikumar and Yao ([22), Corollary 3.1). In a closed network
with a single class of customers, let (N4, Ng) denote any nontrivial partition of {1,2,...,N}; then

1. |X;] (7 € Na) is increasing in p; in the sense of stochastic ordering for all 7 € Ng;
2. Yjeny |X;| is decreasing in p; in the sense of stochastic ordering for all ¢ € Ng,

3. T} is nondecreasing in yu; forall € Ng, 1< j < N,

provided (i) the service rate at station i is nondecreasmg in |X;| for all ¢ € N4, (ii) card Ng = 1 or

card NB > 2 and the service rate at station 4 is nondecreasmg in | X;| for all i € Ng .

5 Conclusions

In this paper, we have revisited quantitive and qualitive analysis of the BCMP network. Various
formulas have been established that relate the derivative of the:expectation of any function ® of
the state of the network with respect to any arrival/service rate in the network, to known functions

of the state of the network.

As an a,pplicatioh of these results, We have shown tha,t monotonicity /nonmonotonicity proper-
ties of the throughputs and of the queue length moments (some of which are known in the literature)
can easily be derived by appropriately choosing the function ®. As formulas in section 4.2 sug-
gest, in general the throughputs in mixed/closed BCMP networks are nonmonotonic in the’ system

parameters.

It is worthwhile to note that the results obtained in the paper provide an approach to the
numerical computa.tlon of the derivatives of the expectatlon of an arbitrary function of the system
state with respect to arrival and service rates in the queuemg network, and is thus of particular

interest for numerical solutions of various optimization problems arising in queueing systems.
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