Clustering criteria for discrete data and latent class models

Abstract : We show that some well known clustering criteria for discrete data, the information criterion and the c2 criterion, are closely related with the classification maximum likelihood criterion for the latent class model. Emphasis is placed on binary clustering criteria which are analyzed under the maximum likelihood approach for different multivariate Bernoulli mixtures. This alternative form of criteria reveals non-apparent aspects of clustering techniques. All the discussed criteria can be optimized with the alternating optimization algorithm.
Type de document :
Rapport
[Research Report] RR-1122, INRIA. 1989, pp.9
Liste complète des métadonnées

https://hal.inria.fr/inria-00075437
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 18:12:41
Dernière modification le : samedi 17 septembre 2016 - 01:06:51
Document(s) archivé(s) le : mardi 12 avril 2011 - 18:55:54

Fichiers

Identifiants

  • HAL Id : inria-00075437, version 1

Collections

Citation

Gilles Celeux, Gérard Govaert. Clustering criteria for discrete data and latent class models. [Research Report] RR-1122, INRIA. 1989, pp.9. 〈inria-00075437〉

Partager

Métriques

Consultations de la notice

201

Téléchargements de fichiers

252