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A NEW SUFFICIENT CONDITION FOR THE
WELL-POSEDNESS OF NON-LINEAR LEAST
SQUARE PROBLEMS ARISING IN
IDENTIFICATION AND CONTROL

Guy CHAVENT
CEREMADE, 75775 Paris Cédex 16
INRIA, BP 105, 78153 Le Chesnay Cédex

Abstract

We show how simple 1-D geometrical calculations (but along all maximal segments
of the parameter or control set!) can be used to establish the wellposedness of a non- v
linear least-square (NLLS) problem and the absence of local minima in the corresponding
error function. These sufficient conditions, which are shown to be sharp by elementary
examples, are based on the use of the recently developped "size x curvature” conditions
for prooving that the output set is strictly quasiconvex. The use of this geometrical theory
as a numerical or theoretical tool is discussed. Finally, application to regularized NLLS
problem is shown to give new information on the choice of the regularizing parameter.

Résumé

Nous montrons comment des calculs géométriques 1-D trés simples (mais a effectuer
le long de tous les segments maximaux de ’ensemble des parameétres ou controles admis-
sibles!) permettent de montrer qu’un probléme de moindre carrés non-linéaires (MCNL)
est bien posé et ne posséde pas de minima locaux. Ces conditions suffisantes, que I'on
montre étre précises sur des exemples élémentaires, résultent de I'utilisation des toutes
récentes condition de "taille x courbure” pour montrer que l’ensemble des sorties est
quasiconvexe. On discute ensuite de l'utilisation possible de cette théorie géométrique
comme outil numérique ou théorique. On Papplique enfin au probleme MCNL régularisé,
ce qui donne des informations nouvelles pour le choix du paramétre de régularisation.

Key words : Non-linear least squares, parameter estimation, identification, inverse prob-
lems.

Mots clefs : Moindres carrés non linéaires, estimation de parametres, identification, problemes
inverses.
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‘A NEW SUFFICIENT CONDITION FOR THE

WELL-POSEDNESS OF NON-LINEAR LEAST
SQUARE PROBLEMS ARISING IN . .
IDENTIFICATION AND CONTROL

UNE NOUVELLE CONDITION SUFFISANTE
POURQU'UN PROBLEME DE MOINDRE CARRES
NON LINEAIRE ISSU DE L'IDENTIFICATION
OU DU CONTROLE SOIT BIEN POSE
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1 Introduction

' Parameter éstimation prohlems are often set as output-least square problems and solved
niiimerically as such. But usually many theoretical and practical problems stay open, as ex-
‘isteniceand 'uniqueness’ of the global minimum, possible existence «of local minima (whwh are
highly undesirable frony a computational point of view), stability. of the global minimum with
respect to the data ... The reason is that.the parameter — output mapping usually exhibits
no interesting mathematical properties except regularity. Hence we have tried to dpvelop, in
- aserie of papers (1] [2] (3] [4] [5), some quantitative sufficient conditions for the we)l-posedness
of the non linear least squares problem, following the intuition that this well-posedness should
hold as soon as the size of the output set (on wich one projects the data) j Is not tog large”
with respect ta its curvature. We jllustrate in this paper how the miost precise "size X curva-
ture” conditions developped in [5] can be used to obtain xqs;gh@ into well-posedness, stabxllty
and'local minima of non-linear least square problems.

We refer to the introduction of (3] for a more detailed dlspussxon of the motivations to this
approach, and to reference [6] for an example of application of these techpique to a plane
wave inversion problem. |

¢

2 The non-linear least square prohlem

We consider a Parameter space” E, a "set of admissible parameters” C, a "data space” F
and a "parameter — output mapping” ¢ satisfying

E = DBapach space, with norm ||||g
2.1) : C = vCloseq convex set of £ -
7. . ] F = -Hilbert space, with scalar product <, >p
‘o : C — Fa C*-mapping, with p,¢' and ¢” bounded over C

The inversion of a g:veq ”data
(2.2) z€F

in the least-squares sense reads then ;
(2.3) find £ € C such that J(z) = ||¢(z) - z||} = min over C

which is.the non-linear least-square problem we want to investigate, Of course, well-posedness
of problem (2.3) does not hold under the sole hypothesis (2,1), and a classical way to enhance
the behaviour of (2.3), in the absence of other infonqation on g, is to replace (2,3) by its
Tychonov regularization

(23) { find 2. € CnEsuch that
il J(z) = llo(=) - zlif + €z ~ xolf} = minover CN ¢
where - - v ,
€ CE isan Hilbert subspace of E, with scalar product <, >¢
2.4) Tg €& isagiven " a priori guess” for the ynknown parameter
{ € >0 is the regularization parameter
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Usually, £ is chosen to 1mbed compactly in E, which anutomatically ensures existence of a
-solution to (2.3)e, but does. not: give any. hint on uniqueness, stability of: #; and local minima

SR of. J.. On'the contrary, the Hilbert-type. techniques-used in this paper will allow to skip the

o compactness hypothesis .(for example chosing £ = E - provnded E-itself is an Hilbert) and
yet proove the well-posedness of (2. 3)e for large enough € -

Of course, (2 3) can be wntten in the sa.me form as (2. 3) by a paper choice of E, F,¢
-and z, namely :

-E replaced by E =&
- - | € replaced by C, = CNE - g ; "
(2.5) { F replaced by F.=Fx £ with. the scalar product <X, Y >r+<z,y>¢
-t | "o replaced ¢, = (go,eI) o ’ . ,
z " replaced by 2z, = (z,€20)

Hence we shall first state our results for problem (2.3), aud then specialize them to the
~ case (2 5) of the regulanzed problem. '

3 Pathes -and Related -geometriéal ‘aftributes'
- The main step to obtain the well- posedness of (2.3) will be t6 proove that (p(C ) is a strictly
"quasmonvex set, as this will imply the existence of a neighbourhoad of ¢(C) on which the

" projection on (p(C) is well behaved. Hence we need to equip ¢(C) with a collection P of
pathes, wich we simply choose to be the image by ¢ of- all segments of C:

ey P = {p((z,9]),z 'y € C}
= for wh1ch a subfa.mxly of maximal pathes (cf [5]) is obvnously glven by
32 - Pm= {o([z ,yl),w y e 06']}
where 50 is, the relatlve boundary .of C A path P = ga([:l: y]) of P is naturally parametized
i.bytE[O 1] Co . :
33) . o P(t) = p((1- )z #1y)

‘and we can define the velocity V() and acceleration A(t):associated to this parametization
.by Coee . . v ' i . et . ' . : ’ ; o ~ ‘

L (84) e LV = 'm)(y-x) |
with 0 vE T
(3.5) \ Ty = (1 —~t)rc + ty.
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‘The. theory. requires that pathes can be reparametized as C*-function of the arc-length v,
which satisfies : ;

(3.6) dv = ||V (t)||dt

Hence at points ¢ of a path where V() # 0, the velocity v(t) and acceleration a(t) with
respect to are length v are given by

V()
v(t) =
VT
B a = AQ_, AD

Vor ™S "TVor

and their norms by :

(38) { Il = ||A(t)|| A(t)
le®l = vert= < TEen

At pomts to of a path where V(to) = 0, one may still define v(t) and a(t) by continuity

>2)

' provided that’

(3.9) ‘V(‘to) PN { The right-hand sides in (3.7) are defined

and have a limit when t — to, t # to

Notice that (3.9) holds automatically as soon as ¢'(z) is injective for any z in C!
Now that ¢(C) is equipped with C2-pathes with respect to the arc-length, we define the
radius of curvature p(t) of a path P = ¢([z,y]) at parameter ¢ by :

| L _lvar _A() S ver
(3.10). o) = la®I™ = e = < aep > 2 Tam)

Following [5], we introduce also the global radius of anvature pg(t,t') of P at t seen from
t', which is given by the formula

(0 if Sgn(t —t)< P —Pv' > <0

Sgn(¥ —t)< P'=Pv'> if Sgn(t' —t)<P' =Pv'> >0
(311) pG(t, t,)< (1_ < v, Y >2)é‘ and < v, v >2 0

if Sgn(' —t) < P'~Pv'> >0

; and < v,v' ><0

where P, P',v,v'. .. stand for P(t), P(t'),v(t),v(t') ... with the conventjon that pe(t,t') = 400
if Sgn(t' —t) < P'— P,v >>0and <v,v' >=1.

Sgn(t' —t) < P'— P,v' >

Geometrically, pg(t,t') is the distance of P(t) to the intersection of the two half spaces
normal to each end of the subpath of P located between P(t) and P(t'). It is related to the
usual radius of curvature p(t) by

(3.12) lim p(t, ) = p(t)



We denote also by §(%,t') the arc length between the two points P(t) and P(t') of the path
P = o([z,y]) :
(313) “ sty = [ vinldr
and by O(t, t’) the deflection between the path directions at the two same points ;
(3.14) O(t,t') = cos™I(< v(t),v(t) >)(in radian),
which statisfies (cf [5]) :
o ‘ 13 t! , ¢
o o[ 550 il <o ke ke

These geometrical quantities are used to associate to the non-linear least square problem
itself, ie to C, ¢ and P, the following numbers, which shall be relevant for the study of its
wellposedness :

(3.16) R(C, ¢, ’P) = zlgléfc t éféfx] p(?) (smallest radius of curvature)

(‘3'".17) Rs(C,p,P) = il}sfc . pc(t,t') (smallest global radius of ¢urvature)
z,y 4
(3.18) A(C,p,P) = sup sup é(t,t') (largest path length)
: zy€C tt'€l0,1)
(3.19) O(C,p,P) = sup sup O(t,t') (largest path-deflection)

z,y€C t,t'¢g0,1]
Of course, from (3.12) we see that

In practice, our sufficient conditions for wellposedness will require only to know lower and
upper bounds to the above quantities, which we shall denote by the same letter, but without
arguments :

R < R(C,p,P)

Rsz < Rg(C,e,P)
(3.21) A > AC.oP)

© 2> O(C,p,P)

In view of (3.20) it is reasonable to suppose that R and Rg has been chosen such that as to
satisfy : :
(3.22) Rz <R

For example,its easy to check that the following choices for R, A and © satisfy (8:21):

(3.23) R = inf inf A€E)Ny—2)°
=€dC tef01] [|"(zo)(y — =,y — z)||

 (3.24) A

= o [l - olat
_ l¢"(z)(y — =,y — )|
3.25 =
(8.25) 0 = s [l lPEG - &

where z; = (1 — t)z + ty. We recall also theorem 6.7 of [5] which allows to obtain a lower
bound R to Rg(C,y,P) in terms of R, A and O :

6



Theorem 3.1 Let R, A, O satisfy (3.21). Then :

_ R ifOSGSW/2
(3.26) R —{ Rsin® + (A — RO)cos® ifn/2<O <™

satisfies (9.21) and (3.22).

4 Wellposedness of the non-linear least square problem

We consider now the non-linear least square problem (2.3), which throughout all this para- |
graph is supposed to satisfy hypothesis (2.1) and (3.9) at least. When it comes to actual
numerical resolution of (2.3) by an optimization algorithm, it is of utmost importance that
the objective function J(z) has no local minima. Hence we shall incorporate this property
into our definition of wellposedness :

Definition 4.1 (Q-well posedness) The non-linear least square problem (2.8) is said to be
Q-wellposed on some open neighborhood ¥ of p(C) for some pseudo distance é(z,y) on C if
and only if : :

(i) for any z € 9, there ezists a unique solution & of (2.3)
(ii) the z~ & mapping 1s Lipschitz continuons from (9, ||||r) to (C,é(z,y))

(iii) for any z € 9, J is strictly quasiconves, (ie has no local minima distinct from &), and
any minimizing sequence converges to & for 6(z,y).

If we take 6(z,y) = ||z — y||g and drop condition iii), the above definition reduces to
Output Least Square Identifiability (OLSI, cf [2]) introduced in the context of parameter
estimation. In the general case, Q-wellposedness is both weaker (because stability is required
‘only for é(z,y) instead of ||z — y||g) and stronger (because it requires strict quasiconvexity
of J) than OLSL.

The pseudo-distance §(z,y) on C which appears quite natural for the NLLS problem (2.3)
is the arc length, in data space F, of the path ¢([z,y]), ie, with notations (3.5) :

(4.1) 52,9) = [ I/ (@)w - 2)lrde

Of course, if one makes the additional hypothesis that beside being bounded over C as
stated in (2.1), ¢'(z) admits a pseudoinverse which is also bounded over C, or in other temns
that

(4'2)‘ { dops > a >0 such that

an|ylle < Jl¢'(z)yllr S amllylle VzeCVyeE

then 6(z,y) becomes equivalent to the usual norm in E :

(4.3) anllz —yllg £ 8(z,y) L amllz —y|lg Vz,y€C
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It is now very easy to use the results of [5] to establish well-posedness results for (2.3).
We begin with the most precise condition :

Theorem 4.1 (Rg-sufficient condition) Let hypothesis (2.1) and (3.9) hold, and R > Ry be
lower bounds to R(C,p,P) and Rg(C,¢,P) as defined in (3.16) (3.17) and (3.21).

If :

(44) | Rg >0

(4.5) ¢(C)closed in F

Then :

i) The NLLS problem (2.3) is Q-wellposed on

(46) 9 = {z € Fld(2,¢(C)) < Rs)

for the pseudo-distance é6(x,y) on C defined in (4.1).
1) More precisely, if z; € 9,7 = 0,1 satisfy

(4.7) 120 = z1|lr + maxd(2;,¢(C)) < d < Rg

for some d, then the corresponding solutions £;,7 = 0,1 of (2.3) satisfy the stability esti-
mate :

(4.8) 0(Zo,%1) < (1 - d/R)'IHzo — 21|
Proof :

Hypothesis (2.1) (3.9) and (4.4) imply, using theorem 5.12 of [5], that ¢(C) is strictly
- quasiconvex with a neighborhoad ¢ given by (4.6), which, together with the fact that o(C)
is closed, implies existence, uniqueness and Lipschitz stability of the projection on (C) all
over ¥, and absence of local minima by theorems 3.6, 3.9 and 3.5 of [5]. OO

Of course, if the strong estimate (4.2) on the derivative ¢'(z)-the so-called ”sensitivity .
Matrix” in the finite dimensional case-holds, then one obtains stability for the ||z — y||g
distance on C, and ¢(C) is necessarily closed :

Corollary 4.1 Let hypothesis (2. 1) and (4.2) hold, and R > Rg be lower bounds to R(C,p,P)
and Rg(C,¢,P) as defined in (3-16) (3.17) and (3.21).

If :

(4.9) R >0

Then

(4.10) @(C) 1s closed in F

and conclusions i) and zz) of theorem (4.2) hold, with (4.8) replaced by

(4.11) anlldo = 1lls < (1 - d/R) 20 - 21



. The above theorem can be seen as a generalization of the local inversion theorem or implicit
function theorem to the case where the range of ¢'(z) can be strictly 1ncluded in F, so that
the equation ¢(u) = z can be.solved only in the least-square sense. :

:. . We come now to a slightly. less precise condition, based on-the lower bound to Rg(C, ¢, P)
glven in therorem 3.1 :

Theorem 4.2 (O-sufficient condition) .
Let hypothesis (2.1) and (3.9) hold, and R, A, © be given satz.sfymg (3.21) (for example using

formula (5.23 thru 25)), and suppose that

(4.12) _ . o(C) s closed.

If :

(4.13) - 0£0L7/2 and R>0

or

(4.14) . 7250 <7m and A/R<O —tan®
Then Rg defined by (5.26) satisfies ‘
(4.15) Rz >0

and conclusions 1) and 11). of theorem 4.1 hold for this value of Rg.

8
Iy

Proof :it results immediatly from theorems 3.1 and 4.1. O v

Notice (cf the properties (3.15) of the deflection @) that the conditions © < 7/2 or 7 are
actually integral size (dv)x curvature (1/p(v)) conditions for the output set (C), and that}
condition A/R < © —tan © is also a size (A)x curvature (1/R) condition, but which involves
the largest size and the smallest curvature !

.. Wenow specialize theorem 4.2 to the case where ¢'(z) and its pseudoinverse are uniformly’
.bounded over C, i.e. when (4.2) holds. Using the least hypothesis of (2.1), we know that :

(4.16) 38> 0,]¢"(@)(w,w)llr < BllylVe € C ¥y € C

Then we have the

Corollary 4.2 Let hypothesis (2.1) and (4.2) hold, and define :
=op, /B

(4.17) = (B8/ay, )diam C

and : R 0<0 /2
‘ <

(418) RG { R(su}@ + (aM/am — 1)@ CcOos @) 7T/2 <0 < s

If :

(4.19) 00 <7/2



or

(4.20) m/2<0O <7 und Rg >0

Then the NLLS pioblem {2.2) 13 Q-vellposed on the cylindrical neighborbood (4.6) of p(C)
for the ||z — y||g distance on C, and the stability estimate (4.11) holds as soon as the data

29,21 satisfy (4.7).

Notice that, under the hypothesis (2.1) and (4.2) of the above corollary, the Q-wellposedness
of the NLLS problem will be ensured as soon as the diameter of C is small enough. Notice
also that the conditions (4.19) or (4.20) on the admissible size for C are sharp, as it can be
verified by considering the two following simple examples :

ezample 1 : given X > 0, choose :
(4.21) E=R ,C=[0,X],

o(z) = (cosz,sinz)

example 2 : given Y < 0 < X, choose :
E=R ,C=[vX],
(1,z) forY <z <0
(cosz,sinz) for0<z <X

(4.22)
¢(z) =

(The ¢ mapping of example 2 is not C? at z = 0, but the whole theory still holds for path is
which are only C! and piecewise C?). .

We conclude this paragraph with a (tentatively critical ...) discussion of the applicability
of the above results to parameter estimation problems.

The fundamental prerequisite for the use of this theory is that ¢(C) is a "variety” which
carries pathes P having radii of curvature larger than some R > 0. (This of course requires
that the ”variety” ¢(C) itself has a "bounded curvature”). The condition Rg > 0 then can
always be satisfied by reducing the size of C, and is hence less critical.

Let us first consider the case where E is finite dimensional, for example in parameter
estimation in O.D.E.s, or in P.D.E.s after discretization has been performed. This case is
very important practically, as it is the only one which one can actually attempt to solve on a
computer ! One may then try to use the above geometrical theory to determine if the setting
of the parameter estimation problem is satisfying, ie if the knowledge of C' and ¢ allows for
a unique, stable determination of the parameter, and if so, which accuracy is required on
the data. This requires the estimation of lower bounds R and Rg to the smallest radius of
curvature (3.16) and global radius of curvature (3.17), which by sure is not an easy task.
When the dimension of E is not too large, one can try a numerical determination of R using
(3.16) (3.10) and Rg using (3.17) (3.11), and use theorem 4.1 which given the most precise
sufficient condition. This includes intensive computation (namely, along all segments [z,y]
with extremities z and y located on the (relative) boundary 8C of C!), which may quickely
become unaffordable when the number of parameters is larger than a few units... But the
reward for this computational effort is a treasurable information on the wellposedness of the
NLLS problem and the absence of local minima in the objective function for any z in ¥, which
is practically very useful both for the engineer who has set the parameter estimation problem
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("do I have enough information for recovering my parameter in a unique and stable way ?”)
and the numerical analycist in charge of the computations (”is my optimization routine going
to be stuck in local minima ?”). When this numerical approach is impossible, one may think
of calculating analytically (ie with paper and pencil) a lower bound R using (3.16) (3.10),
upper bounds O using (3.25) and A using (3.24) (all these quantities are expressed by simple
formula involving only ¢'(z)(y — z) and ¢"(z)(y — z,y — z), and then use theorem 4.2 to get
information on the wellposedness of the NLLS problem. There are yet no example where this
approach has been used, but the corresponding theory is just being released now in [5] and
in this paper, so we hope that some application along this line will show up in the future.

Let us turn now to the case where F is infinite dimensional, as for example in parameter
estimation in P.D.E.s. We expect here that the generic (in an imprecise sense ...) situation
is R(C,¢,P) = 0, so that the above geometrical theory does not apply. As a support for
this assertion, we refer to [2] where it was shown, for the model problem of the estimation
of a diffusion coefficient function in a 1-D elliptic equation, that one can find, when the
discretization is refined, a sequence of pathes on which the smallest radii of curvature tends to
zero (these small radius of curvature are obtained for perturbations of the diffusion coefficient
having smaller and smaller support containing one stationary point of the solution to the
elliptic PDE). It would however be maybe possible to prove some wellposedness results in
the somewhat academic case where the solution to the elliptic equation does not possess any
stationary point. A bright singular point in this dark picture of the situation for the infinite
dimensional case is given in [6], where the estimation of the shape (ie a function) and the
phase (a number) of a plane wane is discussed, and analysed using the above geometrical
theory. To conclude on infinite dimensional E, let us mention that the geometric theory may
reveal as a useful tool for analysing how the well-posedness of the NLLS problem deteriorates
when E is approximated by larger and larger finite dimensional spaces-multiscale analysis of
functions should play a crucial role here (see [2] and [7] for very preliminary results).

5 Well-posedness of the regularized NLLS problem

We investigate in this paragraph the wellposedness of the regularized problem (2.3)., under
the minimum set of hypothesis (2.1) (2.4). Of course, as we have not required any compact
injection from € into E| this minimum set of hypothesis does not ensure in general even the
existence of a solution ., in opposition to the linear case (i.e. ¢ € L(E, F')) where the same
hypothesis ensure the existence of a unique .. We shall be able in this paragraph to quantify
the natural intuition that “a minimum amount” of regularization should be added in order to
compensate for the non-linearity of ¢, and restore a situation similar to that of the linear case.

As mentioned at the end of paragraph 2, the study of the wellposedness of the regularized
problem (2.3), can be made very simply by applying all results of paragraph 4 to the NLLS
problem (2.3) with a proper choice for E,C, F,¢ and z as explaned in (2.5).

For sake of simplicity, we shall explicit this approach only for the case of corollary 4.2.

11



Using hypothesis (2.1) and (2.4), we know that :
(5.1) Sy > 0, |l¢'(2)-yllr < amllylle, Vo €CNEVy €€

(5.2) 38 > 0,|l¢"(2)-(, 9| < Blyllz, Ve € CNEVy €E

(notice that if E itself happens to be an Hilbert space and the choice £ = E is made, then
@y coincides with ays defined in (4.2) and 8 coincides with 3 defined in (4.16)).

As in corollary 4.2, we shall need the size of C in the parameter space £ :
(5.3) diam(C, &) = sup ||z — y|le
z,yeC

but the position of the a-priori guess zo with respect to C' with also play a role through the
"radius of C seen from z¢ in £” :

(5.4) rad(C, zg, £) = sup ||z — Zol|e
zeC

In order to express the results in a simple form, we introduce the following dimensionless -
quantities :

(5.5) position index of zo w.r.t. C:
’ n = rad(C, ¢, £)/diam(C, )

(5.6) adimensional regularization parameter :
’ z = ¢/(Bdiam(C, £))

(5.7) adimensional distan~ce in data space :
' d(z,2') = d(z,2')/(Bdiam(C, €)?)

(5.8) { adimensioga,l upper bound to sensitivity :
' ¢ = ap/(fdiam(C, £))

Notice that
(5.9) 1/2<np <1 assoonaszg€C,

which is the only (sensible) case which we shall consider, and that

(5.10) n close to 1/2 & x4 is "close to center” of C
‘ n closetol & zg is "far from center” of C

Notice also that the unit 8 diam (C,&)? used in (5.7) to define the adimensional distance in
data space is a measure of the maximum deviation across C of ¢ from its linear approximation.

We can now state the result.

Theorem 5.1 (Wellposedness of reqularized problem)

Let £,C,p,¢, 20 satisfy (2.1) and (2.4) only, ,(,E be defined by (5.5) (5.8) (5.6), and
Emin, Amax bY :

12



e for 2/m < n <1 ("x¢ far from center of C”), and ( >0 :

(511) Emin = 7’
(5.12) Grax = E{E% — 02}1/2
o for1/2 <n < 2/m ("xo close to center of C”), and ( 20 :

(5.13 Emin = largest root, in [n,2/7] of the
13) T~ Esinl/E+ ((L+¢?/2*)Y2 —1)cos1/e —n function.
& - ?P? for2/m<E
(5.14) drax = { E{(Esin1/z + ((1 + /242 — 1) cos 1/)? — n?}1/2
for Emin SEL2/m
IF:
(5.15) € > Emin

Then the regularized problem (2.3). is Q-wellposed on the cylindrical neighborhood of p(C) of
adimensional size (defined in (5.7)) doax for the llz.—ylle distance on C.

Proof:

Rewriting problem (2.3). in terms of E,, C,, F,, ¢, and z, as indicated in (2.5), one checks
easily that :

F.S(E+a3) lylle VzeeCnEVyeE

(516)  ellle < oLy

(5.17) et () (v, )llr. S Blly? YzeCNEVye&

Following now corollary 4.2, we define :

(5.18) ’ O, = (B/e)diam C =1/

(5.19)

£2f(diamC)? for 0 < 1/ < /2
Rg. = { gB(diamC)?{zsin1/z + ((1 + ¢2/e?)'/2 — 1) cos 1/£}
form/2<1/eE< ™

Corollary 4.2 implies now that, if

{ 2/ <E

(5.20) or

1/m<&<2/nr and Rz, >0

then problem (2.3). is Q-wellposed on the neighborhood 9, of ¢.(C.) in F, of size Rg,..
But, for any z, = (z,ez¢) one has :

de(zer 9e(C)P = _inf {llg(2) — 2l + €%}z — zol2)

1.e

(5.21) du(ze, 92 (C))? < d(2, 9(CY)E + €¥rad(C, 30, )

13



Hence 2, will belong surely to ¥, independantly of the choice rnade for z¢ as soon as z belongs
to the neighborhood 9 of ¢(C) of size

(5.22) max = {R%, — e*rad(C, zo, £)?}/2,

provided of course that

(5.23) Rg. >¢ rad(C,zo,€).
Using the adimensional variables (5.5 thru 8), we rewrite (5.23) (which implies Rg, > 0!) as :

i <
(5.24) {E>n if2/r <z

gsinl/z+ (1 + C/E)2 - 1)coslfe>y f1/n<EL2/n

and (5.22) as :

dmax = E{(Esin 1/Z + ((1 + ¢?/2%)Y/% — 1) cos 1/E)? — n2}1/2
if 1/m <z <2/r

rax = E{B2 = *}? if2/r <€
(5.25) {

Hence we see that if € satisfies (5.24), then the regularized problem (2.3), is Q-wellposed on
the neighborhood ¥ of ¢(C') of adimensional size dya, given by (5.25), which is the announced
result. [J

We have illustrated on figure 1 the n — &, function for various values of ¢, which makes
clearly visible that the choice
(5.26) £ > max{2/~7,n}

ensures the Q-wellposedness of the regularized problem independantly of the sensitivity index
(. Figures 2 and 3 illustrate how the size dpa, of the neighborhood of ¢(C) depends on z
(taken larger than ., of course !), n and {. These curves can be used for example to
determine, given an estimation of an upper bound dpax of the measurement and model error,
the smallest amount of regularization € to be used in order to restore wellposedness of the
NLLS problem and suppress local minima on a neiborhood of ¢(C) large enough to contain
the expected data.
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Figure 1: The minimum value € min of the regularization parameter as function of the position
index 7 of the a-priori guess and the sensitivity index ¢ of the ¢ mapping
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Figure 2: The dpma, function giving the size of the cylindrical neighborhood for the regularized
problem, as function of £, for five values of the position index n of the initial guess zp, and a
zero value of the sensitivity parameters ¢ for the two curves n = .5 and 9 = .57 corresponding

ton < 2/w.

Top : general overview ; Bottom : close up on the [0, 1.5] interval.

16



0. 42
- eta = 1/2
0.30 _| from left toright:
- zeta=0
T zeta=1/2
1 zeta=1
7 zeta=S§S
2. 20 _: zeta =10
0.10 _|
1 -1 ‘
@. 00 lllllllllllll|1l1l
'@.50 B. 55 Q.60 2. 65 .70
0. 30
- eta 0.57
1 fromleftto right :
2.23 | zeta=0
| zeta=1/2
| zeta=1
4 zeta=S5
1 zeta=10
9. 15 ]
.00 _
@. 00 llll||l|||lTll1lTﬁ
2. 59 .55 0.60 @. 65 .70

Figure 3: Influence of the sensitivity parameter ¢ on dyay for values of the position index n
of the initial guess smaller than 2/7.
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