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A FINITE ELEMENT METHOD TO SOLVE THE
COMPRESSIBLE NAVIER-STOKES EQUATIONS
IN 3D WITH MESH ENRICHMENT PROCEDURE.

Sylvain Boivin
(Dept. de mathématiques, Université Laval, Canada, G1K 7P4
and INRIA-Menusin, 78158 Le Chesnay, France )

Abstract:

A new computer code solving the compressible Navier-Stokes equations is described.
The code solve the three-dimensional (3D), time-dependant equations using the finite ele-
ment method based on the P1-P1lisoP2 element. Actually the numerical stability is ensured
by a simple artificial viscosity method which will be improved in a future version.

The results of numerical experiments for the flow around an ellipsoid will be presented
in order to show the possibilities of the methods used.

Finally, we discuss an efficient mesh enrichment procedure which can be used in 2 or
3 dimension.

UNE METHODE NUMERIQUE DE TYPE ELEMENTS FINIS
POUR RESOUDRE LES EQUATIONS DE NAVIER-STOKES
COMPRESSIBLE EN 3D AVEC UNE PROCEDURE DE
RAFFINEMENT LOCALE DU MAILLAGE.

Résumé:

Ce rapport décrit les techniques utilisées pour la mise au point d’un code de calcul
permettant de simuler des écoulements compressibles. Les équations de Navier-Stokes
compressibles, instationnaires, tridimensionnelles sont résolues via une approche différences
finies en temps et éléments finis en espace utilisant 1’élément P1-PlisoP2. Actuellement
la stabilité du schéma est assurée par 1’addition d’une simple viscosité artificielle qui sera
améliorée dans une version ultérieure.

On présente des résultats numériques pour les écoulements autour d’un ellipsoide afin
de démontrer les capacités de la méthode.

Finalement, nous présentons une méthode de raffinement locale de triangulations bi
et tridimensionnelles.
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Introduction.

In this report we consider the resolution of the compressible Navier-Stokes equations
in three dimensional space using a finite element approach. We make use of the P1-
PlisoP2 element, which proved to give good results in two dimension [BDGP][SB] and
which gives a compatible approximation of the variables [BDGP]. As in the 2D case we
use a P1 approximation for density and temperature variables on some grid, and also a
P1 approximation for the velocity but on a finer grid. In 2D, the finer grid is obtained
from the coarser by dividing each triangle in four by the meddle of the edges. In 3D, each
tetraedra is cutted in eight tetraedras as shown in figure 1, bottom. The center of the
element and is splitting in four tetraedra is shown in figure 2 top.

The numerical results are encouraging but more development are needed in order to
obtain good result. In this way, we propose (in appendix) en efficient mesh enrichment
procedure (2D and 3D), which enable us to obtain good results at low mach (M < 2) and
low Reynolds number (Re < 2000). For the other cases, we hope a better stabilisation
strategy (artificial viscosity) will give better results.

Numerical experiments are presented in order to show the possibilities of the methods
discussed in this report. ’

1. Resolution of the Navier-Stokes equations in 3D.

Let © € R, be the flow domain and T be its boundary. We now consider the following
non-conservative non-dimensional form of the Navier-Stokes equations [SB]

gt-i-u Vp+pV.-u=0 (1.1)
ou o+ (@ V)t 1Vp— —l-V-(u*a) =0 (1.2)
86"5+u vcr+pv u—Vu: (—0)———V (K*VT) =0 (1.3)

n (1.1)-(1.3), we have normalized each variable by reference values denoted by the subscript
.

(i) the density p by p,

(i) the velocity u by |u,|

(i) the internal energy e by |u,|?

(iv) the pressure p by p,|u,|?

(v) the viscosity pu by u,

(vi) the temperature T by [u.[2/C,
which imply e = T



The pressure obeys the ideal gas law, the number v and the functions o, p, v*, £* are

defined by:
od = Vu + Vu! — 2V - ul,
p=(y-1pT,
oy = C,/Cy is the ratio of specific heats (y & 1.4 in air).

ov* = u/Re, is the total viscosity defined from the computed laminar v1sc051ty divided
by the reference Reynolds number  Re, = p,ru,L,/p,.

ex* = y/Re,(p/Pr) is the total conductivity coefficient, also define from laminar
viscosity.

We consider external flows around 3D geometries; the domain of computation is de-
scribed in figure 2. Let ', be a far-field boundary of the domain; we introduce

Iy = {2|7 € Teo,ten <0}, T% =T\l

where u, denotes the free stream velocity and n the unit vector of the outward normal to
.

We assume the flow to be uniform at infinity, and the corresponding variables to be
normalized by the free stream values; then for example, we prescribe at infinity

cosacosf3
U=1uUe = | cosasinf |, a isthe angle of attack, and f3 is the rolling angle.
sina
p=1,
T =To = 1/[y(y - 1)MZ),
where M, denotes the free stream mach number.

The boundary conditions on the computational boundary T, are:

onl' iu=te, T=Ty, p=1,
andonTd : VI -n=0, n-(Vu+Vu' - 2V-ul)=0,
where n is the local normal on I'}.

On the rigid boundary I'g, we shall use the following conditions:

u = 0 (no-slip condition),
T=Tp =Tw(l+(v—1)/2M2) (free stream total temperature).
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Finally, since steady solutions are sought through time dependent equations, initial
conditions have to be added; we shall take
p(z,0) = po(z), u(z,0) =uo(z), T(z,0)=T,(z).

Solving the compressible Navier-Stokes equations is a difficult task. Most of the
existing numerical solution methods are based on finite differences techniques, for both
space and time discretizations. Following the work of Bristeau et al. [BGMPR|[BDGP]
and Boivin [SB], we will consider a method based on finite element techniques for space
discretization while using finite differences in time.

Let the time derivatives be discretized using a classical implicit Euler finite differences
formula, then at each time step, we solve the following non-linear system of variational

equations
alp— p,N)+(u-Vp,N) + (pV - u, N) = 0 (1.4)

l}*

a(u—'&,M)+((u-V)u,M)+(%Vp,M)+(—p—U,VM)=0 (1.5)

oT -T,K)+ (u-VT,K) + (%V ‘u, K) — (Vu: (—V;a), K)+ (%VT, VK)=0 (1.6)
where the solution is looked forin V x W x Z,
V={pe HI(Q)|P|P;, =1}

W={ue (HI(Q))3|“|1*;, = Uoo, urp = 0}
Z= {T € HI(Q)ITIF; = TOOaTII‘B = TB}

although there is no existence theorem for this problem. We look for a triple (pyu, T) eV
x W x Z such that (1.4)-(1.6) is verify for all triple of test functions (N, M, K) € Y(Q) x
(X(2))} x X(). Where the spaces X(), Y(Q) are defined by

X(@) = {z € H(Q)|zp- =0}

YY) ={ze HI(Q)lxu*;o = 0}

Remark 1: (, ) denotes the scalar product in L*(Q).

Remark 2: The natural boundary condition already defined were introduced by setting the
boundary integrals appearing from the integration by part to zero.

Remark 3: The p term of equation (1.5) is integrated in the form

1 T
;Vp =(-1)VT + (v - 1);Vp-

We do not integrate by part the pressure term of the momentum equation because we
cannot set p + o, = 0 on the boundary (doing so would perturbate the solution) and we

prefer to avoid the computation of boundary integrals.
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To approximate (1.4)-(1.6), by the finite element method, we must divide Q- into
small elements (tetraedra) and replace all the functions by their interpolate pp,up,Th.
Interpolates are defined inside the elements from their values at the nodes of the elements

by an interpolation formula.

To insure the compatibility between the approximation of density, temperature and
velocity (see [BDGP]) we use the P1-P1isoP2 element of figure 1 and we define

= {pn € Vlpn € C°(Q),YT € Th,pnr €PX(T)} C V
Wi = {un € Wluy € (C°(Q))*,YT € T2, unr € P(T)} C W
Zn = {Tu € Z|T) € C°(Q),YT € Ty, Tyyr € PY(T)} C Z

where P'(T) = { set of polynomials of degree < 1 on T} and T denote an element of the
P1 mesh Ty, or the PlisoP2 mesh Ty ;. o

Restricted to these finite dimensional spaces, equations (1.4)-(1.6) lead to the non-
linear problem: : S

Find (pa,us, Th) in (Vi x Wi x Z)) solution of Fp(pn,un,Th) =0, (1.7)
Fj being the discrete version of the system (1.4)-(1.6).

We now consider iteration schemes for solving the nonlinear system F}(s) = 0, where
$ = (Ph,uh, Th)

Newton’s method applied to this system results in the iteration

1. Set s° an initial guess

2. For n = 0,1,2,... until convergence do:
2.1 Solve J(s™)6™ = —~Fy(s™), - (1.8)
2.2 Set s”t1 = g7 4 §7 SR

where J(s") = F'(s") is the system Jacobian. For large problems, iterative methods are
frequently used to solve (1.8) only approximately, giving rise to methods which can be
viewed as inexact Newton methods. The particular method we use is the Generalized
Minimum Residual Method (GMRES) due to Saad and Schultz (SS]. This method has the
virtue of requiring virtually no matrix storage and requires only the action of the Jacobian
matrix J times a vector r, and not J explicitly. In the setting of nonlinear equations, this
action is approxxmated by a difference quotient of the form

Fh(s + b7‘) — Fh(s)

J(s)r = 2




where s is the current approximation of a root of (1.7) and b is a scalar. For details of the
algorithm, see Saad-Schultz [SS] and also Bristeau et al. [BGMPR] for a clear setting of
this algorithm within the context of the conjugate gradient methods.

To insure numerical stability an artificial viscosity is added to each equation. Actually,
this term is a Laplacian with a coeflicient proportional to the local mesh size (a)|ufjR). A
future version with a better stabilization strategy is under development.

2. Two and three dimensional mesh enrichment procedure.

Many numericians are now concerned by the problem of enrichment and adaptation of
meshes. The reason is clear, these techniques may enable us to obtain optimal results for a
given number of degres of freedom. Some method are now avaiable, [P][BGMPR][CP}, but
in most of them two problems remain; the definition of optimal result for a given number
of degres of freedom and the complexity of the algorithms. '

We propose an efficient mesh enrichment algorithm, which is easily implemented in
2D and also in 3D.

I- Two dimensional case. '

We suppose given a triangulation (T,) and a criteria (0 < ¢(T) < 1) defined for each
triangle. Our goal is to subdivide each triangle for which the criteria is between two given
values (cmin and cmaz). We define

Q = {TeTh|cmin <¢(T) < cmaz }

The basic step of the method is to divide each triangle of a set H (Q), dependent of @, in
three triangles by the addition of a node at the barycenter of the father triangle, figure
6 top. The set H(Q) is defined through the following steps (we denote v(T) the set of
triangles having a common edge with T)

1) each triangle of T}, for which 2 or 3 members of v(T') are in Q are added to the set
Q, we also denote by @ this new set, ,

2) each triangle of @ for which 0 or 1 members of v(T') are in @ are eliminated from
this set.

After dividing each triangle of the set H(Q) the following smooting process is applied

1) each edge of T}, between two newly divided triangle is flipped, figure 6 middle,

2) each newly divided triangle with an edge on a boundary is cut again in two triangles
by the addition of a node on the boundary, figure 6 bottom.

II- Three dimensional case.
The construction of the set H(Q) is the same as in case I. The division step is similar;

a node is added at the barycenter of each tetraedra of H (@) and the tetraedra is splitted
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in four, figure 7 top. But the smooting step is more complex and given by (here v(T) is
the set of tetraedras of T}, having a common face with T)

1) each face (bcd) between two newly divided tetraedra (abed) and (bede)is eliminated
by the replacement of these two tetraedras by three tetraedras (aebc) (aecd) (aebd), figure
7 middle. Lo
2) each face of H(Q) on a boundary is splitted in three by the addition of a node at
its barycenter creating three additional tetraedras, figure 7 bottom.

3. Numerical experiments.

Computation were made for some flow conditions around an ellipsoid in order to show
the potential of the method we propose. The mesh contains 20671 P1-PlisoP?2 elements
for 4069 P1 nodes and 29767 P1isoP2 nodes for a total of 97439 degres of freedom. It took
90 time step to reach a steady state (we stopped when the correction in infinity norm was
lower then 10™*) and 26 hours of computation on an Apollo DN10000. '

Figure 3 show the skin mesh of the ellipsoid and also of the boundary edge whilé figure
4 show the trace of the mesh in the XY plane. Figure 5 show the isomach contours for a
computation at mach=2.0 and Reynolds=1000.

Actually a finer grid would be necessary in order to capture the choc wave and the
boundary layer.

We present an example of the use of the mesh enrichment procedure in 2D (figures 8
to 12) and one example in 3D (figures 13 to 17) in the context of Navier-Stokes calculation
around a body [SB]. o

Figures 8 and 9 shows the initial mesh and the mach number field of the initial 2D
supersonic Navier-Stokes calculation. Figures 10 and 11 shows the enrichments of triangles
for which the mach gradient is greater then 10 % of its maximum value. In the second case
a supplementary smooting process were applied: each node is moved at the barycenter of
the cell formed by the triangles containing this node. Figure 12 show the mach number
field obtained after few more steps of calculations from the initial solution reinterpolated
on the mesh of figure 11. -

Figures 13 and 14 shows the trace of the initial mesh in the XY plane and the mach
number field (on the same plane) of the initial 3D supersonic Navier-Stokes calculation.
As we are interested to capture the choc, we enrich the mesh in the area captured by the
criteria of figure 15, computed from the initial solution. The trace of the new mesh in the
XY plane is showed in figure 16 while the mach number field obtained after few more step
of calculations, starting from the initial solution interpolated on this mesh, is showed in
figure 17. Actually, comparison of figures 13 and 16 give a good idea of the enrichment
done throught the process, but it don’t give any information about the quality of the mesh.



4. Conclusions.

We have briefly discussed here a finite element method to solve the three-dimensional
compressible Navier-Stokes equations written in non conservative form. In it’s actual
setting the method is rather costly in computer time and restricted to low Mach and
Reynolds numbers flows. We can hope from the first results that, for higher Mach and
Reynolds numbers, giving a better stabilization method (artificial viscosity), we will obtain
accurate solutions.

Appendix 1: Integration.

The nonlinear discrete system of equations to be solved follows from the consideration
of the variational system (1.4)-(1.6) on proper finite dimensional spaces. Exact definitions
of these spaces and the corresponding test spaces follow from the choice of the finite
element. Now remains the problem of the evaluation of the various term, that is, the
choice of an integration strategy. Exact integration will be use for first order terms but
approximation will be made for higher order terms. 4

The basic formula for the integration is the Simpson’s formula

/wdm—:’—TIi: ir) + Z S s Vw € P
| wds = — i=lw i)+ 5 ;w mir), w € Py,

where M;r and m;r are the nodes and midnodes of the tetraedra 7. Thus, the integral of
the product of f € P, by g € P, on the same tetraedra will be given by

where M;T are the nodes of T. For simplicity, these formulas are also used for higher order
terms.
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In 2D

e

velocity, density and temperature d.o.f.

o velocity d.o.f. only

velocity, density and temperature d.o.f.

o velocity d.o.f. only

Figure 1. P1-PlisoP2 element in 2D and in 3D.



(g$n>0)

Figyre 2,

Top: Splitting of the center part of the P1-PlisoP2 in 3D.
Bottom: Computational domain in 2D. Cut along the XZ plane
Q{ the 3D computational domain.
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Enrichement by the addition of one node.

Edge flipping between two triangles.

this edge is part
’( of the boundary

Secondary enrichment near a boundary.

Figure 6. Example of the 2D division and smooting.



only one new node
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Enxichment by the addition of one node.

3~?3 smooting process
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M

8econdary enrichment near a boundary.

Figure 7. Example of the 3D division and smooting.

Notice: finer lines are in front.
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MODULEF : boivin
11/08/89
balle.mail
balle.coor
solu.b
3110 NOEUDS
29442 FACES
14023 TETRAEDRES
OBSERVATEUR SPHERIQUE H
30. 30. 16.
OUVERTURE :
11.

ISOVALEURS : 20

INCONNUE :
20— 0.3970
19___ 0.3761
18 0.3552
17 0.3343
16 . 0.3134
15 0.2925
14___ 0.2716
13 0.2507
12 0.2298
11 0.2089
10 0.1880

9 0.1671
8 0.1463
T 0.1254
6 0.1045
S____ 0.8357e-01
4___ 0.6268E-01
30— 0.4179E-01
2 0.2089E-01
1 0.1602E-17
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MODULEF : boivin

11/08/89
baller.mail
baller.coor
solu.b

6090 NOEUDS
56858 FACES
27731 TETRAEDRES

OBSERVATEUR SPHERIQUE H
30. 30. 8.0
OUVERTURE :
11.

ISOVALEURS : 20
INCONNUE : 1 MNEMO :VN

20 2.191

19 2.075

18__ 1.960

17__ 1.845

16— 1.730

15— 1.614
148

137 1.384

12 1.268 T<o M
11— 1.153

10__ 1.038 :
9___ 0.9224

8 0.8071

7 0.6918

6 0.5765

5 0.4612

a___ 0.3459

3___ 0.2306

27 0.1153

1__ 0.0000
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