Numerical methods in Markov chain modeling

Bernard Philippe 1 Yousef Saad 2 William Stewart 3
1 CALCPAR - Calculateurs Parallèles
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : This paper describes and compares several methods for computing stationary probability distributions of Markov chains. The main linear algebra problem consists of computing an eigenvector of a sparse, usually non-symmetric, matrix associated with a known eigenvalue. It can be also be cast as a problem of solving a homogeneous, singular linear system. We present several methods based on combinations of Krylov subspace techniques, single vector power iteration and relaxation procedures, and acceleration techniques. We compare the performance of these methods on some realistic problems.
Type de document :
[Research Report] RR-1115, INRIA. 1989
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 18:13:46
Dernière modification le : mercredi 16 mai 2018 - 11:23:14
Document(s) archivé(s) le : mardi 12 avril 2011 - 19:02:12



  • HAL Id : inria-00075444, version 1


Bernard Philippe, Yousef Saad, William Stewart. Numerical methods in Markov chain modeling. [Research Report] RR-1115, INRIA. 1989. 〈inria-00075444〉



Consultations de la notice


Téléchargements de fichiers