N

N

The superimposition of ESTELLE programs: a tool for
the implementation of observation and control
algorithms
Benoit Caillaud

» To cite this version:

Benoit Caillaud. The superimposition of ESTELLE programs: a tool for the implementation of
observation and control algorithms. [Research Report] RR-1102, INRIA. 1989. inria-00075457

HAL 1d: inria-00075457
https://inria.hal.science/inria-00075457
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075457
https://hal.archives-ouvertes.fr

N° 1102

Programme 3
Réseaux et Systémes Répartis

THE SUPERIMPOSITION OF
ESTELLE PROGRAMS : A TOOL
FOR THE IMPLEMENTATION OF
OBSERVATION AND CONTROL |

ALGORITHMS

AT TS NP S AN § N SR T SRS N ST R AL v

T

TR R

,2 i

i
a2

R G Ry

S

et

Benoit CAILLAUD

X5 A s

Octobre 1989

A

]

oo YA A R N T e SN O R T

The superimposition of Estelle programs :
a tool for the implementation of observation
of observation and control algorithms
Benoit CAILLAUD

Publication Interne n° 493
Septembre 1989

TN

O

PAPIER RECUPERE ET RECYCLE

] R l S a INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042-RENNES CEDEX
FRANCE
Téléphone : 99 36 20 00
Télex: UNIRISA 950 473 F
The superimposition of Estelle programs:

A tool for the implementation of observation and control
algorithms !

Publication Interne n° 493 - 30 Pages

Benoit Caillaud
E-mail : caillavd@irisa.fr

Abstract

The superimposition is a distributed program composition. It is a convenient concept for the
design and implementation of control and observation algorithms in distributed systems, such
as snapshots, detection of termination, global time, verification of properties, mutual exclu-
sion, garbage collection. The present report describes the implementation of superimposition
on static Estelle. It consists of a compiler that transforms a program in static Estelle extended
to the superimposition into a pure static Estelle program. The problem of the correctness
and complexity of the generated code is also raised.

La superposition de programmes Estelle :
Un outil pour 'implantation d’algorithmes
d’observation et de controle

Résumé

La superposition est une composition de programmes distribués bien adaptée & la concep-
tion et & I'tmplantation d’algorithmes de contréle et d’observation de systemes distribués
(états globaux, détection de la terminaison, temps global, vérification de propriétés, exclu-
sion mutelle, ramasse miettes). Ce rapport décrit 'implantation de la superposition dans
le langage Estelle statique. Elle consiste en un compilateur qui transforme un programme
en Estelle statique étendu & la superposition, en un programme en Istclle statique pur. Le
probleme de la correction et de la complexité du code engendré est aussi abordé.

1This work has becen done in the team “Algorithmes Distribués et Protocoles” of the IRISA and is partially
supported by the PRC-GRECO C3.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L. A.227) EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 f. N.S. A. DE RENNES (LABORATOIRE DE RENNES)

Contents
1 Introduction
2 What is superimposition ?

3 Static Estelle and its extension to superimposition

3.1 Superimposingmodules. L L
3.2 Superimposing bodies L L L e

4 A few examples of superimposed programs
4.1 The Fidge and Mattern’sclock
411 Thealgorithm
412 Theprogram e e
4.2 The particular snapshots L L L . ..
421 Thealgorithm o L
422 Theprogram e

5 The transformation method

5.1 Theinitial renaming
5.2 The compositionof twomodules
5.3 The Normal Form
5.31 Thefirst normalform.
5.3.2 Thesecond normalform
5.4 The composition of two normal formbodies
5.5 What about the correctness?
"~ 5.5.1 Correctness of the transformation in normal form
5.5.2 Correctness of the superimposition

5.6 The complexity of the generated code
6 The implementation of the compiler
7 Conclusion
8 Acknowledgments

9 Appendix
9.1 Example of normal form transformationof abody
9.2 Example of composition of two normal form bodies

BN BN R |

10

10

12
12
12
13
13
14
16
17
17
17
18

18

18

19

24
24
27

1 Introduction

In several paradigms of the distributed algorithmics, the same concept arises: a program
observes or controls another underlying program. This composition has been first studied
in [3]. '

A compositional way of programming is of the greatest interest since one can deduce the
properties of the global system from the proofs of each component of the composed program
(let us call it a complex) and from a global invariant [5, 4]. :

As it will be explained more precisely in section 2, the superimposition of two programs
over the same network behaves as if the two programs were confined in two independent closed
layers, except that: firstly, each process of the upper layer has a read only, asynchronous access
to the variables of the associated underlying process; secondly, some pairs of similar events
of respectively an upper process and its associated lower process are synchronized (i.e. the
underlying process can send a message if and only if the upper process sends a given message
over the same edge of the network at the same time).

It is easy to show that the partial correctness of the underlying program remains the
same when it is placed in a superimposed complex [4, 3]. Therefore this composition can
be applied to the observation algorithms, whose properties are at least not to change the
partial correctness of the observed program. The total correctness is much harder but not
impossible to prove [4]. It implies the use of fairness [6], and the introduction of the concept
of freezing [3]. More precisely one wants the upper program not to freeze the underlying one
for an unbounded time.

Besides, this composition also gives the possibility to forbid some events, for instance
communications, therefore controlling the underlying algorithm.

After a short recall on superimposition we will define static Estelle and its extension to
superimposition. Then with the help of a few examples we will show that programming with
superimposition is definitely easy. Before we explain the compiler, the transformation method

will be detailed.

2 What is superimposition ?

The goal is not there to define superimposition completely, in an axiomatic way, but rather
to give the reader some highlights on that concept. One can find a complete description of
superimposition in [3, 4].

Let P and Q be two distributed programs over the same network G = (V, E). Therefore,
for any 2 € V we have a pair of processes (F;, Q;) that are respectively part of P and Q.

Let K be a one to one mapping? from a subset $* of the set A* of well-defined events? of
P (the domain of K) into a subset ©¢ C A? of well-defined events of Q (the range of K).

The superimposition of P over @ relatively to K is the distributed program S = Ly

2K is also represented as a subset of A¥ x A%, so that it defines the one to one mapping X% C AY —
zd c Al

3These events can be composed events such as: P; sends m over a or P; sends m’ over «. But the
components of such an event must all be similar (all of them are emissions or receptions, over the same edge).

receive m'

' synchronized a free

Figure 1: (send m,,send mgy) € K, the two message send are synchronized. receive m' is not
synchronized with any event of @, since m’ ¢ L.

which is the parallel composition of the processes S; = L.
s = hevP liev Lig
liev Qi Qi

The superimposition of two processes P, and Q;, both placed on the same vertex 7 of the
network G is defined as follows:

¢ The processes P; and Q; are running in parallel.

¢ The two programs P and Q are confined in two distinct layers so that any P; (resp. @;)
cannot communicate (send or receive messages) with any process not belonging to its
layer; then it can communicate only to a P; (resp. Q;) ((¢,5) € E if it is a send and
(4,7) € E if it is a receive).

¢ P; and Q; share the same memory, so that P; can read asynchronously some variables
of Q; (this mecanism is called “peek”).

¢ Any event € (for instance a communication) in the domain of K (resp. range of K) is
synchronized with K(e) (resp. K~1(¢)). -

These four rules are summarized in figure 1. The graph represents the network, where
some events are occuring.

3 Static Estelle and its extension to superimposition

This composition in its distributed* form ||;ev Lk has been added to a subset of Estelle:

Static Estelle, which is Estelle with the followiné constraint: The parent of any process is
inactive.

In static Estelle, the network (the processes and the channels) is defined during the ini-
tialization part of the program, and cannot be changed afterwards, since the parents of the
processes are inactive. Therefore there are two kinds of body:

o The refinement body which has only an initialize part and can hold some processes but
cannot have any transition nor state declaration statement.

¢ The terminal body which is a pure process without any body, module, or modvar declared
inside.

Integrating the distributed superimposition into Estelle simply means that firstly one
adds a constructor for the superimposition of two modules P and Q, relatively to K, therefore
defining a new module S = Ly And secondly we have to describe the bodies that match this

new module. Such a body is the superimposition of two terminal bodies matching respectively
the modules P and Q.

3.1 Superimposing modules

The mapping K is defined in the following way:

e We need to declare the pairs of bounded interaction points that hold synchronized
events. They must be compatible with each other (i.e. if one of them is an array of
interaction points, then the other one must be also an array, with the same index type).
Each pair of bounded interaction points defines a new interaction point of the module

S.

e Some pairs of messages respectively from the channel of the upper interaction point,
and from the channel of the lower interaction point are synchronized. The following
consistency rule insures that K is well-defined: the roles of two synchronized messages
must be either the respective roles of the interaction points or their conjugates.

4 Distributed is here in its algebraic meaning: a(b+ c) = ab+ ac, where the right hand part of the equality
is the distributed form. .

So, we can give a syntax for the extension of Estelle:

module module-name (formal-parameter-list);
superimpose module-up (p-list-up)

over module-down (p-list-down);
bind ip-up over ip-down
{ip{port: | up ipup i 17}

down ip-down
{ compose ip-up.message-up over ip-down.message-down ; }*
end;

Where p-list-up and p-list-down are two sublists of the formal parameter list of the super-
imposed module. These allow us to share the parameters passed at the init time between the
two constitutives modules, module-up and module-down.

The free interaction points of the upper (resp. lower) module module-up (resp. module-
down) are renamed with the up (resp. down) construction. All ports of module-up and
module-down must appear exactly once. :

Then we have to define the bodies that will match the superimposed module.

3.2 Superimposing bodies

Such a body is the superimposition of two bodies, respectively for the upper and lower modules
of the complex. And then, the last thing to be declared is the set of variables that are subject
to peeks.

The syntax is:

body body for module ;
superimpose body-up over body-down ;
{ peek { var-up := var-down; }*}

end;

var-up must be a variable of the upper body, declared in the var field of the body. And
var-down must also be a variable of the lower body, with the same scope. They must be
assignment type compatible as the syntax prompts it.

Then any reference to var-up is actually a reference to var-down.

In order to follow the specifications of superimposition it is forbidden to put var-up neither
on the left hand side of an assignement nor as a variable parameter of a procedure or function
call.

There is no difference between a simple and a composed module or body. The use of init,
connect, attach, etc is exactly the same.

4 A few examples of superimposed programs

The aim of this section is to give a few examples on the usage of superimposition. That’s
why the properties of the described algorithms are not proved. Anyway the proofs are in the
corresponding citations. The programs are not completely detailed. Only their skeletons are
given.

4.1 The Fidge and Mattern’s clock

The first example is the global-clock of J. Fidge and F. Mattern [10] which can be directly
implemented using the superimposition.

4.1.1 The algorithm
The clock is a vector of N™, with the canonical partial order:
u<v < Vie{l,...,n}uft] <[]

Let us denote u Ul v the vector whose i-th component is max(uli],v[i]), and e; the vector
defined by: Vj # i e;[j] = 0 and ¢[¢] = 1. A

The time stamp ©(m) associated to every message send or receive m of a n-processes
distributed system is computed as follows:

e Initially on every process ¢, the local clock v; is set to 0.

e For each event on the process i, we perform: v; := v; +¢;. The new v; is the time stamp
of the event.

e Every message is associated with the time-stamp of the sending process at the send
time.

o At the receipt of a message with the time stamp u on process #: v; := u U v;, the new v;
is the time stamp of the message receipt.

It can be shown that this clock has good properties:

Theorem 1 For every pair of events €, v
€ is before v < O(¢) < O(v)

4.1.2 The program

Let us assume that the module descriptor of the calculus process is:

module calculus (me : site_id);
ip c.in : array[site_id] of calculus_channel(calculus_in);
c_out : array[site_id] of calculus_channel(calculus_out);

end;

and that the only message type of calculus_channel is msg. Then the observer module

1s:

module clock (me : site_id);
ip o_in : array[site_id] of observer_channel(obs_in);
o_out : array[site_id] of observer_channel(obs_out);

end;

assuming that we have previously declared:

channel observer_channel(obs_in,obs_out);
by obs_out : stamp (time : vector);

The superimposed module is:

module complex (me : site_id);
superimpose clock(me) over calculus(me);
ip k_in : bind o_in over c_in;
k_out : bind o_out over c_out;
compose o_in.stamp over c_in.msg;
compose o_out.stamp over c_out.msg;
end;

and the body for clock is:

body b_clock for clock;
var my_stamp : vector;

initialize
begin
my_stamp := 0 (* vector *)
end;

trans any k : site_id do
vhen o_in[k].stamp(time)
begin
my_stamp:=sup(my_stamp+e(me),time)
end;

trans any k : site_id do
begin
output o_out [k].stamp(my_stamp+e(me));
my_stamp:=my_stamp+e(me)
end;
end;

Note that the output statement is the first statement of the body of this transition, this is
because it has a slightly different semantics: this transition can be fired only when the output
is possible —i.e. the underlying program is ready to make a similar output. This change was
necessary since we need ezternal choice® for observers. As it will be explained in detail in
section 5, we chose not to change the syntax of the transition, therefore giving a particular
semantics to this construction.

If we assume that b_calculus is a body for calculus, then the body for complex is:

body b_complex for complex;
superimpose b_clock over b_calculus;
end;

Lastly, the modvar® is replaced by an array of complex, and any reference to b_calculus is
replaced by b_complex. Every reference to an interaction point of calculusis replaced by the
corresponding one of complex, in the initialize part of the surrounding body or specification.

5In opposition with internal choice.
6A modvar is an instance variable of a module.

4.2 The particular snapshots
4.2.1 The algorithm

A complete description of this algorithm can be found in [7]. A particular snapshot is a
snapshot with empty channels. Therefore the state of the underlying system is given by the

local states of all processes.
The algorithm is:

o Let us assume that there is a ring over the observers. A token is running on it. This
token is a vector in Z", where n is the number of processes of the underlying calculus.

e Each observer has a vector of counters mt¢ and behaves as follows:

— When the site ¢ sends a message to j the observer performs: mt[j] := mt[;] + 1
— When the site ¢ receives a message from j: mt[z] := mt[i] — 1

— When the observer : receives the token, with the value count: It first waits until a
mark is received on every input edge. Then it records the local state of the lower
process. Then it computes mt := mt + count and before sending the token with
the value mt it sends a mark on every output edge. Lastly mt := 0.

— When the token comes back to the master, if count = 0 then the master” broadcasts
a message telling the observers to send him the recorded local states.

Theorem 2 (Partial correctness) Ifthe channels are FIFO, reliable and if we detect count =
0 at the end of the “tour” then the set of all the recorded local states is a particular snapshot.

Theorem 3 (Total correctness) If the underlying calculus accepts the inputs in any order
and in a finite time then the token comes back in finite time®.

4.2.2 The program

There are two difficult points:

e How should we implement the snapshot of a local state? If we assume that the state
of the underlying process is coded in a single variable (such as a record), then a single
peek on that variable catches the local state.

¢ How should we implement the marks? The mark is simply a free message of the super-
imposed channel.

The channel type for the observers is:

"The initiator of the token, for instance process number 1.
8We assume that every message is delivered in a finite time.

10

channel ch_obs (in_o,out_o);
by out_o : obs;
mark;
end;

The module type of the observer processes is:

module megr(me:site);

ip in_obs : array[site] of ch_obs(in_o);
out_obs : array[site] of ch_obs(out_o);
in_ring : ch_ring(in_r);

out_ring : ch_ring(out_r);
end;

And the complex is then:

module mcomplex(me:site);
superimpose megr(me) over mcalculus(me);

ip in_complex : bind in_obs over in_calculus;
out_complex : bind out_obs over out_calculus;
in_ring : up in_ring;
out_ring : up out_ring;

compose in_obs.obs over in_calculus.info;
compose out_obs.obs over out_calculus.info;

end;

body complex for mcomplex;
superimpose egr over calculus;
peek snap_local_state := s;
end;

In the observer the statement rls := snap_local_state performs an atomic copy of the
state of the underlying process (assuming that the state is coded in s).

The interaction points in_ring and out_ring are implicit free interaction points of the
module mcomplex. The message type mark is free, therefore not synchronized with any event

11

of the underlying process. Since the channels are FIFO, a composed message® (obs , info)

can’t overtake a mark.
The body of the observer is quite obvious and is not detailed here; it is using external

choice on outputs.

5 The transformation method

The principle of the implementation of superimposition is to replace each superimposed body
or module by a pure Estelle body which is semantically an implementation of the original
construction.

The problem of the correctness of the implementation is raised in 5.5.

This algorithm takes as input normal form superimposed Estelle. This is why it is neces-
sary to put the program in normal form.

5.1 The initial renaming

Before any computation, every symbol of the specification is renamed into a unique symbol:

e If the symbol is a field of a record then no renaming occurs. There cannot be any clash
between two fields of two records.

o Otherwise it is sufficient to concatenate at the end of the symbol the unique number of
the declaration environment.

There is also some renaming during the composition of two channels, modules, or bodies :
For all free internally declared symbol, we append to them a tag in order to avoid clashes
between symbols coming from the upper and lower channels, modules or bodies!®.

5.2 The composition of two modules

The algorithm for rewriting a superimposed module is:

Algorithm 1 (Superimposition of two modules) Let us assume that the two modules
are m, and my.

o Every free interaction point of m, and my is copied and renamed into the new module.

o For every composed interaction point, we must compute its channel type. Let us assume
that the upper interaction point has a channel type c, with a role r,. Also for the lower
interaction point : cq and ry are respectively its channel type and its role.

Such a channel is uniquely identified by the key:

— the upper channel type: c,

9We assume that info is the only message type of the underlying calculus. If there were several messages
it would be sufficient to compose each of them with obs.
10Actually we append a “u” to the upper, free, locally defined symbols, and a “d” to the lower one.

12

— the lower channel type: c4
— the set of pairs of roles'': R = {(ry,r4), (7=,74)}

— the set of couples of composed messages: {(my,mq),...}

If there exists an added channel with the same key, then the channel type of the composed
ip is this channel. Otherwise this is a new channel type. We must add it in the channel
field of the embodying specification or body.

o The parameter list of the new module is the parameter list of the original composed
module.

We need to declare new channels. The process is:
e the name is a fresh, unique symbol.
o for each pair of roles of the key, a new role is assigned. Let us denote p this mapping.

o for each pair of composed messages (m,, mq), a new message is generated. Its roles are
the roles corresponding to the pairs of roles of the two messages: p ((R(m.) x R(mg)) N R)
where R(m) is the set of roles of the message m.

o The parameter field is the concatenation of the two corresponding fields, with a renaming
mapping p, in order to avoid clashes.

An example is given figures 2 and 3.

5.3 The Normal Form

Actually there are two normal forms. The first one consists in a replication process. The
second is a transformation similar to the first normal form of [2].

5.3.1 The first normal form

The first normal form can be defined as follows:

Definition 1 (First Normal Form) A body is in first normal form if and only if:
o At least one state is declared.
e The initialize statement exists, and has a to clause.

e Every transition has non empty from and to clauses.

This transformation applies to the code of the upper and lower bodies of a superimposed
body. Both must be terminal, not superimposed bodies.

1ff p is the only role of a channel, then 7 = r.

13

Algorithm 2 (First Normal Form) The body must be a terminal body. It is rewritten as
follows:

e if no ezplicit state is declared, then a state statement is added, with one new and unique
state inside.

o If no initialize statement is declared, then an empty one is generated.

e Ifno to clause is specified in the initialize statement, then the automaton must have
only one state, and a to clause with this state is added.

o for each transition:
— If there isn’t any from clause then one is added, the from states are all the states

of the automaton.

— If no to state is specified then the transition is replicated by the number of from
states, with each of the from states in each to clause.

Therefore the transitions have explicit from and to states.The correctness of this trans-
formation comes directly from the Estelle standard [1].

5.3.2 The second normal form

Let ¥ be a set of interactions (output or when)

Definition 2 (Second Normal Form) A terminal body is in second normal form relatively
to 3 if and only if:

o It is in first normal form.
o Every transition is in one of the & forms:

Boolean Form [t contains no interaction of X.

When Form The transition contains one when clause on an interaction in . And the
statement part of the transition doesn’t contain any event of X.

Output Form The transition contains no when clause. The first statement of the
statement part of the transition is an output event of . The remainder of the
statement part doesn’t contain any event of X.

The semantics of this output form is quite different from the Estelle semantics: the tran-
sition is fired only when the output is possible. Therefore the choice is external, which is
required for observation algorithms. In VEDA [8] the observation of an event is performed
by a when transition which has an external choice semantics. For reasons of simplicity of the
implementation it has been chosen not to change the syntax of the transition, yet it would
have been better to put the external choice output in the clause part of the transition.

The principle of the transformation from first normal form to second normal form is to
recursively replace the body of each transition which is not in second normal form by an

14

automaton whose transitions are Estelle transitions (such an automatori has an initial and a
final state), and then to flatten this representation in a single automaton, with second normal
form transitions.

This algorithm requires an unbounded set of fresh variables and states. It also involves
that some declarations are moved into the scope of the body. Figure 4 and 5 gives the
automaton associated to each Estelle constructions.

The transformation for the “with (¢;);es do S” construction is a particularly complex
one: the initialize transition contains the assignment of each array index of (¢;);es into a
fresh variable. The second transition (see figure 4) contains the statement S in which every
reference to a field f of one of the records (¢;);es is replaced by the expression ¢;. f, where the
array indexes have been substituted by the corresponding fresh variables of the initialize
statement,.

The goto statement is forbidden.

Algorithm 3 (Flattening) Every transition that is not in normal form is replaced by its
automaton :

o the const, type, var, subroutine, state declarations are copied into the corresponding
fields of the embodying automaton.

e the initialize transition is rewritten in the transition where:

— The priority, from, when and any clauses are equal to the corresponding clauses
of the including transition.
— The other clauses remain untouched.

o The final state is discarded and the to clause of every transition going to this state is
set to the value of the to clause of the including transition.

Algorithm 4 (Second Normal Form) For each transition not already in second normal
form:

o Ifit is a transition with a when statement w and some bounded outputs in the statement

part S1;...; Sn. Then the transition is split into two transitions, placed in sequence. We
assume that S k € {1,...,n} is the first statement containing a bounded output.

1. The first one is a transition containing w, and all the statements Sy;...;Si_;.

2. The second transition just contains the statements Si;...;S,. It must be put in

second normal form.

o If it is a transition with no when and only one bounded output, which is in the first
statement (yet not in normal form). Then the Flattening algorithm is applied to this
transition.

o If it is a transition with no when and a statement part of the form Sy;---;S,, where
each S; contains ezactly one bounded output statement. Then this transition is split
into n transitions, in sequence, with a S; in each of them. They must be put in normal
form.

An example is given in the appendix 9.1.

15

5.4 The composition of two normal form bodies

This composition is the product of the two automata, where the bounded pairs of interactions
are synchronized. If K is the binding mapping, then this composition takes as input:

¢ A domain(K)-second normal form body for the upper body.

¢ A range(K)-second normal form body for the lower one.

Algorithm 5 (Composition of Bodies) the superimposed body is transformed into a ter-
minal body with:

o The set © of states of the new body is isomorphic to the product of the two set of states
©, and ©4. Let us call o the isomorphism: 0 : 0, X O3 — ©

o The constants, types, variables and subroutines declarations are the concatenation of the
two corresponding fields, with the constraints:

— The declaration of every variable declared as a peek of an underlying variable is dis-
carded. Every occurence of this variable in the code is replaced by the corresponding
underlying one.

— The formal parameters of the two modules are declared as variables.
e The initialize transition is:

1. A sequence of assignments on the parameters of the two constitutives modules, in
order to share the parameters of the composed module.

2. The initialize of the upper body.
3. The initialize of the lower body.

The initial state is o(t,,ty) wheret, and ty are the corresponding initial states.

o Every boolean form transition of the upper body is replicated by the number of states of
the lower body. Each time, for a state t € ©4, the from clause becomes o (from, x {t}),
and the to clause becomes o(ty,t).

o Identically, for a boolean form lower transition. The from clause becomes o({t} x
Jrom,), the to clause becomes o(t,t4), for each t € ©,.

o And for every pair of matching bounded transition:

— The priority clause becomes the sum'? of the two clauses (if they ezist).
— The any clause is the concatenation of the two clauses.

— The provided is the “and” of the two clauses, and of the equality tests of the
matching indezes (if we compose an array of interaction points).

12Yet the priority between two transitions of two distinct processes has no meaning, we chose this formula
because it has a quite “hatural” behaviour.

16

— If the transitions are in when form: the when clause is the corresponding inter-
action.

The from clause is the product of the two clauses: o(from, x from,)

The to state is: o(to,, tog)

If the transition is in output form, the output statements are composed. The rest
of the statement part are concatenated. Otherwise, the statement part are simply
concatenated.

!

An example is given appendix 9.2.

5.5 What about the correctness?

In this section, only the principles of the proof are given. This proof consists of two parts:
The first one is the proof of the correctness of the normal form transformation. The second
one is the proof of the correctness of the implementation of the superimposition.

5.5.1 Correctness of the transformation in normal form

The normal form transformation rewrites each process. We want to prove that the normal
form specification has the same behavior. This is why we need a semantics = of Estelle, which
is a congruence.

If P and @ are two processes and if A[.] denotes a context (a specification with a hole),
then if & is a congruence:

P=Q = VA[] A[P] = A[Q)]

Therefore it is sufficient to prove that the meaning of each process is not changed by the
normal form transformation.
A failure semantics seems adequate to that purpose.

5.5.2 Correctness of the superimposition

Let us assume that:
1. There are no priority or delay statements in the specification.

2. The fairness assumption between the upper and the lower process is the same than the
fairness of the transitions in a single process.

We assume that P denotes the original specification, P’ the generated one, and & (P) the
set of all computations of P. If s is one of these, then s; is its projection on the process s.

Conjecture 1 (Partial Correctness) Every computation of P! is a computation of P.

Conjecture 2 (Total correctness) Every mazimal computation of P’ is a mazimal com-
putation of P.

17

We cannot go any further since (as it has been shown in [3]) it is possible to find a
superimposed specification with a computation s which has the property?:

Vs'€ E(P') i s; # 8!

These correctness proofs are absolutely tedious since Estelle is a complex language, with
a complex informal semantics. As far as we know, giving a denotational semantics to Estelle
has not been done yet.

5.6 The complexity of the generated code

Roughly speaking, if the number of transitions of each normal form body is n, and the number
of states is m, the generated code for a superimposed body has O(n?) + O(m) transitions.
The size of the code generated by the normal form transformation is in O(n) + O(m). Thus
the complexity is quadratic in the size of the code, and in the number of states of each body.

The generated code can become quite big if the number of states is high, or if there is a
large number of matching interaction couples (thus a high degree of nondeterminism).

The run time complexity of the code is not changed except for the number of clause
evaluations. Let us consider a completely connected graph of n processes. If every process
sends and receives one message on each edge, with the mecanism used in Echidna [9] the
number of transition evaluations is O(n®) on the whole system. Now if we superimpose on it
the Fidge and Mattern’s clock, the complexity is O(n?).

Therefore one must always bear in mind these complexity problems.

6 The implementation of the compiler

The superimposition compiler has been implemented in CAML!. The parser is derived from
the parser of the Echidna compiler [9], which is written in Pascal. The generated code can
be compiled by the Echidna compiler and then run on several distributed machines.

The code of the appendix 9 has been generated by this implementation.

On input, the language is not fully the normalized static Estelle (the delay construction
1s not implemented, there must be some explicit parameters in a when clause). On output,
there are no class keywords, the parameters of a when clause can be different than the formal
parameters in the channel declaration, the variable of a for statement is not always locally
defined. We are working on meeting the Estelle standard.

7 Conclusion

This implementation of superimposition shows that, first of all, it is possible to write Estelle-
programs transformation systems in a few months (it took actually about 2 months), although
the syntax of Estelle is quite big. Secondly it allowed us to experiment superimposition and

13Let us denote s; the projection of the calculus s on the process i. It is computed by discarding in s every
action that does not belong to the process i.
1CAML is a dialect of ML, developped by INRIA. It is a functional strongly typed polymorphic language.

18

some superimposed algorithms, therefore proving that it is a valuable program composition
technique. Lastly, the use of a strongly typed language has been a great help, since most of
the bugs were detected at compilation time.

There are several interesting research directions on superimposition:

e A global (not distributed) superimposition of two specifications seems possible. It would
enable a complete observation of a specification without changing a single line in it. The
distributed superimposition would be an intermediate form.

o Integrating the superimposition in dynamic Estelle seems possible. It is just required
that the processes and edges creations/destructions are treated as externally visible
events, so that the superimposed process could be synchronized on it and perform a
similar action, in order to maintain the equality of the networks.

e Optimizing the generated code is an important problem since it has been shown in
section 5.6 that the size of the generated code is quite large.

o The correctness proof, although tedious, seems possible and is an important deal since
the correctness of this compositional programming method is entirely grounded on this
proof.

8 Acknowledgments

I would like to thank Claude Jard. He did much of the work of adapting the parser of
the Echidna compiler [9] for the purpose of superimposition. His advices were always very
relevant.

19

channel ch_obs(in_o,out_o);
by out_o: obs;
by out_o: mark;

channel ch_calculus(in_c,out_c);
by out_c: info(i: vbool);

module megr(me: site; neighbours : neighbourhood);
ip in_obs: array[cir] of ch_obs(in_o);
out_obs: arrayl[cir] of ch_obs(out_o);
in_ring: ch_ring(in_a);
out_ring: ch_ring(out_a);
end;

module mcalculus(me: site; neighbours: neighbourhood);
ip in_calculus: array[cir] of ch_calculus(in_c);
out_calculus: array[cir] of ch_calculus(out_c);
end;

module mcomplex(z:integer;me: site; neighbours: neighbourhood);
superimpose megr(me,neighbours) over mcalculus(me,neighbours);
ip in_complex: bind in_obs over in_calculus;
out_complex: bind out_obs over out_calculus;
in_ring: up in_ring;
out_ring: up out_ring;
compose in_obs.obs over in_calculus.info;
compose out_obs.obs over out_calculus.info;
end;

Figure 2: An example of module composition: parts of the source.

20

channel Unique_1_U(Unique_2_U,Unique_3_U);
by Unique_2_U : Unique_4_U(I_42Kd:Vbool_3K);
by Unique_2_U : Mark_37Ku;

module Mcomplex_BK(Z_QSK:Integer; Me_95K:Site_3K;
Neighbours_95K:Neighbourhood_3K) ;
ip In_ring_95K:Ch_ring_3K(In_a_38K) ;
Out_ring_95K:Ch_ring_3K(Out_a_38K);
In_complex_95K:array [Cir_3K] of Unique_1_U(Unique_3_U);
Out_complex_95K:array [Cir_3K] of Unique_1_U(Unique_2_U);
end;

Figure 3: An example of module composition: parts of the generated code

21

58 - @ " Vs O

provided not =z

> empty

while € do S

provided =z

SI

vith (¢j)jeq do S| ———

evaluation of the indexes

allv : K do S| .| for v := inf(K) to sup(K) do S

for v :=a to bdo S

provided v < b

v := succ(v)
v i= a
HYOEIPO
provided v <= 2 provided™ b
S

provided v > b

Figure 4: The automata associated to each Estelle constructions. Note that the only transition
coming from the initial state is the initialize transition (Part 1).

22

[4

@ Initial state

O Normal state @Final state

if € then S; else S,

—

provided z S

provided not z g,

case € of v; : S; end

foreach edge :
provided z = ;
S' 1

repeat S until e

rov1ded not =z

O B o

prov1ded 2

Figure 5: The automata associated to each Estelle constructions. Note that the only transition
coming from the initial state is the initialize transition (Part 2).

23

9 Appendix

9.1 Example of normal form transformation of a body

The normal form transformation applied on the following:

specification fn_ex;
const k_max = 100;
type k = 1..k_max;

channel ch(i_ch,o_ch);
by o_ch: msg;

module a;
ip a1 : ch{o_ch);
end;

module b;
ip b1 : ch(o_ch);
end;

body ba for a;

initialize
begin
end;

trans
any x : k do
begin
if (1+1) = 3
then output ail.msg
end;

trans
begin
all y : k do
output al.msg
end;
end;

body bb for b;

initialize
begin
end;

trans
begin
output bi.msg
end;
end;

module c;
superimpose a over b;
ip c1 : bind al over bi;
compose al.msg over bl.msg;
end;

body bc for c;
superimpose ba over bb;
end;

initialize
begin

end;

end.

and composed over a body with one transition, and a single bounded output, gives:

24

»

£

LY

specification Fn_ex_2K;
const K_max_3K=100;
type K_3K=1..K_max_3K;

channel Unique_1_U
(Unique_2_U,Unique_3_U);
by Unique_2_U : Unique_4_U;

{ deleted code }

module C_3K;
ip C1_15K:Unique_1_U
(Unique_2_U);
end;

body Bc_3K for C_3K;

var Unique_12_Uu:Boolean;
Unique_10_Uu:K_3K;
Unique_8_Uu:K_3K;
Y_11Ku:K_3K;

state
Unique_18_U,Unique_17_U,
Unique_16_U,Unique_15_U,
Unique_14_U;

initialize to Unique_14_U
begin
end;

trans { A}

from Unique_14_U

to Unique_16_U

any X_9Ku:K_3K do
begin

Unique_10_Uu:=X_9Ku
end;

trans { B}

from Unique_16_U

to Unique_15_U

begin
Unique_12_Uu:=(((1+1))=3)
end;

trans { C}

from Unique_15_U

to Unique_14_U

provided (not Unique_12_Uu)
begin

end;

trans { D}

from Unique_14_U

to Unique_18_U

begin
Y_1iKu:=1;
Unique_8_Uu:=K_max_3K
end;

trans { E }
from Unique_18_U
to Unique_14_U
provided
(Y_11Ku>Unique_8_Uu)
begin
end;

trans { F }

from Unique_17_U

to Unique_18_U

provided
(Y_11Ku<Unique_8_Uu)

begin
Y_11Ku:=Succ(Y_11Ku)

end;

trans { G }
from Unique_17_U
to Unique_14_U
provided
(Y_11Ku>=Unique_8_Uu)
begin
end;

trans { H }

from Unique_15_U

to Unique_14_U

provided Unique_12_Uu

begin)
output
C1_15K.Unique_4_U

end;

trans { I}

from Unique_18_U

to Unique_17_U
provided
(Y_11Ku<=Unique_8_Uu)
begin
output

C1_15K.Unique_4_U

end;

end;

{ deleted code }

end.

Figure 6 gives the automata associated to the source and the object bodies.

25

trans any x : k do
begin if (141) = 3 then

output al.msg end;

trans begin all y : k do
output al.msg end;

trans begin
output bl.msg end;

Figure 6: The associated automata

26

2

9.2 Example of composition of two normal form bodies

The source code is:

specification cp_ex;

100;
1000;

const k_max
cpt_max

type k = 1..k_max;

channel ch(i_ch,o_ch);
by o_ch: msgi;
by o_ch: msg2;

module a;
ip a1: array[k] of ch(o_ch);
a2: array[k] of ch(i_ch);
a3: ch(o_ch);
end;

module b;
ip b1: array[k] of ch(o_ch);
b2: arrayl[k] of ch(i_ch);
end;

body ba for a;

var pk : integer;
m : integer;

state alpha,beta;

initialize
to alpha
begin
end;

trans
from alpha
to beta
any x : k do
begin
output ailx].msgi
end;

trans

from alpha

to beta

any x : k do

begin -
output ailx].msg2
end;

trans
from beta
to alpha
any x : k do
when a2[x].msgi
provided (x = 7)

begin
m := pk
end;
trans
from beta
to alpha
begin

output a3.msgi
end;
end;

body bb for b;
var z : integer;

initialize
begin

trans
any x : k do
begin
output bi[x].msgi
end;

trans
any x : k do
vhen b2[x].msgl
provided (z < cpt_max)
begin

module c;
superimpose a
over b;
ip c1: bind al over bi;
¢c2: bind a2 over b2;
c3: up a3;
compose al.msgl
over bl.msgi;
compose a2.msgl
over b2.msgi;
end;

body bec for c;
superimpose ba over bb;
peek pk := z;

end;

initialize
begin

end;

end.

And the object code is:

27

specification Cp_ex_2K;

const K_max_3K=100;
Cpt_max_3K=1000;

type K_3K=1..K_max_3K;

channel Unique_1_U(Unique_2_U,
Unique_3_U);
by Unique_2_U : Unique_4_U;
by Unique_2_U : Msg2_ 4Ku;
by Unique_2_U : Msg2_4Kd;

{ deleted code }

module C_3K;
ip C3_17K:Ch_3K(0_ch_4K);
Ci_17K:array [K_3K] of
Unique_1_U(Unique_2_U);
C2_17K:array [K_3K] of
Unique_1_U(Unique_3_U);
end;

{ deleted code }
body Bc_3K for C_3K;
var M_7Ku:Integer;

Z_13Kd:Integer;

state Unique_7_U,Unique_6_U;

trans
from Unique_6_U
to Unique_7_U
any X_10Ku:K_3K do
begin
output C1_17K[X_10Ku].Msg2_4Ku
end;

trans
from Unique_7_U
to Unique_6_U
begin
output C3_17K.Msgi_4K
end;

trans
from Unique_7_U
to Unique_6_U
any X_11Ku:K_3K; X_16Kd:K_3K do
when C2_17K[X_11Ku] .Unique_4_U
provided (((X_11Ku=7)) and
(((Z_13Kd<Cpt_max_3K))
and (X_11Ku=X_16Kd)))
begin
M_7Ku:=Z_13Kd;
Z_13Kd:=(Z_13Kd+1)
end;

trans
from Unique_6_U
to Unique_7_U
any X_9Ku:K_3K; X_15Kd:K_3K do
provided (X_9Ku=X_15Kd)
begin

initialize output C1_17K[X_9Ku].Unique_4_U
to Unique_6_U end;
begin end;
Z_13Kd:=0;
end; initialize
begin
end;
end.
References

[1] 1S 9074. Estelle: a Formal Description Technique based on an Extented State Transition
Model. ISO TC97/SC21/WG6.1, 1989.

[2] K.R. Apt, L. Bougé, and P. Clermont. Two Normal Form Theorems for CSP Programs.
Technical Report 10, LIENS, Ecole Normale Supérieure, Paris, France, June 1987.

6

28

»

L i

[3] L. Bougé and N. Francez. A compositional approach to superimpostion. In Proc. of
the 15** ACM SIGACT-SIGPLAN Symposium on Principle of Programming Languages,
pages 240-249, San Diego, California, January 1988.

[4] B. Caillaud. La superposition. Mémoire de D.E.A., Univ. Paris 6, Paris, France, Septem-
bre 1988.

[5] K. M. Chandy and J. Misra. Parallel program design : a foundation. Addison-Wesley,
1988.

[6] N. Francez. Fairness. Springer Verlag, New York, 1986.

[7] J.M. Hélary, N. Plouzeau, and M. Raynal. A characterization of a particular class of
distributed snapshots. In Proc. International Conference on Computing and Information
(ICCI’89), Toronto, North-Holland, may 23-27 1989.

[8] C. Jard, R. Groz, and J.F. Monin. Development of VEDA: a prototyping tool for dis-
tributed algorithms. In IEEE Trans. on Software Engin., March 1988. ‘

[9] C. Jard and J.-M. Jézéquel. A multi-processor Estelle to C' compiler to experiment
distributed algorithms on parallel machines. In Proc. of the 9" IFIP International
Workshop on Protocol Specification, Testing, and Verification, University of Twente,
The Netherlands, North Holland, 1989.

[10] F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quinton,

Raynal, and Robert, editors, Proc. Int. Workshop on Parallel and Distributed Algorithms,
Bonas, France, oct. 1988, North Holland, 1989.

29

P1

PI

Pl

PI

Pl

PI

PI

PI

486

487

488

489

490

491

492

493

LISTE DES DERNIERES PUBLICATIONS INTERNES IRISA

SYNTHESIS OF A NEW SYSTOLIC ARCHITECTURE FOR THE
ALGEBRAIC PATH PROBLEM

Abdelhamid BENAINI, Patrice QUINTON, Yves ROBERT,
Yannick SAOUTER, Bernard TOURANCHEAU

34 Pages, Juillet 1989.

PLANS SIMULATION USING TEMPORAL LOGICS
Eric RUTTEN, Lionel MARCE
40 Pages, Juillet 1989.

ON FINITE LOOPS IN LOGIC PROGRAMMING
Philippe BESNARD
20 Pages, Septembre 1989.

LTA : UN LANGAGE DE TRAITEMENT D'ARBRES
Dalila HATTAB
24 Pages, Septembre 1989.

THE SIGNAL SOFTWARE ENVIRONMENT FOR REAL-TIME
SYSTEM SPECIFICATION, DESIGN, AND IMPLEMENTATION
Albert BENVENISTE, Paul LE GUERNIC

34 Pages, Septembre 1989.

PHYSIQUE QUALITATIVE : PRESENTATION ET COMMENTAIRES
Qinghua ZHANG
48 Pages, Septembre 1989.

SPARSE MATRIX MULTIPLICATION ON VECTOR COMPUTERS
Jocelyne ERHEL
20 Pages, Septembre 1989.

THE SUPERIMPOSITION OF ESTELLE PROGRAMS : A TOOL FOR
THE IMPLEMENTATION OF OBSERVATION AND CONTROL
ALGORITHMS

Benoit CAILLAUD

30 Pages, Septembre 1989.

30

Imprimé en France
ar
I’ Institut National de Recherche en Informatique et en Automatique

iy

