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Abstract

An important kernel of scientific software is the multiplication of a sparse
matrix by a vector. The efliciency of the algorithm on a vector computer de-
pends on the storage scheme. With a storage by rows, performances are limited
in general by the small vector length. Therefore a storage by so-called general-
ized columns has been designed, which provides long vectors and consequently
good performances. However, it is not adapted to the symmetric case. A new
type of storage, by sparse diagonals, has then been defined. It still exhibits
long vectors, with performances as good as previoulsy, but it is also well-suited
to symmetric matrices. Results on a CRAY2, with various sparse matrices,
compare the three algorithms, and show the efficiency of the storage by sparse
diagonals.

Résumé

Un noyau important des logiciels scientifiques est la multiplication d’une ma-
trice creuse par un vecteur. L’efficacité de I’algorithme sur calculateur vectoriel
dépend du mode de stockage. Avec un stockage par lignes, les performances
sont limitées en général par la faible longueur des vecteurs. C’est pourquoi
nous avons congu un stockage par colonnes généralisées, qui donne de longs
vecteurs, et par suite de bonnes performances. Cependant, il n’est pas adapté
au cas symétrique. Nous avons alors défini un nouveau type de stockage, par
diagonales creuses. On obtient encore de longs vecteurs, avec des performances
aussi bonnes que précédemment, mais le stockage convient de plus pour le cas
symétrique. Des résultats sur un CRAY2, avec diverses matrices creuses, com-
parent les trois algorithmes, et montrent I’efficacité du stockage par diagonales
creuses.
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1 Introduction.

Many scientific applications require computations on large sparse matrices.
Among them, the multiplication of the matrix by a vector represents an im-
portant kernel, which has to be optimized on vector computers to get efficient
codes. This paper is focused on the design of a sparse storage and a corre-
sponding algorithm to perform this matrix-vector multiplication. We deal with
general sparse matrices, with a priori no specific pattern. Only the non-zero
entries are stored, in order to save memory space, and to minimize the number
of operations. Furthermore, for symmetric matrices, only the lower triangular
part is stored. : _

We first investigate the classical storage by rows, associated to sparse dot-
products. It requires rows with a large degree (we call degree of a row its number
of non-zero entries) to become efficient on vector computers. For most sparse
matrices, it yields poor performances, leading us to find other storage schemes.

For matrices with roughly the same degree per row, a compressed storage
can be used to design an efficient vector algorithm ([1]). But it introduces
fill-in, which becomes too important for general structures. Hence, we use a
more general storage scheme, called storage by generalized columns, similar to
the stripe structure ([2]), or to the jagged diagonals ([3]), and yielding good
performances. However, this storage is not adapted to symmetric matrices.

For regular or band structures, the storage and multiplication by diagonals
have been proved to be very performant on vector computers ([4]). For general
sparse matrices, we define a storaege by sparse diagonals, where only non-zero
entries of the diagonals are stored. The corresponding algorithm is well-suited
for symmetric matrices, and is quite efficient.

Our algorithms are executed on a CRAY2 computer!. Pipelined sparse op-
erations (scatter and gather) are available, though the gather operation is quite
slow (about three times slower than the scatter). To measure the performances
of our algorithms, we use the asymptotic speed ro,, and the half performance
length n1/5 ([5]). The speed of execution r for a vector length n can then be
expressed by the formula:

T = Te *n/(n+n1/2)

We have tested also the algorithms on various sparse matrices, coming from
the Harwell collection ([6]). Results are given for the three storage schemes, in
order to allow comparisons.

1Acces to the CRAY2 computer is provided by the Centre de Calcul Vectoriel de la
Recherche, Palaiseau, France.



2 Position of the problem.

2.1 Non symmetric case.

Let A € R™™ be a sparse matrix, the entries of which are (a;;). In order to
save memory, only non-zero entries are stored. The set of indices corresponding
to non-zero entries is denoted by I, and its cardinal by N.

o #0=(i,5) €I

Let » be a numbering of the non-zero entries of A, that is a one-to-one
mapping from I into the set of integers J = [1, N]. The reciprocal mappings of
v are denoted by A and v, and are defined by:

t=A{)and j =~(l) & v(i,j) =1
The non-zero entries of A are stored in the array b = (f)i=1,5, where:
v(i,j) =1 = Bi =

From now on, = and y are vectors of order m and n respectively. Our goal
is to design efficient storage and algorithm to perform the multiplication:

yi=y+Axz (1)
Operation 1 is translated into the following loop:

forl = I,N

YA = ) + B * T4 (2)
end

We do not consider roundoff errors, so that the order of iterations is not
relevant. It means that we can choose any numbering v. Instruction 2 is
vectorial if and only if A is either constant (dot-product) or injective (vector
triad). We are looking for partitions of J, J = |J Ji, such that X is constant or
injective on each Jg.

2.2 Symmetric case.

Let A be a symmetric sparse matrix of order n. Only the lower triangular part L
of A is stored, saving memory space. The main diagonal is stored in a separate
array. Otherwise, notations are the same as before, applied to L. In particular,
N is the number of non-zero entries in L.



Operation 1 is performed by the following loop:

forl = 1IN
Ya@) 2= Ya@) T Bi* T (3)
Yn(t) 1= Yot + Bi* TAq) (4)
end

Operations 3 and 4 are grouped into the same loop to minimize the memory
requirements.

Instruction 3 (resp. 4) is a vector one if and only if A (resp. 7v) is either
constant or injective. We are then looking for partitions J = |J Ji such that on
each Jy is satisfied one of the following:

e ) is constant and « is injective (or the symmetric case),
e ) and v are both injective.

The case where both functions are constant has obviously no interest!

3 Storage by rows.

The matrix A is stored by rows, with any numbering within each row. This
storage defines a partition (J;);=1,, such that A is constant and v is injective on
each J;. This partition is therefore adapted to non symmetric and symmetric
cases as well.

3.1 Non symmetric case.

The algorithm 2 is then rewritten as:

fori = 1,n
forl = 1,d;
Yi i= Yi + Bige, * Toy(i+t;) (5)
end
end

where d; is the degree of row 7, and ¢; is defined by:

tl = 0
tiy1 = t,'+d,', t=1,n-1



Instruction 5 is then a sparse dot-product. The perforinances on CRAY2
are given by (figure 1):

T = 55 MFLOPS
n1/2 = 150

Although the asymptotic speed is quite high, it requires a large vector length,
greater than 300. The vector length is defined by the degree of the rows. But in
most of sparse matrices, it is quite small and the average lies between 10 and 20
([7]). Expected performances lie then in the range of 10 MFLOPS. Therefore,
this approach is not efficient on the CRAY?2, for general sparse matrices.

3.2 Symmetric case.

The symmetric case is similar to the previous one, except that only L is stored,
and that the product by L and L* are performed in the same loop. Instructions
3 and 4 are then rewritten as:

fori = 1,n
forl = 1,d;
Yi i = Yi + Bise; * To(4t:) (6)
Yn(i4t:) = Yn(i4t) T Bitt; * T
end
end

The loop 6 is composed of a sparse dot-product and a sparse vector triad.
the performances on CRAY2 are given by (figure 2):

To = 60 MFLOPS
Ny = 40

The same conclusion applies in the symmetric case. In general, the degree
of the rows are too small to get an efficient algorithm on the CRAY2.

4 Storage by generalized columns.

The poor performances of the storage by rows has led us to define a new type
of storage, searching for long vectors. We want to find a partition such that, for
non symmetric matrices, A is injective on each subset of the partition, and such
that the size of each subset is as large as possible (it will be the vector length).



The minimal number of subsets is the maximal degree of a row, say d.
Conversely, the maximal size of a subset is the number of rows n. Therefore,
we define I as the set of the k** non-zero entries of all the rows. We then get
d subsets, with most of them of size n. It should be noted that this numbering
corresponds to the storage by columns for dense matrices. Therefore will call it
the generalized column storage ([8]).

This storage scheme can still be improved by suppressing the indirection A
on the rows. Rows are renumbered by decreasing degree, such that each subset
I, contains rows from 1 to ni, where n; is the number of rows of degree at
least k. However, the inverse permutation of rows must be performed on the
resulting vector y.

The algorithm 2 is then rewritten as:

fork = 1,d
fori = 1,n;
Yi i= Yi + Bity * Tuy(ity) (7)
end
end

Performances can be improved by unrolling the loop on k, if several sub-
sets have the same size, or by adding some zero-entries. On the CRAY2, the
measures give the following results (figure 1):

T = 42 MFLOPS
Ny = 30

For most sparse matrices, almost all subsets have a size of n or slightly less
than n, yielding long vectors, and consequently good performances on CRAY2.
The vector length is greater than 300, allowing to obtain the asymptotic speed.
However, memory conflicts tend to decrease the speed of computation. They
could be controlled by choosing the ordering of the non-zero entries within each
row.

It must be pointed out that this algorithm is adapted to any rectangular
sparse matrix. But it cannot be extended to the symmetric case, where only L
is stored.

5 Storage by sparse diagonals.

We are now dealing with the symmetric case. We must find a partition J = (J J;,
such that both A and v are injective, and such that the size of each Jj is large
enough.



A solution could be to use a general graph coloring algorithm ([9]), or to
define so-called stripes ([2]). But both methods implies the storage of both
indirections.

To avoid this, the best solution would be to request a linear mapping for \.
However, it does not seem compatible with the storage of only L. Therefore, we
look for a linear relation between both indirections A and 4. A natural choice,
well-suited to the symmetric case, is to store A by diagonals. The relation
A — v = k, corresponds to the diagonal numbered k. Of course, only non-zero
entries of the diagonals are stored, in association with y. The algorithm 3, 4
can be rewritten as:

fork = 1,m
forl = 1,n;
Yn(i+ti)+k °= Yy(l+te)+k T+ Byt * Toy(l+ts) (8)
Yn(i+ts) *= Ya(i+ts) T Bty * To(le,)+k
end
end

where:

e m is the bandwidth of the matrix,

® n; is the number of non-zero entries in diagonal k, (possibly ny = 0),
® 1) is given by: t; = 0, and t;4; = & + ns.

Instructions are sparse vector triads. Memory requirements are limited by
using A and f in the same loop.

This algorithm can also be applied to square non symmetric matrices, giving
a similar loop, but with only the first instruction, and with negative diagonal
numbers. However, it is not appropriate for rectangular matrices.

For the non symmetric case, measured performances on the CRAY? are the
following (figure 1):

Tw = 28 MFLOPS
N2 = 20

For the symmetric case, we get better performances, due to a better ratio
between memory transfers and floating-point operations (figure 2):

o = 39 MFLOPS
n1/2 = 15



To be efficient, the storage must provide sufficiently long vectors, of length
at least 40. In other words, diagonals must have enough non-zero entries. For
general sparse matrices, diagonals can be scattered and very small. Hence a
renumbering technique appears to be necessary, by applying a permutation ma-
trix P, yielding the matrix P*AP. Algorithms which minimize the bandwidth
are quite efficient in practice, since reducing the number of diagonals increases
their average length. Furthermore, these renumbering algorithms are often used
in applications to solve the sparse linear system.

6 Numerical experiments.

6.1 Storage requirements.

We now compare the three storage schemes and the corresponding algorithms.
First of all, it should be noted that they require roughly the same memory
space.

In the non symmetric case, the three storage schemes need N real words to
store the matrix §, and N integer words to store the column index 4. Additional
pointers are necessary in each case to find the length of the rows, or the gen-
eralized columns, or the diagonals. The corresponding arrays are summarized
below:

e storage by rows: d; 1<:<n,

e storage by generalized columns: ny 1 < k < d, and the permutation of
rows, tperm; 1<i<mn,

e storage by diagonals: ny — m; <k < m,.

In the symmetric case, the main diagonal is stored in a separate array, so
that both schemes by rows and by diagonals require (N +n) real words to store
the non-zero entries 8, and N integer words to store the column index . The
additional pointers are the same as previously and are summarized below:

e storage by rows: d; 1<i<n,
o storage by diagonals: ny 1<k <m.

Of course, all algorithms execute the same number of operations, which is
2% N (resp. 4+ N +2xn) in the non symmetric (resp. symmetric) case. Hence,
we can use the rate of execution as a measure of comparison.



6.2 Test matrices.

We have tested the three methods on matrices arising from the Harwell collec-
tion. Concerning the symmetric matrices, we have chosen four matrices coming
from structure problems, and four matrices coming from various applications.
We have picked also three non symmetric matrices. The characteristics of all
matrices are described in table 1. Two symmetric matrices (BCSSTK19 and
BCSPWRO09) before and after renumbering are depicted in figures 3 to 6. The
non-zero entries are represented by points. The renumbering algorithm, pro-
vided by [10], is designed to minimize the bandwidth, and is derived from the
original algorithm due to [11].

Symmetric matrices have been stored by rows and diagonals, with only the
lower triangular part L, but also by generalized columns, with the non sym-
metric storage for the sake of comparison. Non symmetric matrices have been
stored by rows, diagonals, and generalized columns.

The timings for the generalized columns algorithm include the permutation
of the resulting vector y, to get the correct numbering of the rows.

6.3 Results on CRAY2.

Measures are done on a CRAY?2, in dedicated mode. Results, in terms of rate of
execution in MFLOPS, are given in table 2. Codes are written in all FORTRAN.
They could be slightly improved, by writing them in cal, but we prefer to keep
portability.

For most matrices, the storage by rows gives poor performances, less than
10 MFLOPS. For example, we get 1.7 MFLOPS for the matrix BCSPWR09.
However, the results are fairly good for three matrices, namely BCSSTK24,
ORANI678, and PSMIGR 1, with respectively 17, 13, and 29 MFLOPS. These
three matrices have a large number of non-zero entries N, thus a large mean
degree per row, so that the vector length is sufficiently long. But in other cases,
the degree of the rows are too small, so that the algorithm is slow. Conclusions
are identical in the symmetric and the non symmetric cases.

The storage by generalized columns give in general good performances, rang-
ing from 14 to 34 MFLOPS, for example 21 MFLOPS for the matrix BC-
SPWRO09. However, two matrices (BCSSTK24 and ORANI678) give rise to
poor results, less than 10 MFLOPS. This is due to memory conflicts. The col-
umn index 1 is not injective, so that different rows may require the same index,
slowind down the indirect access to the vector . Although this is true for all
matrices, it appears important only in these two cases. A thorough analysis of
the column index + shows that, for these two matrices, v is very often the same
for consecutive rows, sometimes even the identity for one generalized column.
Conversely, for matrices PLAT1919 and LNS 3937, the column index v is al-
most injective, so that few memory conflicts appear, explaining the high rate of
execution (33 and 3¢ MFLOPS).



The results for the storage by diagonals, without renumbering, are compa-
rable to those for the storage by generalized columns, except for two matrices,
1138 BUS (5 MFLOPS), and BCSSWRO09 (4 MFLOPS). As can be seen in fig-
ure 5, the diagonals are scattered in the matrix, and have very few non-zero
entries, providing very small vectors. A lot of diagonals have only one non-zero
entry. Therefore, the rate of execution is very slow.

But after renumbering, the performances are much better. The figure 6
shows that now the diagonals are much longer, so that the vector length is suf-
ficient to get a fast rate of execution. In general, for all tested matrices, the
renumbering algorithm improves the results. After renumbering, the perfor-
mances are very often better for the storage by diagonals than for the storage
by generalized columns. Furthermore, it is more well-suited to the symmetric
case, because it requires only the storage of the lower triangular part of the
matrix. There are few memory conflicts, because the row index and the column
index are both injective. Memory bank conflicts may still appear if the indices
are equal modulo the number of memory banks B, but this happens for very
sparse diagonals, with non-zero entries every B rows for example, which is not
the case in practice.

7 Conclusion.

To perform efficiently a sparse-matrix-vector multiplication on vector comput-
ers, it is necessary to define a storage giving long vectors and minimizing mem-
ory requirements. The classical storage by rows yields for most sparse matrices
too small vectors. For non symmetric matrices, the storage by generalized
columns gives in general good performances, though it may be slowed down
by memory conflicts. But for square and symmetric matrices, the storage by
sparse diagonals becomes very competitive, for two reasons. First of all, the
algorithm is in general faster than the two others. Secondly, it allows to store
only half of the matrix, saving memory space. However, it requires sometimes a
renumbering of rows and columns, but which is often used in practice for other
purposes.

The algorithm by diagonals could be improved by allowing some fill-in, to
obtain full diagonals, leaving only a few sparse diagonals. This scheme would
eliminate indirections for most of the computations.

Other kernels than this sparse-matrix-vector multiplication are also crucial
in scientific applications. In particular, the resolution of a sparse triangular
system is very important. Our effort will now be focused on this operation.
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Figure 3: Matrix BCSSTK19 before renumbering
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Figure 6: Matrix BCSPWRO09 after renumbering
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matrix name | order | number of | maximal | bandwidth bandwidth
entries degree before after
renumbering | renumbering
Symmetric matrices
BCSSTK19 817 3835 11 567 18
BCSSTK12 | 1473 17857 33 650 62
BCSSTK23 | 3134 24156 31 449 350
BCSSTK24 | 3562 81736 57 3333 293
1138 BUS | 1138 2596 18 1030 126
BCSPWRO09 | 1723 4117 15 1663 116
PLAT1919 | 1919 17159 19 1297 80
ZENIOS | 2873 15032 47 1844 30
Non symmetric matrices

ORANI678 | 2529 90158 1110 2309

LNS 3937 | 3937 25407 11 3202

PSMIGR 1 | 3140 543162 2294 3124

Table 1: characteristics of matrices

matrix name | by rows | by generalized | by diagonals | by diagonals
columns before after
renumbering | renumbering
Symmetric matrices
BCSSTK19 4.0 20.5 12.0 31.2
BCSSTK12 10.2 14.5 26.7 32.3
BCSSTK23 6.6 19.4 26.2 27.1
BCSSTK24 17.2 9.9 22.0 31.6
1138 BUS 2.0 20.7 5.6 17.0
BCSPWRO09 1.7 21.4 4.2 20.0
PLAT1919 6.6 33.1 21.8 27.7
ZENIOS 6.1 22.8 124 35.8
Non symmetric matrices

ORANI678 13.0 8.8 14.2

LNS 3937 3.1 34.0 18.3

PSMIGR 1 29.3 27.7 194

Table 2: Sparse matrix-vector multiplication - MFLOPS on CRAY?2
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