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Abstract

We present an original approach to build a three dimensional description of the environment
of a robot using three cameras.
The main advantages of trinocular vs. binocular stereo are simplicity, reliability and accu-
" racy. -We believe that these advantages now makes trinocular stereovision of practical use for
many robotics applications.
The technique has been successfully applied to several indoor and industrial scenes. Exper-

imental results are presented and discussed.

- Key-words: Trinocular Stereovision, 3D Maps, Edge Segments, Computer Vision, Mobile
Robots. .

Nous présentons une approche originale pour construire une description tridimensionnelle de
" Penvironnement d’un robot en utilisant trois caméras. ’

Les avantages décisifs de la stéréovision trinoculaire sur la stéréovision binoculaire sont
la simplicité, la fiabilité et la précision. Nous pensons que ces avantages rendent maintenant
possible 'utilisation effective de la vision stéréoscopique passive pour de nombreuses applications
industrielles.

Cette technique a €té appliquée avec succés d des ezpériences impliquant diverses scénes

dintérieur, ainst que des scénes industrielles. Ces ezpériences sont décrites et commentées.

Mots-Clés: Stéréovision trinoculaire, Cartes visuelles 8D, Segments de contours, Vision par
Ordinateur, Robots Mobiles.

“this work was partially supported by esprit project P940.



1 Introduction

Stereovision is a technique to build a three dimensional description of a scene observed from several
viewpoints. It is quoted as passive if no additional lighting of the scene, for instance by a laser beam
is required. So defined, passive stereovision happens to be very attractive for many applications
in robotics, including 3D object recognition and localization as well as 3D navigation of mobile
robots.

Most of the research on passive stereovision has been devoted to binocular vision for which two
cameras are observing the same scene from two slightly different viewpoints. As soon as two image
points are matched, i.e. identified as corresponding to the same physical point, it is possible to
compute the three dimensional coordinates of this physical point.

Unfortunately the matching problem is difficult. This is mainly because the geometric con-
straints of binocular stereo are not sufficient to impose a unique solution; several heuristic con-
straints must be added to compute a plausible matching solution.

Using a third camera increases the geometric constraints, and allows to reduce the influence of
heuristics in stereo-matching. Presently, following Yachida [1,2] an increasing number of studies
are devoted to trinocular vision. A review of some of these techniques can be found in 3] which
includes most of the following publications [4,5] [6] [7] [8] [9] [10].

For a discussion of both geometric and heuristic constraints used in binocular stereovision and
for a review of research on this topic, one can refer to [11] for instance. A non-exhaustive list of
publications on the subject is given by the following references [12] [13] [14] [15] [16] [17] [18] [19]
[20] [21] [22]. Last but no least, the work of [23] on binocular stereovision pioneered the work on
trinocular stereovision presented here.

The paper is organized as follows: first we explicit what is needed to constrain the stereo
matching problem. This includes geometry of trinocular stereovision, representation of images,
calibration, rectification, and spatial reconstruction. Then, we can detail the matching algorithm
and the validation procedure. Finally experimental results are presented and discussed. We con-

clude by a summary and future research.

2 Geometry of Trinocular Stereovision

Figure 1 illustrates the geometric constraints of trinocular stereovision. Camera 1 (f=1,20r 3)is
represented by its optical center C; and its image plane ;. Given a scene point P, its image I; by
camera 1 is given by the intersection of the line PC; with the plane ;. This is the classical pinhole
model. Points Iy, I et I3 form a triplet of homologous image points.

Given a pair (7, 7) of cameras and a physical point P, the epipolar plane Q;; is defined by the
triplet of points (C;, P,C;). The intersection of this epipolar plane with camera plane P, is the
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Figure 1: Geometric constraints of trinocular stereovision

epipolar line D;;, while its intersection with camera plane P; is the epipolar line Dj;. Di; and Dj;
are called conjugated epipolar lines. Any point I; on D;; (resp. I; on Dj;) has its homologous
image point I; on Dj; (resp. I on D;;). Therefore, using two cameras, the search for homologous
image points is a search along con}ugated epipolar lines. '
As one can see on figure 1, a scene point P produces three pairs of homologous epipolar lines.
When the image points (I, I;, I) form a triplet of homologous image points, then I; is necessarily
located at the intersection of the epipolar lines D;; and Dj; respectively defined by I; and I.
Therefore the search for homologous image points between two ir'nages can now be reduced to a
simple verification at a precise location in the third image. For instance checking that (I3,I3) form
a pair of homologous image points consists in verifying the presence of I at the intersection of D31

and D32.

3 Image representation

The matching algorithm does not perform directly on the image, but on a symbolic representation

of it.

For 2 number of reasons, we have come to use linear edge segments :

o physical meaning and reliability (cf. figure 2) : most of the edges come from physical phe-

nomena such as changes in reflectance (type 3), changes in illumination (type 4), and changes



of the surface normal (type 1 and 2). Except in the case where the observed surface recedes
away smoothly (type 1), in which case the detected edges in the two images may not be
exactly the image of the same part of the object, the edges provide a good and reliable source

of information.
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Figure 2: Different types of edges

compactness : the information contained in the edges is not only very significant but also

much more compact in terms of storage and matching computational burden.

richness of attributes : many useful features can be attached to the edge segments to help solv-
ing the stereo matching process. These features can be, geometric (length, angle), intensity-
based (average contrast along the segment, average intensity of the neighbouring regions) or

structure-based (edge chains, neighborhoods).

density : this representation is structured but nevertheless rather dense over the image,

therefore enabling to keep enough information over the whole image.

accuracy : our purpose in performing stereo matching is to be able to reconstruct the 3D
environment accurately. Edges can be reliably and accurately extracted and, as we shall see,
the least-squares approximation used during polygonal approximation enables us to get a

sub-pixel accuracy.

easiness : there are a number of ways to easily and reliably extract edges from an image.
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3.1 Edge extraction

Edge points are first computed using a very efficient recursive filter developed by Deriche[24] after
Canny’s ideas[25|. The edge pixels thus obtained are structured into edge chains using a program
developped by Giraudon [26], in turn approximated by line segments using a program developped
by Berthod. The interested reader will find in [27] a good review of some techniques for polygonal
approximation.

Let us note that, to get a better accuracy in 3D reconstruction, our ultimate goal, we perform
a least-square approximation to fit a 2D linear segment betwen each pair of successive breakpoints.

This allows us to obtain sub-pixel accuracy.

3.2 Features

For each of the segments, a number of features are computed. Among all possible ones, we use the

following set :
¢ length.
e angle!

e average gradient magnitude along the segment.

3.3 Buckets

As we show later, the stereo-matching algorithms often requires to access segments lying in a given
region of the image. We therefore need to structure the image to optimize this operation. A very
simple and efficient way to proceed is to compute buckets, i.e. superimpose a virtual grid composed
of square windows on the image and compute, for each window, the list of segments intersecting
it. Accessing a segment in a given region of the image is then reduced to accessing the segments of
the buckets covering this area of the image. This structure is computed in linear time with respect
to the number of segments. Figure 3 shows the principle of the method.

Furthermore, the buckets allow us to define a neighborhood structure. The neighborhoods are
defined by the buckets : two segments are neighbors if and only if they share a common bucket.
To obtain better neighborhoods, one can superimpose two sets of partially overlapping buckets, as
it is shown in Figure 4.

Typically, we used 16x16 buckets for the matching phase, and 8x8 buckets for the validation,

because we want to get enough neighbours.

!we use segments oriented by the gradient, i.e. the orientation is computed modulo 2.
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Figure 3: Computation of buckets and neighbourhoods :

Neighborhoods:  V(1)=Nil; V(2)={3,5}; V(3)={2,4}; V(4)=(3}; V(5)={2}; v(e)={7}; V(8)={7,9};
V(9)={8};

Lists of connected neigbours : {1}; {2,3,4,5}; {6,7,8,9}
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Figure 4: Better definition of neighbourhoods, using two sets of overlapping buckets :
Neighborhoods: V(1)=Nil; V(2)={3,5}; V(3)={2,4}; V(4)={3}; V(5)={2,8}; V(6)={(7,8}; V(8)=(5,6,7,9};
v(9)={8};

Lists of connected neigbours : {1}; {2,3,4,5,6,7,8,9}
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4 Calibration

4.1 Image Modelling

Let us choose one of the cameras, characterized by its optical center C and its image plane P, and
let us model the image formation process. A point P in the observed scene is projected on point
I of the camera retina. The relationship between P and I is modelled as a linear transformation
in projective coordinates. If we denote I* = (U,V, S)* the projective coordinates of I and (z,y, z)*

the coordinates of P, the following relation holds:

z
y
z
1

where T is a 3 x 4 matrix usually called the perspective matriz of the considered camera.
If P is in the focal plane of the camera, (i.e. if the straight line CP is parallel to the image
plane P), then S = 0 and the coordinates (u,v)! of I are no longer defined. In the general case

S # 0 and the image coordinates of I (usually expressed in pizels) are given by:

(2] ()

4.2 Determining the perspective matrix T

In the experiments conducted in our laboratory [28,29], T is obtained by analyzing a calibration
pattern which is a grid painted on a planar surface. The 3D position of the intersection points of
the grid are well known in an absolute 3D coordinate frame and the grid is observed from several
well defined different positions.

T is a matrix of dimension 3 x 4, but it is defined up to a scale factor, and one needs a constraint

to specify T uniquely. The simplest constraint? consists in assuming that t34 # 0, then enforcing
t3g =1

Each time an image point I = (u,v)* is matched with its corresponding scene point P = (z,y, z),
this provides the following two linear equations on the eleven unknowns remaining for determining
T:

Pty +t1g —u(Plts +1) = 0
Pty +tyg ~ v(P't3 +1) = 0 (1)

*on the discussion of this constraint, see {28,29).



where ty is the element of rank (7,k) in T, and t; is the 3-vector obtained from the first 3 elements
of the jt* row of T
tj = (tj1,tj2,tj3)'
In theory, six non coplanar points are sufficient for determining T uniquely [30]. In practice,

several dozens of points are available, allowing for a global or recursive least squares estimation of

T.

5 Computing epipolar constraints

We now assume that we are dealing with at least two cameras, and we compute the epipolar
constraints between them. First, we compute from each matrix T; the optical center of the cameras,

then the inverse image of an arbitrary image point.

5.1 Determining optical centers

The 3D coordinates (z¢,, yc,, 2c,) of the optical center C; of camera ¢ (modelled by the perspective

matrix T;) are obtained by solving:

which is a system of three linear equations in the three unknowns (z¢,, y¢,, zc;)-

5.2 Computing inverse images

We need to compute the straight line D which is the inverse image in the scene of a given image
point I. This straight line D is composed of 3D scene points P having the same image I. If we
look at figure 1 we see that D is simply the straight line defined by I and C;.

To determine D analytically, let us re-write the system of equations 1 which relates point I to

points P in the form:
() —urty) P+t —uity, = O
(th — v t8)'P+thy —vyts, = O
where the 1 index in t} refers to camera 1.

These are equations of two planes whose intersection defines D. A vector n colinear to D is the

cross-product of the normals to the planes:
n= (8] - uity) x (8 - v t3)

8



which yields:
n=upty X th+oth xth 88 x 8

which can be written
n= NI (2)

* with
N, =[thxty tixt & xt

The parametric equation of the line C;[I is therefore given by
P=C;+An

where n is given by the previous equation and where ) is a real number.

5.3 Parametric equation of epipolar lines

It is now easy to compute the parametric equation of the epipolar line D;; in image j corresponding
to the image point /; of coordinates (u;,v;) in image i, because Dj; is simply the image of the line

C;l; by camera j. Therefore Dj; is composed of points I; whose projective coordinates satisfy:

. Ci+An

F;’ = TJ'- n (3)

If we denote

where T; is the 3x3 sub-matrix obtained from T} by suppressing its last column, and

c_m | G
EJ'—TJ(I) (4)

then we get the parametric equation of the epipolar line Dj; in projective coordinates:
o ® *
I; =E; + ) F;

Therefore, the parametric equation of Dj; in image coordinates is:

Ug. + A Up,

e W (5)
E; Fy

o VEj+/\ij (6)
1 SEj-l-/\Spj

From these equations, one can see that the epipolar lines form a pencil of lines going through an

epipo.ar center Ej which is the image of C; in camera j. Also, Fj is the vanishing point corresponding

9



to P at an infinite distance from the cameras (A — 0o). One can also notice that a vector colinear
to the epipolar line Dj; is obtained by differentiation of equations 5 and 6 with respect to A. This
yields
Au; - Ur;Se,; — Ug;S¥; )
Av; V,SE, — V&, SF,
When Sg; = 0, this means that the epipolar center E; is rejected to infinity. In this case, the
direction of the epipolar lines becomes independent of the coordinates (u;,v;) of I;, and one can

see from equation 7 that in this case all epipolar lines are parallel to the vector:

Au]' _ UE_,-
Av]‘ VE].

5.4 Computation of epipolar intervals

In practice, the homologuous I; of I; is constrained to belong to an interval of the epipolar line
Dj;. This comes from the fact that the physical point P has to belong to only the portion of D
which is in front of the optical center C;. If the vector n is properly oriented on D, this constraint

is equivalent to A > 0, and produces in general® an interval of the form
I € [Fj, Ej)

where F; and E; are respectively the vanishing point and the epipole previously defined (cf. Fig-
ure 5)

Actually, this epipolar interval is even reduced by the knowledge of a minimum and a maximum
possible distance of the observed points from the camera. If we denote n' = n/||n|| and if we call
Am and Aps these minimum and maximum allowed distances respectively, one sees that the epipolar
interval is given by (I, Ing| where I, and Ips are respectively the images by camera j of the physical
points

P, =Ci+ Apn'

and

PM=C,'+z\Mn'

Therefore, given a point I; = (u;,v;)! and to obtain the epipolar interval (Im, In], the following

Swhen the focal plane of camera j intersects D at a point Q behind the optical center, i.e. such that Q=Ci+An
with A < 0, see Figure 5.

10



Figure 5: Computation of an epipolar interval: image point J; can be matched only with points [;

lying on the epipolar interval F;E;

operations must be performed:
L. n= NI},
2. n'=n/|n||,
3. In=E;+m n',
4. Im = E} + Ap .

To be complete, this interval must then be clipped by the window corresponding $o the actually

observed image.

6 Rectification of images

6.1 Principle

For three cameras, it is possible to rectify the images to get horizontal epipolar lines between
images 1 and 2, and vertical epipolar lines between images 1 and 3. In this case, the previous
computations of epipolar segments are greatly simplified . If, in addition, the image coordinate

frames are judiciously defined it is possible that the epipolar line attached to a point (uj,v}) in

11



image 1 be the line vy = v} in image 2 and the line u} = v} in image 3. Moreover, it is possible to
obtain a very simple relationship between images 2 and 3 of the form u} = v§. We are then in the

situation depicted by figure 6.

Figure 6: After the rectification of three images : the coordinates of the homologous points-I{, I

and [} satisfy vy = v}, uj = u} and v} = u}

One can show (31,32,33] that rectification can be performed by linear transformations of the

image coordinates in projective space by:
Ii* = R“ I‘.t
where the th;ee 3x3 rectification matrices called Ry, Ry and Rj are defined by

(Ci-1 x Ci)
R:' = (C,' X C"+1)t Ni
(Cl X Cy+ Cq x C3 4+ C4 xcl)t
whith the conventions 1+ 1=1ifi=83andi—-1=3if7= 1.

After the rectification of the images we have, as desired, the nice relationships:

2 = 4N
g =
vy = ul (8)

which was illustrated by figure 6.

12
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6.2 Algorithmic Complexity

The rectification of { images (I = 2 or 3) requires the storage of ! 3x3 matrices, i.e. 9 parameters.
Then it requires 6 multiplications, 6 additions and 2 divisions per rectified point.

As the rectification process is a linear transformation in projective space, it preserves straight
lines: therefore it is sufficient to apply it to the endpoints of the linear segments of a polygonal
approximation to get the endpoints of the segments of the rectified polygonal approximation. This

is very useful for our stereovision algorithms [23,34,35] which actually deal with linear segments.

6.3 Example

We show in figure 7 an example of a rectified triplet of an office scene.

7 Building 3D Segments

To build a 3D map from trinocular stereovision matches, one must
1. build a 3D line whose 2D projections are known in several images,
2. determine the endpoints of a 3D segment on the computed 3D line.

These two problems are solved in turn in the following subsections.

7.1 Building 3D lines from their 2D images

The problem is to build a 3D line whose 2D projections are known in several images. More formally,
given three 2D lines d;, one seeks the 3D line D whose projections d! on cameras i (i = 1,2,3) best
approximate the 2D lines d; (cf. figure 8).

For doing this, one uses minimal representation of lines. Therefore, assuming d; is not parallel
to the v axis, * it is represented by the parameters (o, p¢) such that the equation of d; in the image
plane of camera 1 is

a,-u,-+v,-+;t,~=0

Assuming that D is not perpendicular to the z axis, ° it is represented by the parameters (a,b,p,q)
such that D is defined by the equations

{z:az+p (9)

y=bz+gq

4one uses the symmetric parametrization for lines parallel to the v axis

®one uses two complementary parametrization respectively for lines perpendicular to the 2z or zy planes.

13
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Figure 7: Triplet of linear segments of contours before and after rectification
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Figure 8: Building 3D lines from their 2D images

One assumes that the perspective transformation of each camera is represented by a 3x4 matrix
T; computed during a preliminary calibration stage [29]. If we denote by t}k the element of rank
(7, k) in the perspective matrix T, saying that the projection of D on camera 1 is d; is equivalent

to saying that the following two equations hold (see appendix):

a(ogtyy + thy + mithy) + oty + thy + pithy) + (cutis + ths + pitss) =

(10)
(11)

plautyy + thy + pathy) + qlautly + thy + withy) + (cuthy + the + pithy) =

This system provides two independant linear equations on the unknowns (a,b) and (p,q) respec-
tively: therefore two images are enough to solve for (a,b,p,q) exactly. Given three images, the
system becomes overconstrained, and one must define an error criterion.

To do so, we consider the uncertainties on the parameters of the 2D lines, and we take them
into account explicitely by computing a recursive weighted least square solution (Kalman Filter
approach). This approach provides not only a better estimate of (a,b,p, q) (compared to a simpler
least-square) but also an estimate of its quality under the form of a 4x4 symetric covariance matrix
Wp. The interested reader is referred to [32,33,36].

7.2 Computing 3D endpoints

Having computed the parameters of a supporting 3D line, one must use the endpoints of the 2D
image segments to define the enpoints of a 3D segment. For each endpoint I; of a 2D segment in
image t, we compute the 3D line D; supported by C;[; and the 3D point P; of D which is closest
to D;.

Therefore, given the two endpoints a; and b; of a 2D segment, one obtains the enpoints A; and

B; of a 3D segment supported by D. This is illustrated by figure 9.

15



Figure 9: Building 3D segments from 2D segments

This operation is repeated for the enpoints of the corresponding segment in images j and
k. Because of segmentation errors, the endpoints computed from different images do not match,
which means that each of the three image segments correspond to a slightly different part of the
3D segment.

We decide to keep the 3D segment on D which is the intersection of A;B;, A;B; and A;B;.
Thus, we reconstruct the interval on D which is seen simultaneously by the three cameras. This
- solution does not prevent us from reconstructing the remaining parts of a 3D segment using another
triplet of matches, as illustrated by figure 10.a. Another advantage of this solution will be explained
later with the validation procedure.

Finally, to compute in image 1 which part of the original image segment corresponds to the
reconstructed 3D segment, one projects the endpoints of the reconstructed 3D segment on image 1,

and then on the 2D line supporting the initial image segment.

8 Matching

We present first a simplified algorithm which gives the flavor of the matching procedure. Then we

provide.a detailed presentation of the actually implemented procedure, which takes advantage of a

number of refinements

8.1 Simplified Algorithm

The matching algorithm takes as input three sets of linear segments {S)},{S2},{Ss} coming

from images 1, 2 and 3 respectively, and builds as output a set of triplets of matched segments

16



Figure 10: Multiple matches

{(S1, 52, 53)}.
The initial scheme of the algorithm is the following (cf. Fig. 11):

e For each segment S; of image 1, compute the intervals of epipolar lines D3; and Ds; in
images 2 and 3 attached to the midpoint I; of S; and corresponding to a tolerated interval

of distances [An,, Apm| (cf. calibration section).

e For each segment S; in image 2 intersecting D3, in I, compute the epipolar line D3y in
image 3 attached to I;. Let I3 = D3y N Ds3g, and predict the orientation ¢; of S3 in image 3

from the orientations ¢; of S; and ¢, of Sj.

e For each segment S3 in image 3 of orientation ¢3, if the distance §(I3,S3) < &5 and if
&3 — ¢3 < €4, then form the triplet (S1, Sz, S3).

8.2 1Ideas for Reﬁnemehts

The previous algorithm can be improved by adding the following refinements :

o First, we could choose as image 2 the image for which the orientation of the corresponding
epipolar line Dy; in image 1 is the farther from the orientation of segment S;. Doing so, we
should avoid the search for the intersection of parallel lines in image 2, and also optimize the

localization of the intersection point I5.

e Second, we should take into account the structure of buckets previously computed to speed

up the selection process of S; and Ss.

17
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Figure 11: Principle of trinocular stereovision algorithm

¢ Finally, due to potential unfortunate coincidences, a validation procedure sould be applied

at the end.

A formal description of the major procedures involved to implement this refinements is now pro-
vided.

8.3 Main Procedure

We give in figure 12 the description of the main matching procedure called STEREO-3. This
procedure takes a triplet of images (1, 2,3) as input, and builds a list of matches {(S;, Sz, S3)}.

To do this, it selects every segment S; of the first image and computes the epipolar intervals
D21 and D3, of the midpoint [} of S; in the second and third images. These intervals correspond
to the possible positions of the points homologous to I;. It also computes the orientations a;2 and
a3 of the conjugated epipolar lines in image 1.

During the matching procedure, one of the images 2 and 3 is used to make initial hypotheses
and the other to check them. As explained before, the image used to do the initial hypotheses must
be such that it is the one in which the orientation of the corresponding angle a3 or ays3 is farthest
from the direction of S;. The matching procedure MATCH-3 is described in figure 13 and returns
a list of matched segments {(S}, Sz, S3)} associated to Sj.

The last part of the algorithm is the validation part, which makes a compatibility test with the

neighbours of each matched segment. It is described in figure 17, and detailed in the next section.

18



® © © Procedure STEREO-3 (1,2,3)

For each segment S, of image 1

' o determine the epipolar intervals Dy, (resp. Dj,;) corresponding, in image 2 (resp. 3} to
the midpoint I, of S, for the allowed disparity interval.

o Compute the angle between S; and the epipolar lines Dz et D;3 in image 1:
ANGLE (S}, D}2);
— «13 = ANGLE (Sl,Dgl)

il

- Q2

L ] If]a12|'> Iam]
—~ then {(51,52,53)} — MATCH-3 (1,2,3,SL,D21,D31)
- else {(51,52,53)} +— MATCH-3 (1,3,2, 51,031,021)
EndFor

For each of the matched triplets (S, 53, S;)

e VALIDATE-3(S,, Sz, S);

enforce the continuity constraint by using neighbours

EndFor

EndProcedure STEREO-3 @ O O

Figure 12: Trinocular Stereovision algorithm
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8.4 Matching procedure

The aleorithm of procedure MATCH-3 is given in figure 13. This procedure takes as input three
images 1, j and k, a segment S; of image i and two epipolar segments Dj; and Dy, corresponding
to the midpoint I; of S;. It returns a list of matched triplets {(S;, Sj,Sk)} associated to the input
segment S;.

The first part of the algorithm is the search, in image 7, for potential matches S; to S;. Segments

S; must
e go through the similarity tests with S;

e intersect the epipolar segment D;;. As we have taken j such that the orientation of D;; be as
far as possible to the orientation of S;, the intersection I; between Dj; and S; can in general

be accurately computed.

The second part of the algorithm checks the validity of each of the potential matches (S;, S;)
in image k. We use a procedure of prediction of the position and orientation of the segment S; in

image k.

e the prediction of the position is made by computing the intersection Ii, in image k, of the
epipolar lines respectively associated to the midpoint of S; and its potential homologous point
I; in image j (cf. figure 14 in which we show the computation of this predicted point for two

candidate segments S; and S7).

e the prediction of the orientation is done in the following manner (see figure 15 for the nota-

tions):

— Compute the epipolar lines D;'.' and Dj,; respectively associated, in images j and k, to

one of the extremities I of S;.

—~ Compute the intersection point I}, in image j, between the epipolar line D;i and the
line Ds, bearing S;:
! !
IJ - D]' M DS,’

— Compute, in image k , the epipolar line D;‘j associated to I;-.

— Compute the intersection I}, in image k, between the epipolar line D}, and D;CJ-.
I, =D;n D;.:j
— The predicted orientation of Sy id then given by the orientation of I I}:
o = (I L};)
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A Procedure MATCH-3 (1, 5, k, Si, Dy, Dii)
e Compute the list {8;} of buckets intersected, in image j, by the epipolar interval Dj;.
For each intersected bucket B, determine the set of segments {S;} verifying the three
following tests :
L. |¢; — #i| < Omaz /*Compare segments orientations*/
2. Alpin < l/li| < Alpgaz  /*Compare segments lengths*/
3. I; =(S;nDy;) #8  /*Verify epipolar constraints*/
EndFor
For each of the segments S; having passed these tests,
— Compute, in image k, the epipolar interval Dy; associated to I;.
— Compute, in image k, the intersection point of the two epipolar intervals
Iy = Dii 0 Di; and the bucket 8 associated to Ix.
— Predict the orientation ¢, and the length L of S.

For each of the segments Si in bucket By, select those passing the three fol-

lowing tests:
L ¢k — ¢l < Orraz  /*Check predicted orientation*/
2. Alpin < |le/li] < Alpaz  /*Check predicted length*/
3. d(Ix,Sk) < dpaz  /*Check predicted position*/
Endfor
Endfor

e Return({(S;, S;, Sk)}) the list of matching triplets.

EndProcedure MATCH-3 A

Figure 13: Matching algorithm
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Figure 14: Prediction of position
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Figure 15: Prediction of orientation
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8.5 Validation

Even using a third camera is not always enough to get rid of all ambiguities and false matches.
Probabilities are indeed low, but not zero, that using an incorrect match between the first two
cameras, we find a compatible segment at the predicted location in the third image.

How can we get rid of those wrong matches ? For this we enforce two constraints :

* the unicity constraint : in its simplest form, it states that a given primitive must be part of at
most one triplet. This definition does not take into account the fact that there may be errors
in segmentation during the polygonal approximation phase, so that in some cases, a segment
must be allowed to match several segments. Figure 10.a shows such a case. Figure 10.b

shows, on the contrary, an exemple of a wrong match violating the unicity constraint.

We must therefore generalize the notion of unicity for line segments. This is why we first
compute, for a segment in a matched triplet, the “matching length” involved for this precise
triplet. This is done by clipping the segment by the epipolar lines corresponding to the

endpoints of the other segments.

o the regularity constraint : if we assume that the objets looked at are smooth, then two seg-
ments belonging to the same object and close to each other in the image will be reconstructed
as close 3D segments. Therefore, if a match (Sy, Sz, Ss), reconstructing a 3D segment S, is
correct, we should be able to find some of the 2D neighbours of the image segments S; recon-
structed into 3D segments close to S. We cannot impose that all 2D neighbours satisfy such a
constraint, because there may be discontinuities at the borders of objects, but we can impose
that a given percentage of them be such that the distance of the reconstructed neighbours to
S be under a threshold.

Following these two constraints, we compute, as a criterion, the ratio of the 2D neighbors recon-
structing into a 3D segment sufficiently close to S to the total number of neighbors.

The notion of neighbourhood has been previously defined, and we will now see how to evaluate
a distance between two segments. The distance could be defined as the shortest distance between
points of the two 3D segments. It would be rigorous but inefficient from a computational point of
view, as we do not really need a very accurate numerical criterion of compatibility. We therefore
define a 3D segment S’ to be s-compatible with a segment S if and only if S’ intersects the
rectangular box formed from S by building a 3D rectangle containing S, whose edges are parallel
to vie axzs of ceordinates, and extended of € at each endpoint, as illustrated by figure 16.

‘Given a tolerated distance €, we are now able to compute the ratio of the e-compatible neigh-
bours to the total number of neighbors. The exact value of ¢ depends on the kind of scenes we
observe, in the sense that it must reflect the typical scale of objects, but it is not a critical thresh-

oud. If this ratio is too low, lower than 0.25 for our system, then we get rid of the corresponding
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Figure 16: S’ is e-compatible with S iff it intersects the box

match. If there i1s an ambiguity between two matches, we keep the best with respect to the criterion
of compatibility weighted by “matching length” of the segment, thus privileging longer matches

against shorter ones.

9 Experimental results -

We have tested this algorithm on a number of industrial and office scenes, and we present now

some of these results.

9.1 Office scenes

Figure 18 presents triplets of images taken in a robotics laboratory, for different positions of the
robot. Figure 19 presents the polygonal approximations of the image contours, extracted by a
chain of programs by Rachid Deriche, Gérard Giraudon and Marc Berthod, from INRIA.

Figure 20 presents the triplets of segments matched by the trinocular stereovision program.

Using another program computing the displacement between the different frames, we are able
to build the 3D reconstruction of the whole robotics room : figure 21 shows the view from above,
and figure 22 brings some explainations in the form of a commented sketch of this room. (Details
on the construction of this global 3D map can be found in the book of N. Ayache [37,38] and in
previous papers [39,36].

Table 1 gives the performance features of the algorithm on these six different scenes. The

programs are written in C and run on a SUN-3 workstation.
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©® © ® Procedure VALIDATE-3 (1,2,3)

for each triplet of segments (S, Sz, S3)

e for each neigbour triplet of segments (S}, S}, 53) i.e. such that S] is neighbour
of S| in image 1 or S; is neighbour of S in image 2 or S} is neighbour of S; in
image 3 .

if (S, S3,53) is e-compatible with (S, Sz, S3)
then increment the number of compatible neighbors of (S, Sz, S3).
endfor

e Compatibility ¢(g, s, s,) = Compatible neighbours / Total number of neighbours.

e if c(s, §,.5,) < compatibility-threshold then get rid of (S, Sz, Ss).

endfor
for each triplet of segments (S, 52, S3)
for each neigbour triplet of segments (S}, S3,53)
if (51,53, 53) is ambiguous with (S, Sz, S3) and ¢(s, 5,.5,) < €($1.83.85)
then get rid of (S, S5, Ss).
endfor
endfor

if undecidable ambiguities remain then get rid of the ambiguous triplets.

EndProcedure VALIDATE-3 ® ® ®

Figure 17: Validation algorithm

Nb. Segments Nb. Matches
image 1 | image 2 [ image 8 | Segments | Points | CPU Time
Scene 1 312 337 336 160 3300 3s
Scene 2 283 266 280 111 2832 2s
Scene 8 262 240 284 110 3021 23
Scene 4 203 199 205 75 2522 1s
Scene 5| 393 405 371 320 4906 a8
Scene 6 548 531 536 539 7200 10s

Table 1: Performance of the trinocular stereovision algorithm on the six indoor scene
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Figure 18: Triplets of images taken in the robotics room
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Figure 18: Triplets of images taken in the robotics room
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Figure 19: Polygonal approximation of the contours
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Figure 21: View from above of the robotics room
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Figure 22: Commented sketch of the view from above
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9.2 Industrial scenes

The previously described trinocular stereovision algorithm is particularly well adapted to scenes
with long line segments. Nevertheless, it works also on images with curved edges, with more
computations because the polygonal approximations output more segments. Figures 23, 24 and 25
present, respectively, a triplet of images of an industrial object, its contours and the matched
segments.

Triplets of images representing a cone, a cylinder and a sphere are shown on figure 26.

Figures 27 to 30 show the original contours and the results of the mapching on a sphere, a cone
and a cylinder. .

Though the polygonal approximations include a greater number of smaller segments, matching
results remain correct.

It might nevertheless seem that more matchings coud be done. That comes from the fact that
some small segments are very noisy and cannot be predicted accurately enough in the third camera.
If the thresholds should be relaxed so that these segments be matched, errors would be introduced
elsewhere. Moreover, those segments would reconstruct very noisy 3D segments.

It should be noted that these results allow for quantitative analyses on the observed objects.
Pavel Grossmann [40], has developed a program to use the reconstructed 3D segments for detecting
quadrics. It recognizes, for example, a portion of a sphere in the first example, and estimates its
radius to be approximately 46 mm, with an accuracy of one millimeter.

Finally, the last figure shows two projections of the reconstructed 3D segments of the cylinder.

10 Conclusion

We presented a new trinocular stereovision technique. It can be summarized by the following

stages:

e Calibration: a preliminary procedure allows for the computation and the storage of the

parameters required to determine epipolar geometry between cameras.

o Preprocessing: a graph based description of a polygonal approximation of the contours is

extracted from each image. Then images are rectified to simplify the epipolar geometry.

e Hypotheses Prediction- Verification: triplets of potential matches are derived from the previ-

ously constructed graphs by simple geometric verifications.
* Validation: local consistency checks are performed to remove erroneous matches.

The main features of the method are
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Figure 23: Triplet of images of an industrial object (ELSAG)
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Figure 24: Contours of a triplet of images of an industrial object
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Figure 26: Triplet of images of a cone, a cylinder and a sphere (ELSAG)
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» Flexibility: it allows for arbitrary positions of three different cameras. Calibration is obtained

by a simple automatic procedure.

¢ Rapidity: Matching times are a typically a few seconds. Moreover, it is straightforward to

implement the algorithms in parallel.

¢ Reliability: the use of a third camera renforces the geometric constraints, and therefore
reduces the influence of heuristics in the matching process. This improves significantly the

robustness of the method.

® Accuracy: the use of a third camera provides an additional measurement. This improves

strongly the 3D reconstruction accuracy.

Current and future developments concern the parallel implementation of the algorithm on a
multiprocessor machine to perform stereo-matching and 3D reconstruction at the rate of 5Hz.
This is done within a European FEsprit Project (Project P940 involving ELSAG, GEC, INRIA,
MATRA, NOESIS, Univ. of Cambridge, Univ. of Genova) where preprocessing (edge extraction,
edge linking, polygonal approximation) is performed by dedicated hardware at the rate of 24 Hz.
We believe that the production of 3D maps in an indoor environment at the rate of 5 Hz will be
achieved within this 5 year project, i.e. by 1991. This should be reported in forthcoming reports

and papers.

Acknowledgements

The stereo and 3D reconstruction programs are the end of a long chain of programs (and hopefully
the start of another longer chain). We would therefore like to thank all the authors of this chain,
and especiablly Marc Bertl{od, Nour-Eddine Deriche and Gerard Giraudon, from INRIA.

The rectification scheme has been developed and improved in collaboration with Chuck Hansen,
from the University of Utah.

We would also like to thank Olivier Faugeras, head of the Vision and Robotics Laboratory at

INRIA-Rocquencourt, for his constant interest in our project and its valuable suggestions.

A Computing a 3D line D from its 2D projections d;

One assumes that the perspective transformation of each camera is represented by a 3x4 matrix T;
computed during a preliminary calibration stage.

Therefore, the image of a generic point P = (z,y,2)! of D by camera i is I! = (ul,v!) such
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that:

o = (aty; + btuﬁ't 3)2 + Pt 11T atis + s
' (at31 -+ bt32 + t33)2 + pt31 ~+ qt32 + t34
o = (aty Tbly, + tig)e+ pthy) + qths + thy
' (ath; + bty, + the)z + pth, + qth, + th

where t;k is the element of rank (7, k) in the perspective matrix 7;.

Saying that I! belongs to d; means that

aiu; +vj + pg =0

If the preceding- relation has to be verified for any P € D, except C;, then the following two

equations must hold:

ai(a_tiu + btyy + tis) + (athy + bthy + tha) + milath, +bthy +t5;) = 0
. "'{i(Ptix + gty + thg) + (ptyy + qthy +the) + pilpth; + gty +15,) = 0

By reorganizing the.coefficients, one can see that these equations are the equations 10 and 11.
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