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22290 Rio de Janeiro, Brazil
and

Rolf STENBERG(**)

Helsinki University of Technology
02150 Espoo, Finland

Abstract
We propose a modification of a recent plate bending element by Arnold and Falk [1]. The

optimal convergence rate of the original method is preserved, but the modification is considerably
easier to implement.

UNE MODIFICATION D'UN ELEMENT DE PLAQUE
DE BAS-DEGRE POUR LE MODELE DE REISSNER-MINDLIN

Résumé

On propose une modification d'un élément de plaque récent diit 2 Amold et Falk [1]. L'ordre
de convergence optimal de la méthode originale est préservé, mais la modification rend
l'implémentation beaucoup plus simple.

™ Professeur invité (Projet MODULEF) du 1 juin au 30 septembre 1989

(**)  Professeur invité (Projet MODULEF) du 1 septembre 1987 au 1 mars 1989.



1. Introduction

During the last decade there has been a continuous search for simple "locking free" plate bending
elements based on the Reissner-Mindlin theory. A great number of methods have been proposed
and many of these have been shown to perform rather well in practical computations, cf. e.g.
[2, 12] and the references therein.

However, relatively few methods have allowed a rigorous mathematical stability and error anal-
ysis [1,3,4,13,14,15], a fact which suggest that the task of finding a good Reissner-Mindlin
element is a non trivial problem. From a practical side, this conclusion is supported by the fact
that so many methods have been, and are being, proposed.

To our knowledge the simplest method proposed, for which the optimal order of convergence
has rigorously been proved, is a recent method by Amold and Falk [1].

The purpose of this note is to point out a modification of Amold and Falk’s element, which is
considerably simpler to implement. Furthermore, for the modification it is possible to prove
error estimates which are identical to those of the original method.

In the next section we recall some theoretical results on the Reissner-Mindlin model and the
method by Arnold and Falk. In section 3 we give our modification, discuss its advantage, and
give the error analysis.

Our notation is standard (cf. [7]) and consistent, though not completely equivalent, with that
of [1].

2. The Reissner-Mindlin model and the Arnold-Falk method

Let Q be the region occupied by the plate, the thickness of which is denoted by t. Denote by w
and ¢ = (¢1, ¢2) the transverse deflection of Q, and the rotation of the normals to Q, respec-
tively. Assuming a clamped boundary, the model is: Find w € H}(Q) and ¢ € [H}(Q)])?
such that

a(¢,9) + M7 ($—gradw, ¢ —gradv) = (g,v), ve€ HI(Q), $ € [HL(Q)]?. (2.1)

Here g is the (appropriately scaled, cf. [4]) load and

Ex

)‘=2(1+v)

is the shear modulus multiplied with the shear correction factor x. As usual, E and v denote
Young’s modulus and Poisson’s ratio, respectively. The bilinear form g is defined through
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a(é,¥) .='1'2(—1_—y'2—)/‘;[(1 —?) e(@) : e(¥) + v div ¢ div ¢],

where € the linear strain operator.

We recall that Korn’s inequality implies
a($,6) > Cl¢Il, &€ [H Q)

for -1 <v<1/2.
Above and below C, Ci, C,, ... denote positive constants independent of ¢, g and the mesh
parameter h.

Intro_dpcihg the shear
q = t"2(gradw — ¢)

as an independent variable, (2.1) can equivalently be written as: Find w € H, L),
¢ € [H}(Q)]? and q € [L2(Q)]?, such that

a($,¥) —(q,9) =0, ¥ € [Hy(Q)1%,
(q,gradv) = (g,v), ve€ HN(Q), (2.2)
27t (q,s) + (¢ — gradw,s) =0, s € [L2(Q)])2.

For the analysis the following Helmholtz decomposition is useful.

LEMMA 1. Every q € [L?(Q))? can be uniquely written as
q =gradr+curlp, r€ Hy(Q), pe H(Q)NLXQ).

Proof: Cf. [4]. =

Here and in the sequel we denote

curlv=(——a¥v—,ﬁ) for veHl(Q),
0z’ O
and
9 O - 109112
curl ¢ = Sy " Do for ¢ = (Y1,42) € [H (Q)]*.

In [1,4] the following result for a generalization of (2.2) is proved.
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PROPOSITION 1. LetQ be a convex polygonal or smoothly bounded domain in the plane.
Forany t,0 <t < C, g € H'Y(Q), and f € [H-'(Q)]?, there is a unique solution
w e H{(Q), ¢ € [Hy(Q)]* and q € [L*(Q)]* 1o

a($,¥) — (q,9) = (f,9), YelHED]I,
(q,gradv) = (g,v), v€ H}(Q),
A\"'t%(q,s) + (¢ —gradw,s) =0, s € [L2(Q)]?.

Moreover, if £ € [L?(Q)]?, then ¢ € [H*(Q)]?, and we have

lIrlls + lI@ll2 + flpll: + tlpll2 + [lwlh < CCllgll-1 + Ifllo),

with q = grad r + curlp.
If additionally g € L*(Q), then r,w € H*(Q), and we have

lIrlle + llwllz < CCllgllo + 1Ifllo). =

Next, let us recall the method of [1]. We introduce a regular triangulation T; of Q, which
henceforth is assumed to be polygonal. As usual the mesh parameter is defined through

h =max h
Ten 1

where hr denotes the diameter of T". The triangulation is not assumed to be quasiuniform.

For approximating the deflection the space of piecewise linear nonconforming elements is used:

Wi={ve Lz(Q) | vr € PI(T), T € T; and v is continuous at midpoints of element
’ edges and vanishes at midpoints of boundary edges }.

(2.3)
The space for the rotation is
VP2 ={$€[Hy()]* | €[P(T) © B(T))*, TE T}, (2.4)
where B(T') denotes the spaces of cubic "bubbles” on T':
B(T)={vePR(D) |var=0}.
Futhermore, denote
Q={qelL* (D) |qre[P(D]*, TeT} (2.5)
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and let Py : [ L?(22)]? — Qj be the orthogonal projection. For v € W, + H! (Q) we define
grad ,v to be the [ L2(Q)]? function whose restriction to each T’ € T;, is given by grad vjr.

The method is then defined as: Find ws € W}, and ¢, € VB such that

a( s, ¥) + M2(Pod, — grad sw,, Pop — grad,v) = (g,v), veW,, $eVE. (2.6)

The error estimate proved in [1] is the following.

PROPOSITION 2. Suppose that Q is convex, g € L*(Q2), and that 0 < t < C. For the
unique solutions (w,$) and (wy, ;) to (2.1) and (2.6), respectively, we have

llw — wallo + [|6 — dullo < Ch?|lgllo. =

3. The modified method

The modification we are proposing is the following: The space for the deflection is kept as
defined in (2.3). For the rotations we use the standard space of continuous piecewise linear

functions
Vi={¢ € [Hy () | €[A(DI*, TET }, (3.1)

i.e. the bubble degrees of freedom in (2.4) are dropped. We again denote by Py the orthogonal
projection onto the space Qj, as defined in (2.5). The method is then defined as: Find wy, € Wy
and ¢, € V}, such that

a(¢h’¢) + E(tz + aTh%‘)—l(P0¢h - grad,,'wh,Poiﬁ—grad,,v)T = (g7v)’
TEeT, (3.2

vE WL, $EV,,
were o are positive parameters restricted to lie in a fixed range, C, <ar<G;.
For the modification we can prove error estimates analogous to those of the original method.

THEOREM. Suppose that Q is convex, g € L*(Q), and that 0 < t < C. For the unique
solutions (w,$) and (wy, $,,) to (2.1) and (3.2), respectively, we have

llw — wallo + [I¢ — dullo < CR?|lgllo. m

Before turning to the error analysis of the method, let us discuss the difference in implementing
the two methods.

First, considering the original method (2.6), we see that when calculating the contribution to the
stiffness matrix from the bilinear form g an integration formula exact for fourth order polynomi-
als has to be used due to the presence of the bubble functions. In addition, when calculating the
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contribution from the shear energy, the local projections of the rotations have to be calculated.
Furthermore, when for an element the local stiffness matrix has been calculated, it is preferable
to eliminate the bubble degrees of freedom by condensation. Taken together, all this leads to
rather cumbersome calculations.

Looking at the modification (3.2), we first note that since the rotations are piecewise linear, the
constant value of the projection of a function in V, is merely the value of the function at the
midpoint (i.e. center of gravity) of the element. Since the functions of W}, and V,, are piecewise

linear, this mean that
the Iocal stiffness matrix in (3.2) is obtained by the midpoint rule.

Hence, it is evident that our modification implies a considerably cheaper and simpler calculation
of the stiffness matrix.

Let us remark that (3.2) can equivalently be written as:
Find wy, € W;, ¢, € V}, and q € Qy, such that

a(¢h:¢) _(qhy’/’):O: 'pevhr
‘ (g, grad,v) =(g,v), v E W, (3.3)
XY (8P + arhi) (an, S)r + (¢4 — grad ws,s) = 0, s € Qs

TeT,

Comparing with (2.2), we see that (3.3) is a "Galerkin-least-squares”, or "stabilized", mixéd
method. Recently these techniques have been applied to a number of different problems; cf.
[5,6,9,10] and the references therein. For Reissner-Mindlin plates methods of this kind have
been proposed in [13,14,15].

For the analysis of the method we need the discrete Helmholtz decomposition theorem of Arnold
and Falk.

LEMMA 2 (Arnold and Falk [1]).
Qs = grad ,W;, @ curl S‘h,

with
Si={ve H(Q)NLIQ) |yr € A(T), TET }.

This is an orthogonal decomposition in[L?(Q)]%. w



Furthermore a classical estimate for nonconforming methods will be needed [1,8].

LEMMA 3. There is a positive constant C such that

: h inf d,(v—a)|,
(3 [ v nrl Sl inf llsrad (o~ 0l

TeTh
PE[H Q) veW,+HI(Q). =

Let us introduce some additional notation.

By Il : Qs — grad,, W}, we denote the orthogonal projection, and we define a norm in Q4
through

lIsll = IMas|F + > (2> + B3)|Isllf -
TeTh

REMARK. It is also possible to perform the error analysis using the same norm as in [1] for the

shear, i.e.
lIsli® = |lgrad &[5 + |15 + 211013,

where the decomposition s = grad,k + curll, k€ W;, Ll € Sy, isused for s € Q, (note
that Il,s = grad k). For this some extra technical details are needed (cf. Lemmas 3.2 and 3.3
of [10]) and it gives the optimal estimate

||gradr — grad;rillo + ||p — pallo + t|lp — pulli < Chllgllo,

with q = gradr + curlp and q4 = grad,r, + curlp,. However, this result does not seem to
be very interesting, and hence we prefer to present a more straight-forward error analysis. ®

For this we write the method (3.3) with a more compact notation as

Bh(wh)¢h:qh; v,’p,S) = (g)v), vE Wh, ¢ € Vh; S € Qh)
with

Bh('W,¢, q; v,ll),S)

=a(¢,9) + (q,grad,v — ) + (s, grad,w — ¢) = A\' Y (¢* + arh})(q,8)r.
TeT

Introducing the notation

1w, &, WIII} = llgrad 4wlf§ + [I$11F + llallz,

our stability estimate is the following.



LEMMA 4.

sup Bh(wv¢xq; ‘U,fp,S)

(v,9,8) EW), xVy xQp I”(v) ¢3s)“Ih
(v,9,9)%(0,0,0)

> Cll[(w, ¢, D|lln, wEWh, $€Vi, q€Qu

Proof: let we Wy, ¢ € V, and q € Qy be given.

Further, let z € W}, be such that grad ,z = I1,q.

Choosing v=w+2, $=¢, s = —q + 6 grad ,w, andletting § > 0, € > 0, we get
By(w,,q;v,9,5)
= Bu(w,¢,q;w + 2,¢,—q) + § Bi(w,4,4;0,0, grad ,w)
=a($,4) + 371 Y (2 + arhP)|lalff r + ITaqll}

TeT,
— 8 (grad,w,¢) + & ||grad ||y — 6 371 ) " (t* + e Th})(grad yw, @)r
TeT

> (Ci - ->||¢n, +A71 ) (@ + arhp)laliSr + Iaqll

TeTh
"||8"adhw||o - 57 E(tz + arhy)||grad yw|f - — E(tz + arhy)|lali 7
TGTA TETh
) -
>(Ci - 5>||¢|_|% +(1- —)x '@+ arhplallf

TET,
6 €
+|IMaqlff + 501 = (& + G2 )] lgrad yulff
> C(||8l1 + llallk + llgrad swlf5),

if £ is small enough and § < min{2C,, 2¢}.

Since we also have

lCv, #,9)]lls < CllICw, ¢, Dlls,

the assertion is proven. ®
We will now close the paper by giving the

Proof of the Theorem : We first use Lemmas 1 and 2 to decompose the exact and approximate

shear:
q=gradr+curlp, re€ H}(Q), pe H'(Q) NLi(Q),

qs = grad,r, + curlpy, ™h € Wi, pn € S'h,

and to construct an interpolant q to q as
q = grad7 + curlp,
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where # € W, N H}(R2) and p € 8, are the Clemént interpolants (cf. [11, pp. 109-111]) to

r and p, respectively.
We remark that I1,q, = grad,r; and Il,§ = grad+.
Further, let ¢ be interpolated by ¢ € V,, and w by @ € Wy N HY(Q).

Our stability estimate now supplies us with a triple (v, $,8) € W x Vj, x Q;, such that

liCv, ¥, 9l < C
and
[(ws — @, — &,a5 — D||ls < Ba(wy — &, 5 — 6, a4 — @; v, 9, 5).
Using (2.2), (3.3) and noting that
(qs,grad,v) = (grad,r,grad,v) = (g,v), v E W,,

(gradr,grad,v) = E/ vgradr -nr + (g,v), vEW;,
TeT;, ¥ T

the normal technique gives
Bi(ws — @, ¢4 — ,q5 — @ v,9,5)
= a(¢— $,9¥) — (grad(r — 7),4) — (curl (p — ), ¥)
+ (grad (r — 7), grad ,v) + (grad (w — ©),5) — (¢ — $,s)
— 3TN (# +arhd)(q - g,8)r

TeT
+ 7! E arh%(q,s)r - E/ v gradr - niy.
TeT, Tet;, Y T

Let us estimate the different terms above.

Integrating by parts gives
|Ceurl(p - 5),9)| = |(p — p,curl$)| < Chlp||$]:.

Next, we have

(8-, <C Y hiidlarlisllor < Chigla( Y KE|is|E )72,

TET TeTh

and using Lemma 2
|(grad (w — @),5)| = |(grad (w — ©),T145)| < Chlwlz|[T4s(jo.

8
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Lemma 3 gives

|E/ v gradr - np| < Chl|r||2||grad ,v]o. (3.10)

From the definition of § we get
IS (& +arh)(a - §,8)
Ten (3.11)

< Chlt(|rl + Ipl2) + Irly + [Pl 1O (82 + A3 [Is|5 ) /2.
- Tet,

The estimation of the rest of the terms in the right hand side of (3.6) is straight-forward, and
combining (3.4) -(3.11) we obtain

[[Cws — @, ), — é,q1 — DOl
< Ch{|plz2 + |wlz + |Irll2 + |pls + t(|r|2 + [pl2) (v, %,8) [l
< Ch{|$l2 + |wlz + ||r|]2 + Iph +t(|r|2 + pl2) }.

Hence, the use of the triangle inequality and Proposition 1 gives

|lgrad y(w—ws)|lo+||¢—xll1 +||grad s (r—rs)|lo+( Z(tz.;.h%)”‘l—%”g,r)l/z < Chllgllo-

TeT,
. (3.12)
To proceed, we letz € H}(Q), 0 € [H)(2)]? andr € [L?(Q)]? solve
a(6,9) —(r,9) = (6 —&4,9), $E[H(QP,
(r,gradv) = (w — w, v), ve HU(Q), (3.13)
A~1¢3(r,s) + (8 —grad z,s) = 0, s € [L2(Q)]?%.
Using Lemma 1 to write r = grad k + curl!l, Proposition 1 yields
16112 + llzll2 + lIkll2 + 1lEl1h + {2 < CCli@ — dullo + [lw — wallo). (3.14)

Integrating by parts in the second equation of (3.13) gives
—divr = -Ak=w— w,

and thus we get

||w—w;.||(2, = (gradk, grad ,(w — ws)) — Z/ (w— wy) gradk - np. (3.15)
Tet, ¥ T



Letnow 2 € WyNHI(Q) and 8 €V, bethe Lagrange interpolants to z and 6, respectively.
We again use the Clemént construction to define ke W;,ﬂH(} (L) interpolating k, and le .§';.
interpolating I. The interpolant ¥ to r is then defined through ¥ = gradk + curll.

Using (2.2), (3.3), (3.13), (3.15) and Lemma 2, we now get

6 — ulls + llw — wall}
=a(¢— 4,0 -8 —(q—qs,0—8) + (q — qs,grad(z — 3))
—(r—F,¢—¢y) + (grad(k — k), grad ,(w — w)) — X7'¢%(q — q4,r —F) (3.16)

-~ E/ (w—ws) gradk -nr — 2" Y~ arhi(qas, F).
ar

TeT TeT,

Standard interpolation estimates give

l(a—an,6-8)<CY hlla — aullorlblz < Ch(D" hilla — anl3 1) /2 1)2. (3.17)
TeT, TeT,

Lemmas 1 and 2 give

|(q — qs,grad(z — 2))| = |(grad ,(r — r4), grad (z — %)) |

(3.18)
< Chl|grad ,(r — r4)|lo|2]2.
An integration by parts yields

I(r —F,¢ — ¢4)| < [(grad (k — k), ¢ — ¢)| + [(curl (L= 1), ¢ — @)
= [(grad (k — k), — ¢)| + (1 = T,curl (¢ — $))| (3.19)
< Ch([kl2 + [U)]|é ~ ¢4l -

Since ||F|lo < C|Ir]jo, we get

1D arhi(a, B <[ arhd(q—qu )| +|Y arhi(q,b)]

TeT TeT, TEn (3.20)
< Ch( ) arhiila — aullf ) Irllo + Ch*|lallIrlo.
TeT
Further, Lemma 3 implies
IZ /ar(w — ws) gradk - np| < Chl|k|2||grad ,(w — ws)|o. (3.21)

TeT,
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Collecting (3.16) through (3.21) and estimating the rest of the terms in the standard manner we

obtain ) )
1 — dullo + |lw — walf5
< Ch{lgrad ,(w — wp)|lo + |l — @411 + |igrad ,(r — r4)|fo

+ (O + B)la - a2 + hljajo}- (3.22)
TeT;

{1812 + |z|2 + [[kll2 + ||2f]h + ¢d]2 }.
Since ||q|o < Cllgllo, the final estimate now follows from (3.22), (3.14) and (3.12). [ ]
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