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EFFICIENCY OF THE EXTENDED KALMAN FILTER
FOR NON LINEAR SYSTEMS WITH SMALL NOISE

EFFICACITE DU FILTRE DE KALMAN ETENDU POUR
LES SYSTEMES NON LINEAIRES AVEC PETIT BRUIT

Jean Picard
INRIA Sophia Antipolis
BP 109
06561 Valbonne Cedex (France)-

Résumé. On étudie asymptotiquement le probléme de filtrage non linéaire lorsque le
bruit tend vers 0. On donne des conditions suffisantes pour que ’erreur du filtre tende
vers ( et sous ces conditions, on montre que le filtre de Kalman étendu est un bon filtre
sous-optimal; le probleme de lissage est également abordé. Les démonstrations utilisent le
calcul stochastique des variations, des estimations concernant la linéarisation des systémes

stochastiques et des changements de probabilité.

Abstract. The problem of nonlinear filtering is studied asymptotically as the noise tends
to 0. Sufficients conditions for the filtering error to tend to 0 are derived and under these
conditions, it is proved that the extended Kalman filter provides a good suboptimal filter;
the smoothing problem is also studied. The proofs use the stochastic calculus of Vafiatiohs, .
some estimates for the linearization of non linear stochastic systems and some changes of

probability.

Key-words. Nonlinear filtering with small noise, Extended Kalman filter, Linearization
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were devoted to two properties of the asymptotic filter; firstly it was proved to be nearly
Gaussian under some particular assumptions in [29], and with a different method in [19];
secondly the problem of estimating its memory length was tackled in [20]. On the other
hand, if & is not one-to-one, it is more difficult to find an asymptotic filter; in [30], sufficient
conditions for the error to tend to 0 are obtained for a particular class of systems; in [27]
some examples are studied formally and in {6] the one-dimensional case with a piecewise

monotone function h is considered.

For the second direction of research (application of the theory of large deviations),

the filtering problem which was studied is the system

{ dX; = B(X:)dt + Vea(X:)dWs, (0;2)

Here, both signal and observation noises are small and they have the same order of mag-
nitude. By means of the so-called robust filter, one can consider the conditional law of
X, as a continuous function of ¥; in [11], one studies the asymptotic behaviour of this
function taken at some fixed observation path; a large deviations principle is obtained;
some further results are also obtained in [12]. Moreover, if one puts ¢ = 0 in (0.2), one
obtains a deterministic system; it is explained in {1] how formal approximations of the non

linear filtering problem can lead to observers for the deterministic system.

In this work, we are going to study the generalization

{ dXt = ﬂ(t, Xt)dt + \/E-O'(t, Xt)th + \/E’)’(t, Xt)dBt (0 3)

dY, = h(t, X,)dt + \/zdB,

of (0.2), but with the aim of finding approximate filters as in [23]. Note that we allow
correlation between the signal and the observation noise and that the system is inhomoge-
neous; moreover we allow the coefficients to be random provided they are observable, and
no extra regularity with respect to t will be assumed, so that our rcsults can be applied to
controlled systems. The coefficients in (0.3) may also depend on ¢ under some conditions
which will be made precise later. We will first look for conditions ensuring that the filtering
error (difference between the signal and the optimal filter) is of order /z as € — 0; these
conditions will include the case where h is one-to-one but will be more general; roughly
speaking, they will say that some associated linearized system is detectable; in particular

we will have to estimate the probability of large deviations of the non linear system from
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a neighborhood of the linearized system. We will also estimate the difference between the
signal and the extended Kalman filter; we will give conditions under which it is of order
V€, but will also check that it may be quite large if the nonlinearities are too strong. Then,
under good conditions, we will be interested in proving a central limit theorem: we will
check that the conditional law of X given Y;, s < t, is asymptotically Gaussian (as in [29],
[19]) and that it is approximately given by the extended Kalman filter; when v = 0 and
h is linear, we will also study the conditional law of the whole trajectory (X,,s < t) by

means of some approximate Gaussian smoother.

Let us explain the link between (0.3) and the model (0.1) which was previously studied.
By changing the time scale (¢ — t/¢) and the order of magnitude of ¥; (Y — Y/e), we

transform (0.3) into

1
dXt = Zﬂ(t,Xt)dt <+ O'(t, Xt)th -+ ’Y(t,Xt)dBt,
dY, = h(t, X,)dt + edB,.

(0.4)

Thus, by proving results on (0.3) which will be uniform for large times, we will deduce
results on (0.4); moreover, by using other time scales, we can study systems with other
magnitudes of noise as in [21]. Note that (0.4) is a generalization of (0.1); however, the
drift coefficient can be of order 1/¢, and therefore it cannot be neglected as it was in
[23]. On the other hand, if we transpose the results of [23] to (0.3) by a change of time
scale, we generally get some estimates only for large times; in order to get also results for
bounded times, we will need assumptions on the initial condition. Note also that in [23]
we only studied homogeneous systems and that we obtained a filter which is simpler than
the extended Kalman filter; here we will take advantage of the particular properties of the

extended Kalman filter in order to study inhomogeneous systems.

Let us now set some notational convention. Nearly all the functions and processes
which are considered in this work are allowed to depend on the parameter ¢; however
this dependence will generally not be emphasized by some sub- or superscript; we will
use the expression ‘family of functions, processes, ...’ in order to say that the functions,
processes, ... are indexed by £. A family of functions will be said to be bounded if it is
bounded by some constant number which does not depend on ¢; the same convention will
be applied for some other properties such as Lipschitz continuity or ellipticity for matrix-
valued functions. If f is a function, its derivative or more generally its Jacobian matrix

will be denoted f’; in particular, if f is defined on IR" and real-valued, f’ will be a line
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vector. If A is a matrix, its transpose will be denoted A*. In IR™ we will use the Euclidean
norm, and for matrices |A| will be the supremum of |Az| over unit vectors z. The constant
numbers involved in the calculations will be denoted by ¢ or C and will vary from line to
line; the dependence on some parameter will be emphasized by a subscript. The following

assertions will be assumed in all this work:

The framework. We fix a family of probability spaces (Q, F, F;,IP), we let n, p, d be
fixed positive integers and we consider four families of functions 3, o, v and h defined
on [0,00) x 2 x R™ and with values respectively in R", R" ® IR?, R” ® R® and R¢;
we suppose that they are P(F) ® B(IR") measurable, where P(F) denotes the o-field of
Fi predictable events, and that they are.locally bounded: the suprefna of their values
over compact subsets of IR, x IR™ are almost surely finite. We consider two families of
independent standard F; Brownian motions Wy and B; with values respectively in IRP
and R? and we suppose that (X;,Y;) is solution of (0.3). Moreover, letting V; be the
filtration generated by Y;, we assume that the coefficients 3, o, v and h are P(Y)® B(R™)
measurable: we will say that they are observable and more generally, an observable process
will be a ) predictable process. The conditional mean of X, given Yr will be denoted X't.

We will also use the notation a = go™*.

Other definitions which will be used in this work will be given in §1.1. The paper is
organized as follows. In §1, after some basic definitions, we prove some preliminary lemmas
concerning the stability of stochastic systems; as an application, in §2 we find conditions
under which X, — X, is of order /€ and also conditions under which the extended Kalman
filter satisfies the same estimate. In §3, we estimate the difference between the optimal filter
and the Gaussian law provided by the extended Kalman filter; in §4, using an approximate
Gaussian smoother, the same study is worked out for the smoothing problem under some
particular conditions; in §§3 and 4, we need some results from the stochastic calculus of
variations (see [28]); these results are obtained by perturbing the initial state (§3) or a
Brownian motion (§4); since they do not appear exactly in the literature, we prove them
(actually in our particular framework, we do not need the best possible results); as a
consequence, no previous knowledge of this theory will be assumed. Finally, in §5, we
consider some stochastic differential equations driven by X, and prove that they can be
approximated by the similar equations driven by the extended Kalman filter; this will

provide examples of filters involving two time scales.
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1. Definitions and preliminary results

In this section, we first recall the equations of the extended Kalman filter and give
some other definitions in §1.1. Then we obtain some basic results about estimation of

processes in §1.2, and we study the stability of linear stochastic systems in §1.3 and §1.4.

§1.1 Basic definitions

We first recall the construction of the extended Kalman filter (see for instance [8] for
the uncorrelated case v = 0); the aim of this procedure is to find an easily computable
approximation of the conditional law of X; given );. To this end, one replaces the system
(0.3) by an approximate linear system; more precisely, one replaces 3 and h by linear
functions, ¢ and v by constant functions (with respect to z) such that the values of S,
B', o, v, h and k' for (0.3) and the approximate system coincide at some M, which is
an observable process; one also replaces the law of X, by some Gaussian law. Since the
approximate system is conditionally Gaussian, one can easily compute the approximate
conditional mean of X, given ), (see [17]); thus we construct with this procedure an
application which relates any observable process M, to the corresponding approximate
conditional mean, and the extended Kalman filter is by definition the conditional law
obtained for a fixed point of this application. In this work, we will not make a precise
choice for the initial value of the filter so that it will not be unique (actually the properties
of the initial value will be crucial in several results, so we want to keep some freedom for

choosing it). By writing precisely the equations, we obtain the

Definition 1.1.1. Let M; and P, be observable processes with values respectively in IR"
and in definite positive symmetric matrices of order n. Consider the process with values
in probability measures, the value of which is at each time t the Gaussian law with mean
M, and covariance e P;. We will say that it is an extended Kalman filter for (0.3) if My is
solution of . .

M, = M, +/0 B(s, Ms)ds +/0 G.(dY, — h(s, M,)ds), (1.1.1)

the gain G is given by
Gy = (t, M) + PR (¢, M) (1.1.2)

and P, is solution of the Riccati equation
P = ~P"H(t, M)P.+ (8 = 7R) (t, MOP.+ Po(§' — 1) (8, My) + 00™ (1, Mo). (1.1.3)
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If this holds, we will also say that (My, P;), or simply My is an extended Kalman filter. If
My is solution of (1.1.1) with another process Gy, we will say that it is a Kalman-like filter
with gain G;.

Note that P, is the covariance matrix divided by e; with this normalization indeed,
the parameter ¢ does not appear explicitely in equations (1.1.1) to (1.1.3) (however the

coefficients may depend on it). We now define some terms which will be frequently used.

Definition 1.1.2. Let f(t,z) be a fanﬁ]y of observable functions with values in some
Euclidean space. It will be said to be almost linear if there exists a family of matrix-valued

observable processes F; such that
if(t,:c)—f(t,m)—Ft(:z-—m)l < pelz — m| (1.1.4)

for some family of numbers p, converging to 0; the process Fy will be called an almost

derivative of f. The function f will be said to be strongly injective if
f(t,2) - f(t,m)| > clo—m| (1.L5)
for some ¢ > 0.

When f is C?, the almost linearity means that the oscillation of f’ tends to 0. Note
also that if f is almost linear with an almost derivative F,, then the strong injectivity of
f is equivalent to the uniform ellipticity of F;*F; (at least after restricting to small enough
£). We now explain how we will measure the performance of our approximations. The

basic definition is the

Definition 1.1.3. A family &, of processes is said to be bounded in L~ if for any q¢ < oo
there exists eq > 0 such that ||&||, is bounded uniformly int >0 and 0 <e <egq. Ifais
some real constant number, the family §; is said to be of order ¢* if e~ is bounded in
L~ . More generally, if k; is a family of deterministic functions with positive values, we
will write & = O(ky) if k; 1€, is bounded in L™".

Our last definition is concerned with the stability of linear systems; it will be discussed

in §1.3 and will be fundamental in all the estimation of the filtering error.
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Definition 1.1.4. Let A; be a family of measurable locally bounded processes with values

in square matrices of order n, let (; be the matrix-valued solution of

e = AsGe, Go =1, (1.1.6)
and put (s; = ¢:¢7r. We will say that A, is exponentially stable if there exist some

constant numbers C and ¢ > 0 such that for s < t,
|€s,t] < Cexp—c(t - s). (1.1.7)

Moreover consider a family Q. of absolutely continuous adapted processes with values
in symmetric definite positive matrices of order n and a family k, of locally bounded

deterministic functions with positive values. We will say that A, is (Q:, k:) stable if
Qt 2 AQ: + QA7 + kiQe. (1.1.8)

- For instance, if A; is some constant matrix, it is exponentially stable if and only if
its eigenvalues have negative real part; if 4, is symmetric, bounded and uniformly definite
negative, it is also exponentially stable. As it will be clear later, the general (Q,k:)
stability is a generalization of the exponential stability; the matrix Q, enables a change of
space scale, whereas the function k; is related to the time scale. Note that the notion of

¢, k¢) stability is invariant if one multiplies Q; by a family of scalar numbers.
) p y y

§1.2 Estimation of processes

This subsection is devoted to the proof of two lemmas linked with definition 1.1.3.
This definition involves the estimation of ||}/, uniformly in ¢. Can we deduce something

about sup, |£:|? This is the aim of the

Lemma 1.2.1. Let A . .
£= 60+ / fods + / geduw, (1.21)
0 0

be a family of semimartingales, where w; is a Brownian motion, and f;, g; are families of
locally bounded adapted processes. Suppose that for some real ag, ay, & is of order £
and fi, g+ are of order €®* in L°°~. Then for any ay < g and any az < 0, the supremum

of |¢;] on the time interval [0,£%%] is of order ¢** in L™~

Proof. Put a4 = 2(ag — a;)* and consider the subdivision ; = ie**; from classical

inequalities, one can check that uniformly in i,

sup |6 - ] = O(c®™). (122)

Ti<t<Tiq1



Since we have assumed & = O(e*°), we deduce that uniformly in 3, &, is also of order £*°

SO

sup |&| = O(e™). (1.2.3)

‘riStS‘r"‘.,.l
The number of points of the subdivision which are in the interval [0,£%3] is equal to the
integer value of €22~%4 4+ 1, so for any 1 < ¢ < o0,
E sup |&]9< (7 +1)suplE  sup |&]9 < Cpedo0tas—as, (1.2.4)
0St§€°’3 1 TiStSTi+1

Thus the supremum of |§;| over [0,£23] is of order ¢*2 in LY as soon as
g > (ag —a3)/(ag — az). ‘ (1.2.5)

In particular, it is of order €2 in L. [}

Note however that the estimation of lemma 1.2.1 cannot be extended to the whole
time interval [0,00) because the paths of the process are generally unbounded as t — oo.
With some stronger assumptions, we can also obtain a result which will imply exponential

estimates on the probability of large deviations.

Lemma 1.2.2. Let {; be the semimartingale defined by (1.2.1) and suppose that for some

co > 0, ag, one has
sup IE exp coe ™ &) < oo. (1.2.6)

t,e
Suppose also that for some o; < 0, the processes f; and g; divided by €** are uniformly

bounded. Then for some positive constant numbers c¢;, ¢c; and C, one has

P [Et < exp gcc—f-(-)-, |€¢] > 1] < Cexp—-%. (1.2.7)
€

Proof. Consider the subdivision 7; = i¢** with a4 = (ag — 2a1)*; for 7; <t < Ti+1, ONE

has

t
|€t - g‘l’gl S C€a4+a1 + I/ gsdwsl (128)

so that
1

gao

Ift - 67'; =

t 2
/ gsdws| . (1.2.9)

1

2coy 2
g0

Moreover one can prove from our assumption on g, (see lemma 5.7.2 of [13]) that for some

positive K and C,
Kt 2
IE sup exp;(—)—l/ g.dws| < C. (1.2.10)

i <t<Tig
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We deduce from (1.2.9) and (1.2.10) an estimate on the exponential moments of |¢, - ¢,. |2,

and by using also (1.2.6) at time 7;, we obtain the existence of a ¢3 > 0 such that

E sup exp—|&2<C (1.2.11)
Ty << T g0
and therefore
IP| sup [&]>1] <Cexp ~= (1.2.12)
T <t<Tig gxo

By summing this inequality over i, we easily obtain (1.2.7) for ¢; < ¢3 and ¢; < ¢3 — ;. [

§1.83 Stable systems

In this subsection, we study the stability of linear stochastic systems. We first discuss

the links between exponential stability and (Q¢, k;) stability of definition 1.1.4.

Lemma 1.3.1. Consider a family A; of locally bounded processes with values in square
matrices of order n. Suppose that there exists a uniformly bounded and elliptic family Q,
and a constant number k > 0 such that A, is (Q., k) stable; then A, is exponentially stable
(the estimate (1.1.7) is satisfied with ¢ = k/2). Conversely, if A, is uniformly bounded
and exponentially stable (so that (1.1.7) holds for some ¢ > 0), then for any k < 2c, there
exists a family of uniformly bounded and elliptic processes Q, which are adapted to the
filtration of A; and are such that A, is (Qq, k) stable.

Proof. First assume that A; is (Q:, k) stable for a bounded and elliptic Q;. Then V, = Q;*

is bounded, uniformly elliptic and
Vi < —ViAy — ATV, — kV,. (1.3.1)

We immediately deduce that, with the notation of definition 1.1.4,

d
T atVelot < k(S Vals (1.3.2)

so that
trace((},Vids,e) < e ") trace(V4). (1.3.3)

Since V; is uniformly bounded and elliptic, we deduce (1.1.7) with ¢ = k/2. Conversely,
suppose that (1.1.7) holds, that A, is bounded and choose k < 2¢. Let Q: be the solution
of

Q: = AQi + QA + kQq + I, Qo=1. (1.3.4)

10



Then (1.1.8) is satisfied, Q¢ is symmetric definite positive and is given by

t
Qi = Gire™ + / CotCh e ds, (1.3.5)
0

so we deduce from (1.1.7) that it is bounded. Moreover, V; = Q;! is solution of

Vi=—A;V, — ViA, — kV, - V2 (1.3.6)
and therefore, by looking at its trace and using the inequalities
|trace(V; A;)| < Al trace V4, (trace Vt)2 < ntrace V2 (1.3.7)
(see [25] for the first one), we obtain
d 1 2
% trace V; < (2|A¢| — k) trace V; — - (trace V}) . (1.3.8)

Since A; is bounded, the trace of V; and therefore V, itself is bounded so Q; is uniformly
elliptic. [}

We now explain how the stability can be used in stochastic systems. As in the first
part of previous proof, we will use the quadratic function z*Q; 'z as a Lyapunov function

in order to estimate the state. Another type of equations will be studied in §1.4.

Lemma 1.3.2. Let w, be a 7; Brownian motion with values in IR", let A; be a family
of Fy adapted (Qy, k:) stable processes where Q. is F; adapted; we suppose that Z, is a

family of IR™ valued semimartingales satisfying
dZt = Attht + ftdt + gtdwt (1.39)

where f, and g, are predictable processes satisfying

ZiQ7 fr < akiZ7 Q7 Z 4 O(ky),
1 (1.3.10)
9: Q¢ "9t = O(ky)
for some o < 1/2. Then for any ¢ < 1 — 2a and ¢ small enough,
pt
12: Q7 Ze||, < Co+ qulng;lzo”qexP—c/ kods. (1.3.11)
0
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In particular, if Z§Qg ' Zo is bounded in L™~ then the process Z}Q;'Z, is also bounded
in L. '
Remark 1. The process f; will generally contain the nonlinearities of the system so that
(1.3.10) means that the nonlinearities are not too strong. Our assumptions will in most
cases imply that

FiQ7 fe < 0k} Z; Q7 Z, (1.3.12)

for some family a.; from the Cauchy-Schwarz inequality, this implies that
ZEQ7 fi < a2} QT 2, (1.3.13)

so the first part of (1.3.10) holds for ¢ small as soon as limsup @, < 1/4.

Remark 2. As it was announced after definition 1.1.4, the role of Q, and k, becomes clear

in this lemma.

Proof. Denoting V; = Q; !, we deduce from Itd’s formula that

d(Z}Ve2,) = Zt*(Vt + ViAy + AV,) Zydt + 22}V, fodt + trace(g;V,g:)dt + 2Z; V,g,dw,.
(1.3.14)
Using the Cauchy-Schwarz inequality to estimate Z;V,g:, the assumption (1.3.10), the
(Q¢, k¢) stability of A,, and denoting X, = Z{ViZ,, we can write this equation in the form

dAy = —(1 = 2a)khedt + keprdt + k) 2N 20 % duw, (1.3.15)

where p; and v; are processes with values respectively in IR and IR", such that u and
vy are bounded in L*~. From this equation and Gronwall’s lemma, we can deduce that
all the moments of A, are finite. Then if ¢ is a positive integer, we can again apply Itd’s

formula in order to decompose A{ and if /\£Q) denotes its mean, we obtain

d i} -1
SN = —(1 - 20)gk A + gk B[\ ] + ————_"("2 )

kJE[AT T 1 )?]. (1.3.16)
Moreover, an elementary analysis shows that for any sequence c; > 0, one can find a
sequence C; such that

297y < cqx? + Cyt (1.3.17)
for z and y > 0 so if ¢ < 1 — 20, there exists a positive Cy such that

d
a,\g") < —cht,\ﬁ") + qutlE[]p;"!q + |Vt|2q]. (1.3.18)

12



Since uf and v; are bounded in L°°~, we deduce (1.3.11). []

In the framework of lemma. 1.3.2, we can also apply lemma 1.2.1 and therefore estimate
the supremum of solutions of (1.3.9). We now give two results about the exponential
moments which will enable the application of lemma 1.2.2 and will be useful in some other

estimations.

Lemma 1.3.8. Assume the conditions of lemma 1.3.2 and suppose moreover that the
‘O(k:)’ terms in (1.3.10) are actually of order k; in L™ . Suppose also that some exponential
moment of ZgQ;lZo is bounded. Then

EexpcZ}Q;'Z, < C (1.3.19)

and . ,
IEexpc/ ko ZXQ7 1 Zydu < C’expC’/ k,du (1.3.20)

- for some positive ¢ and C.

Proof. We use the notation of lemma 1.3.2. Under our assumptions, uf and v; are
uniformly bounded; if Cp is a constant number which dominates u and |1¢|?/2, we deduce

from (1.3.16) that
d
dt
By putting C; = Co /(1 — 2a),

AP < ghe(=(1 = 2002 + Cogr{T™H). (1.3.21)

)\?I) < A(()q) + C1gsup /\gq—l)
s<t

< ¢'C{EE exp CT' 23 Q5" Zo. (1.3.22)

Thus if Cy is chosen large enough so that the exponential moment of order C'l_1 of Z§Q5" Zo
is bounded, then (1.3.19) holds for any ¢ < Cy'. Let us now prove (1.3.20) for some
constant number c. If ¢ < (1 ~ 2a)?/(4Cy), we have

t t- 2 t
2c 2
c/s kududu < QC/S kA du — Ty / kdolvul?du.  (1.3.23)

13



If we express the first integral of the right-hand side by means of (1.3.15), we deduce

endu<—2 src [k du + —2¢ /tkl/zAl/zu*dw
C/s”“u—l——?ao s 1-2aj, ™ " v

262 t )
— m—z—/ kuAuqul du (1.3-24)

for some C depending on ¢, a and the bound for u}. By taking the exponential, a local

exponential martingale (which is also a supermartingale) appears so that

1-2a
From the assumption about Zg, the mean of the right-hand side is bounded by the right-
hand side of (1.3.20) if ¢ is small enough. []

IE[expc/tku/\udu ’ .7-"0] S-exp(C/tkudu-i- 2 Ao). (1.3.25~)

§1.4 Bilinear stable equations

We now consider stochastic differential equations where both drift and diffusion coef-
ficients are linear; these equations appear in particular when one differentiates a diffusion
process with respect to its initial condition (see [15]) or with respect to perturbations on
the driving Brownian motion (see [28]), and such differentiations will be an impbrtant tool

in §83 and 4. This subsection is devoted to the proof of the

Lemma 1.4.1. Suppose that Z; is a matrix-valued process satisfying

t t t
Z, = I+/ A, Z.ds +/ fsZsds + uE/ 92 dwt (1.4.1)
0 ' 0 ]

where w; is a F, semimartingale and a G; Brownian motion for some filtration G: C Fi,
pe is a family of positive numbers converging to 0, A, is a family of F; adapted bounded
exponentially stable processes, f; is a family of matrix-valued F, adapted processes satis-
fying )
IEeprf |fuldu < Ck exp Crpl(t — s) (1.4.2)
s

for any K > 0 and some family y. — 0, and gi are families of matrix-valued uniformly

bounded processes which are G, adapted. Then the process ZyZ7Y, s < t, is of order

e~<(t=9) jn [o°—,

This result is not surprising: since f; and p.g; are small, (1.4.1) is close to Zt = A Z;.
Note however that there is a technical difficulty due to the fact that A; and f, are not
supposed to be adapted to the filtration with respect to which w; is a Brownian motion.

In the proof of this lemma, we will need as a preliminary result the
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Lemma 1.4.2. Under the dssumptions of lemma 1.4.1, let {; be the solution of

¢
(e =.I+ll:g/ g:(sdw!. (1.4.3)
0

For some fixed § > 0, let 7; be the stopping times with values in [0,+oc] defined by |

induction by 19 = 0 and
Tiv1 = inf{t > et -1 > 5}. | (1.4.4)
Put afso '
Ny=inf{j; 141>t} (1.4.5)
Then for any ¢ > 0 there exists a C such that

Ee™: < CeCret, (1.4.6)

Proof. First suppoée that pe = 1; for 7; <t < 7541, on {7; < o0}, the process CtC,__jl —1Iis
. equal to the stochastic integral with respect to w; of a process which is uniformly bounded:;
since each component is a time-changed Brownian motion, we deduce that conditionally
on Gr,, the variable 741 — 7; is greater than the first time at which a standard Brownian

motion is greater than some constant number; thus

IE[exp —K(7j41 — 7;) | G-,] < e7Cx : (1.4.7)

where Cx — oo as K — oo, and thefefore
IEe;(p ~K7; < e %Ki, (1.4.8)
When p. # 1, it acts as a change of time in (1.4.3) so
IEexp ——K,ugTj < e~ Cki, (1.4.9)

On the other hand, fix some ¢ > 0; let us compute the exponential moment of order ¢ of

Ny; since NV, is almost surely finite, we have

Ee™ = Y PN, = j]
3=0

= o—o e (PN, > j - 1] - P[N, > j])

J

=1+ (e —1) f:ecij[N, > j]. | (1.4.10)

=0
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The event {N; > j} is equal to {7;4; < t}, so from the Bienaymé-Chebychev inequality,

oo
Ee™ <14 (e° - 1)efnet Z e BeKremini (1.4.11)
7=0

for any K > 0. By choosing K large enough so that Cx > ¢, we deduce (1.4.6) from
(1.4.9). []

Proof of lemma 1.4.1. The idea for proving this lemma is to decompose (1.4.1) into its
absolutely continuous and martingale parts (see [15] for general decompositions theorems).

So let (; and {, be the solutions of (1.4.3) and

7

t t :
G=1+ [ GraTas s [T (14.12)

Then the process Z; is equal to the product (;(,. For some § > 0 which will be chosen
later, let us also consider the stopping times 7; defined in lemma 1.4.2 and let us estimate

¢, on {t < 7i}. On this event, we can write (1.4.12) in the form

' t t
Zt=1+/0 Asfads+/0 ¢sCods (1.4.13)

where
lps] < Cs(|fs] +1) +|fs] (1.4.14)

and Cs — 0 as § — 0. On the other hand, since .At is bounded and exponentially stable,
we deduce from lemma 1.3.1 that there exists a bounded and elliptic Q; and a k > 0 such
that A, is (Q:, k) stable; by looking at the equation satisfied by Z:Qt— ¢,, we easily check
from (1.4.13) that

Gl < CeXP{—ct + C/Ot I¢slds} (1.4.15)

so that if § is chosen small enough,

ICel < Cexp{—ct + C/Ot |fslds} (1.4.16)

on {t < 71} for some positive c and C; since (; is uniformly bounded on {t < 7}, it follows

that Z, also satisfies an estimate of type (1.4.16). Similarly, on {r; <t < 7,4}, one has
. ‘
1225} < Cexp{—e(t - 7,) + c/ fulds}. (1.4.17)
7
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Then by means of the decomposition

N.—-1 :
zy= 2.2 1] 2.2, (1.4.18)
Ll
we deduce ¢
1Z,] < OV exp{——ct+C/ folds ). (1.4.19)
0

Thus lemma 1.4.2 and (1.4.2) imply that Z; is of order e~° for some ¢ > 0. More generally,

the process Z;Z ! is studied in a similar way. []

2. Observability of the system

We are going to apply the results of §1; we estimate the filtering error in §2.1. In
§2.2, we study the extended Kalman filter; we give conditions under which it has a good
performance but we also give in §2.3 two counterexamples showing that it can be quite far

from the optimal filter.

§2.1 Upper bound for the filtering error

Results concerning upper bounds for the filtering error have been obtained in several
papers (see [3], [9], [4]) and here, we want to obtain asymptotic results for (0.3); more
precisely, we want to find conditions on the coeflicients of our filtering problem that ensure
that X; — Xt is of order ,/e. We will first consider the simplest case: h almost linear and
strongly injective (theorem 2.1.1). Then we will study the general case; we will not suppose
that h is injective but will see how the detectability and the observability of dynamical
systems can be applied to our non linear stochastic system. More precisely we will prove
two results; in the first one we will assume a uniform detectability condition (theorem
2.1.2); in the second one we will only assume a local detectability condition but will also
suppose that the initial error is small and that the time interval is not too long so that large
deviations from the linearized system are rare enough (theorem 2.1.3). The results of this
subsection are linked with the problem of finding observers for the case ¢ = 0 (see [1] for a
construction of observers based on filters with small noise). As usually, the estimation of
X — )?t is obtained by considering some Kalman-like filter M; and by estimating X; — M;;
in further sections, we will limit ourselves to the study of the extended Kalman filter and
will not use the results of this subsection; however, it is also important to study more

general Kalman-like filters; it will indeed appear that the extended Kalman filter has not
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alwéys a good behaviour. Note also that if we do not want to prove that X, — )?t is of
order 4/¢, but only that it is small, then more general conditions can be found: see [27] for

a formal study of such a situation.

Theorem 2.1.1. Assume that
(i) the variable Xo — mq is of order v, in L~ for some families mq € IR" and ve > 0;

(ii) there exists a real constant number I's such that
(8(t,z) - B(t,m))"(z — m) < Tglx — mf?; (2.1.1)

(iii) the processes o (t, X;) and y(t, X;) are bounded in L=~

(iv) the function h is strongly injective, uniformly Lipschitz and almost linear.

Then X; — X, is of order V€ in L=~ on the time interval [to, oo) for any fixed to > 0; if
ve = O(y/€), one can take ty = 0. More precisely, one has

Ve

. . eNt ~1
X~ Xell? < Coe(1- (1= a055) e (2.1.2)
for some cg, c; > 0.

Remark 1. The variable X, is not necessarily integrable (one should add an assumption
on 3(t,0)). However, there exist observable variables M, such that X¢ — M, is integrable
(one can take the process M; used below in the proof), so that the conditional mean of

|X¢| given Y, is almost surely finite; thus )?t is well defined.

Remark 2. It follows from (2.1.2) that X, — X’t is small as soon as t > ¢; thus the initial
layer is very short (as in the linear case) and theorem 2.1.1 is an improvement of previous

results (compare with [23] after a time change).

Remark 3. If h is not almost linear, we can try to change the signal process so that h(t, X;)
becomes an almost linear function of the new signal; if é(t,x) is a C1? function such that
T = w(t,qﬁ(t,m)) for some function %, then X, = ¢(t, X;) and Y; satisfy a system of type
(0.3); if theorem 2.1.1 can be applied to this new system and if ¢ is Lipschitz with respect
to x, we can again conlude that X, — )?t is of order /¢. For instance, if h itself is CH? we
can try to choose ¢ = h; in this case the observation function of the new system is ¢ s z.

However this procedure cannot be always applied; for the other cases, see theorems 2.1.2
and 2.1.3.

18



Proof. Let h} be an observable almost derivative of h. The suboptimal filter that we are
going to use is the Kalman-like filter with initial condition My = mg and gain G; solution
of :
Ge = ke (B} hy) T R,

ke = —k? + 2T gk, + 1, (2.1.3)

v2
ko= =V (-Tg+,/T3+1).
0 e B + ] +
Since h is Lipschitz and  satisfies (2.1.1), the equation (1.1.1) with this gain has a unique
solution (apply [10]). We have
t

Xe— My =Xo — My + /:(ﬂ(s,Xs) - B(s, M,))ds — / Gs(h(s,X,) — h(s,M,))ds

0

+ \/E/Ota(s,Xs)dW,, + \/E/Ot('y(s,Xs) _@,)dB,. (2.1.4)

By considering

W .
Zt = Xt - Mt, W = (Bt), Qt = EktI, (215)
t
we can write (2.1.4) in the form (1.3.9) with
At = (Fﬁ - kt)], (2.1.6)

o= Bt X0) ~ Bt, My) =~ Ta(Xe ~ My)— ke (R h) TR (h(t, Xo) = h(t, My)— hi(X, - ML),
(2.1.7)

gt = Ve(o(t, X:) v(t, Xt) — Gy) (2.1.8)

and it is easily verified that A; is (Q, k¢) stable. We want to verify (1.3.10). We define

Ty =-Tg+,/T%+1, I'_=Tpg+,/T5+1, (2.1.9)

so that Iy and —T'_. are the roots of the Riccati equation (2.1.3); since ko > I';, we have
ki > T'y for any ¢. On the other hand, one gets from (2.1.1) and the almost linearity of h
that

ZFQ7f, < C%E-IZtl"’ < Cpeke2:Q71 Z, (2.1.10)

for p. — 0, so the first part of (1.3.10) is checked; moreover g;Q; ' g; is of order k; + kY

so since k¢ > '}, it is also of order k;. Thus we can apply lemma 1.3.2 and obtain that
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|Z|? is of order ek;. In order to estimate k;, we solve the Riccati equation and obtain

Ty +T_y _ |
- o

-1
<(F- + I‘+)(1 - (1 - %)e'(F‘+r+)') : (2.1.11)

Thus we have proved (2.1.2) with A, in place of )?t and ¢ =I'y, ¢y =T +T_. Finally
1Xe = Xillg < 1Xe = Millg + | Xe — My, < 201X, — My (2.1.12)

since the conditional expectation (applied here to X; — M;) is a contraction in L9. []

In the linear filtering theory, it is well known that the filtering error may remain
bounded as the time goes to infinity even if the rank of the observation matrix is less than
the dimension of the signal: an assumption on the detectability of (3’,h') is sufficient.
We are going to prove that a similar assumption also implies an estimate on the error in
our framework; since we do not assume here that the system is almost linear, we need a

uniform detectability condition (see theorem 2.1.3 for a local condition).

Theorem 2.1.2. Assume that

(i) the processes o(t, X;) and v(t, X;) are bounded in L>~;

(ii) the functions 3 and h are C' with bounded derivatives;

(iii) there exists a bounded observable process G; with values in R™ ® IR® such that for

any family of F; adapted processes &;, the process
Ay = B'(t,&) - Gth'(t,ft) (2.1.13)

1s exponentially stable; more precisely it satisfies (1.1.7) for some constant ¢ > 0.

Fix some co < c. Then if X is integrable (so that )?0 exists),

1Xe = Xl < Cav/E + Col| Xo — Xo| e, (2.1.14)

Remark 1. The initial layer is longer than in the injective case. This cannot be avoided:

consider the extreme case h = 0 and f3'(t, {;) exponentially stable.

Remark 2. With reference to the theory of linear systems, assumption (iii) can be viewed
as a detectability assumption; we can also say that the system is observable if ¢ (and

therefore co) can be chosen arbitrarily large.
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Proof. Let M, be the Kalman-like filter with gain G; and initial condition M, = )?0. '
There exists a F; adapted process §; such that

B(t, X1) — B(t, My) — Gi(h(t,Xs) — h(t, My)) = A(X: — My) (2.1.15)
with A, defined by (2.1.13). By defining Z; and w; as in (2.1.5) we are in the framework
of lemma 1.3.2 with f; = 0 (so that a = 0) and g; as in (2.1.8). For any k < 2¢, we know
from lemma 1.3.1 that A, is (¢Q;, k) stable for some bounded and elliptic Q;. Then lemma
1.3.2 implies the estimation on Z = X — M and therefore the theorem. []

We now explain what can be said when the detectability condition is only satisfied

locally at some Kalman-like filter.

Theorem 2.1.3. Assume that

(i) the process X, is of order ¢*! for some fixed real number a;;

(ii) the functions o and « are uniformly bounded;

(iii) the functions B and h are C* with respect to z, and their derivatives are bounded and

uniformly continuous, that is
|B8'(t,z) = B'(t,m)| + |n'(t,z) — B'(t,m)| < p(|z — m|) - (2.1.16)

for some fixed function p converging to 0 at 0;

(iv) there exists a Kalman-like filter M; with a bounded gain G; such that
IE exp f-g-"-(xo ~M><C (2.1.17)
for some positive ¢y and C, and
Ay = B'(t, M) — Geh'(t, My) (2.1.18)

is exponentially stable.
Then X, — X, is of order /¢ on the time interval [0, exp(c/¢)] for some ¢ > 0.

Remark. If A’*h’ is uniformly elliptic, then it is easy to find gains which make A; expo-
nentially stable. Note however that X, — X, cannot in general be estimated on the whole
time interval [0, 00); for instance when h(z) = (cosz, sin ), we generally know with a good
precision X; modulo 27, but even if X, is well known, large deviations phenomena can

cause incertitude on the value of X; after a long time.
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Proof. As in the proof of previous theorem, we are in the framework of lemma 1.3.2 with

A, given by (2.1.18), g; defined in (2.1.8) and f; defined by

fo = B(t, Xe)—B(t, My) = B'(t, Me)(Xe — My) — G (h(t, Xe) — h(t, My) — K/ (8, My)( Xy = M),
(2.1.19)

However, f; cannot be estimated by (1.3.10), except when the oscillations of 8’ and A’ are

small enough; in the general case, we can only deduce from the uniform continuity of 8"

and A’ that for any c;, there exists C; such that

| Xe = M| < C1 = |fe] < 1| Xe — My|. (2.1.20)
Thus, if one considers the stopping time
r=inf{t>0; |X.—M|2Cr} (2.1.21)
and the solution of
dZ, = AcZydt + fili<rydt + geduwy, Zo = Xo — My, (2.1.22)

one can apply lemma 1.3.2 to Z, provided c; be chosen small enough. Thus (Xt—-Mt)l{ts,.}
is of order /¢. Moreover, an application of lemma 1.3.3 shows that an exponential moment
of [Z,|?/e is bounded, so from lemma 1.2.2, |
Pl3t<els, |Zd2 01] = 0(e~2/*) (2.1.23)
for some ¢ and ¢y, or equivalently
IP[r < e/*] = O(e™2/%). (2.1.24)
Let M, be equal to M, if | M| is less than €2 for some fixed ay < a; A1/2, to 0 otherwise.
On the event {¢ < 7}, the processes M; — X, and X, are respectively of order /¢ and ™
which are both negligible with respect to £€*2; by adding these two estimates, we deduce
that
IP[M,# M, t < 7] = O(c%) (2.1.25)
for any . Then write
Xe-M, = (Xe — Mt)l{ts"'}l{Mt=Ht} +(Xe - —Mt)l{tSf}l{M#Ii,} + (Xt‘“ Ht)l{t>f}'
(2.1.26)
The first term is of order /¢ and for ¢t < e/, the two other ones are very small from

(2.1.24) and (2.1.25). Thus X, — M, is of order V. Since M, is observable, we can
conclude. []

If one writes the semimartingale decomposition of X, (see [16] or [13]) and if one

applies lemma 1.2.1, one immediately deduces the
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Corollary 2.1.4. Assume the conditions of theorems 2.1.1, 2.1.2 or 2.1.3 with 3 and
h Lipschitz, ¢ and v bounded, and Xy — My = O(y/€). Then for any real o; and any

ao < 1/2, the supremum of | X; — X,| on the time interval [0,e*] is of order ¢® in L.

§2.2 The extended Kalman filter

We now study t.he extended Kalman filter which was introduced in §1.1; the point
that we want to consider is to know whether Pt_l/ 2(X, — M,) is of order 1/¢; in the linear
case and with the optimal filter, this variable has indeed a Gaussian law with mean 0 and
covariance €I, and if the extended Kalman filter is efficient, it is reasonable to think that
this property also holds approximately in the non linear case. The Gaussian structure of

this variable will be studied more precisely in §3, and we now estimate its order.

As in §2.1, we are going to apply lemma 1.3.2; the equation for X; — M; has indeed
the form (1.3.9) with

Ay = (B’ — vR')(t, My) — PR h'(t, My), (2.2.1)

fe=B(t, X.) — B(t, My) - B'(t, My)(X: — M)
— (y(t, My) + PR (t, My)) (h(t, X¢) — h(t, M) — B (t, My)( X, — My))(2.2.2)

and

gt = \/E(U(t,Xt) ’7(t, Xt) - ’y(t, Mt) - Pth,*(t, Mt)) (223)

Moreover, for any function k¢, saying that A, is (P, k;) stable is equivalent to

_Pth,*h’(t, Mt)Pt + a(t, Mt) Z ktPt (224)

where we recall the notation a = co*. From these equations, we get conditions under

which we can apply lemma 1.3.2. We first consider the almost linear case.

Theorem 2.2.1. Let (M;, P;) be an extended Kalman filter such that

(i) the variable Py '/*(Xo — Mo) is of order \/z;

(ii) the functions o and ~ are bounded;

(iii) the functions 8 and h are differentiable, almost linear and f3'(t, M,), h'(t, M,) are

bounded almost derivatives;

(iv) the inequality (2.2.4) holds for some family of deterministic functions k, such that

-

P, + P < Ckd. (2.2.5)
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Then P /*(X, — M) is of order /€. Moreover, if
IE exp EEE(XO — Mo)*Py 1 (Xo — M) < Co (2.2.6)
for some positive ¢, Co, then
Eexp -:—(Xt —M)"P7Y X, — M) < C (2.2.7)

and . .
]Eexpg/ lXu—‘MulszS CeXpC/ k.du (2.2.8)

for any s < t and some ¢, C.

Proof. The two results are respectively corollaries of lemmas 1.3.2 and 1.3.3 applied with
Q¢ = €Py; in order to verify the first part of (1.3.10), note that since B and h are almost

linear, there exists a family y, — 0 such that

FEPT e S pe(L+ [P + |P7H) | X — My
< Cuckd X, — My)?
S Cuekf(Xt - Mt)*Pt—l(Xt - Mt), (22.9)

so that (1.3.12) is satisfied for some a, — 0. For (2.2.8), in order to apply (1.3.20), note
that (2.2.5) implies that k,P;' is uniformly elliptic. []

We now describe a situation for which we can check condition (iv); this situation is
the most pleasant one: it enables the conclusion for any initial condition X, provided P,
be chosen large enough. Actually, one can also find more precise sufficient conditions if

one has some other information about the boundedness or the ellipticity of P,.

Corollary 2.2.2. Let (M,, P;) be an extended Kalman filter satisfying conditions (i) to
(iii) of theorem 2.2.1. Suppose also that h is strongly injective, a is uniformly elliptic and

that the quotient between the largest and smallest eigenvalues of P, is bounded. Then
Pt_l/z(Xt — M) is of order /t.

Proof. One has

Pthl*h’(t,Mt)Pt -+ a(t,Mt) Z C(Pt2 + I) Z C(Pt + Pt_l)Pt. (2210)
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If there exists a family of deterministic positive functions p; such that p; ! P, is uniformly
bounded and elliptic, then the condition (iv) of theorem 2.2.1 will be satisfied with k:
proportional to p; +p; '; thus we only have to proVe the existence of such a family. Let po
be the trace of Py; since @', a are bounded, h'*h’ is elliptic, by means of (1.3.7) one can

find positive numbers c;, ¢ such that the trace of P; is less than the solution of
pe = —C1p? + ¢z (2.2.11)

with initial condition po. Similarly, if pg is the trace of Po"l, writing the equation for Pt_l,
since &’ is bounded, a is elliptic, one can find ¢}, ¢, such that the trace of P;"* is less than
the solution of

. 7 12

Py = —cip} +ch. (2.2.12)
Then P, is between p}, I and p,I, so we only have to prove that p,~' > cpy, or equivalently,

that psp} is bounded. We have

d

p (pepi) = —(c1pe + c1p})pept + copt + c2py

< —ca(pe + po)pep: + ca(pe + py)
< es(pe + pi)(es — pepy) (2.2.13)

for some c3, ¢4, c5; thus the derivative of p;p)} is negative as soon as p;p} is greater than
cs: moreover from our assumption about the eigenvalues of Py, popj is bounded; thus p.p}

is bounded. []

We can also deduce from lemma 1.2.1 the

Corollary 2.2.3. Under the assumptions of theorem 2.2.1, if k; is of order ¢*° for some

real ag, then for any fixed o < 0 and any § > 0, the supremum of Pt_l/z(Xt - Mti) over

the time interval [0,£°] is of order £*/%~5.

When the functions 8 and h are not almost linear, we can deduce from the proofs of

theorems 2.1.2 and 2.1.3 the

Theorem 2.2.4. Let M, be an extended Kalman filter with gain G, given by (1.1.2).
(a) If the conditions of theorem 2.1.2 are satisfied for the gain Gy, then

| Xe = My||, € Cov/e + Cy|| Xo — Mo|| e™". (2.2.14)
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(b) If the conditions of theorem 2.1.3 are satisfied for M,, then there exists a family of

measurable sets N such that
IP[N] < Cexp —--2— (2.2.15)

and P,_l/2 (X: = M)l nc is of order \/€ on the time interval [0, e%/¢].

In case (b), when P, is uniformly bounded and elliptic, a sufficient condition for the
exponential stability of A; is (2.2.4) for k; = k > 0; however this condition is not necessary;
for instance there may be bounded time intervals where a = h = 0; note also that we can
deduce that X, — My = O(,/¢) on [0, e%/¢] if we have a priori estimates on the moments of
M. Properties similar to (2.2.7) and (2.2.8) can also sometimes be checked; in case (a),

when some exponential moment of ¢~1| Xy — Mp|? is bounded, then
c t
IEexp -/ Xy — My’ du < Ce®t=2) (2.2.16)
€ S
for some ¢ and C.

§2.3 Two counterezamples

In theorem 2.2.4(b), large deviations phenomena prevent us from deriving estimates
for very large times; moreover when X, is badly known at time 0 (Po not bounded), the
extended Kalman filter may provide wrong values for a nonlinear function A even if it is
strongly injective. We now explain why on two examples corresponding respectively to
non linear 3 and h. In these two cases, the fact is that the extended Kalman filter may

have more than one stable equilibrium.

Example 1. Suppose that X; and Y; are one-dimensional and solution of

dXt = (2 arctan Xt - Xt)dt + \/Eth’
(2.3.1)

dY; = HX,dt + /edB,

for some positive number H. The deterministic dynamical system associated with X,
(obtained for & = 0) has two stable equilibrium points zo > 0 and —~zg, and 0 is an
unstable equilibrium; we suppose that Xy = zo. We consider the extended Kalman filter
(My, P;) with initial value (M, Po) = (0, po) for some bounded family pg; we can apply
theorem 2.2.4(b) to this system but we are going to see that for some values of H X,- M,

does not converge to 0 as ¢ — 0 uniformly with respect to ¢t € [0,00). This can be done
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by applying some results of the theory of large deviations (see for instance [7], we will not

give all the details); first, we can check that
ag = lin%)elogIEinf{t > 0; X; <0} (2.3.2)
£ —

exists and is finite. We fix some a; > ay and we are going to study the behaviour of the
system at time ¢; = exp(a;/¢). The probability that X; becomes negative before time t;

tends to 1, so using the symmetry of the equation of X and the strong Markov property,
lim IP[X,, < 0] =1/2. (2.3.3)
e—0

Moreover, one can prove from the theory of large deviations that if K is large enough,

lim IP[sup IX,| < K} =1. (2.3.4)

e—0 <ty

If Q; denotes the set inside the bracket, we are going to study on the time interval [0,t4]

the process (M, P;) conditioned on ;. The process P; is solution of

. 4
Pi=-HP}+ (——= - 2)P, +1 2.3.5
¢ ¢ (1+Mt2 ) ¢ (2:3.5)
so if we choose § small enough so that
Bi=——2 _1<0 (2.3.6)
YT T4 (7o - 6)2 "
and if we put
T=inf{t >0; M, <zo- 6}, (2.3.7)

then

P, <H %y +4/B2+H?) vpy < C (2.3.8)

on {t < 7}, where the constant C does not depend on H. On the other hand, the process
M, satisfies

dM,; = (2arctan My — M,)dt + P,H*(X, — M,)dt + /eP,HdB,. (2.3.9)

Consider the deterministic equation obtained from (2.3.9) by putting ¢ = 0 and by fixing
X at some trajectory bounded by K; if H is small enough, the flow of this equation sends
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the interval [zo — §,00) into itself; now in (2.3.9) we have added a noise of order /e H so
that by using upper estimates for large deviations, one can prove that for some ¢ > 0,
lim IP[T < exXp —m3 I X] =0 (2.3.10)
eH?—0

uniformly on ;. Thus by choosing again H small enough, one can manage so that
lim IP[r < ¢ | ] = 0. (2.3.11)

We deduce from (2.3.4) that, with such an H, one has M;, > zo — é§ with a probability
converging to 1; on the other hand, one has X;, < 0 with a probability converging to 1/2,
so X;, — M;, does not converge to 0 in probability. This example shows that the extended
Kalman filter cannot be used in order to detect phase transitions on the signal; this is due

to the fact that the gain is not large enough: in this situation, the filter of theorem 2.1.1

has a better behaviour.

Example 2. We suppose here that X, is one-dimensional and Gaussian: it satisfies dX; =
vedW, and its initial law is the Gaussian law with mean —2 and variance 1; we suppose
that the observation is two-dimensional and that the observation function is a smooth non
linear function such that h'(z) = = for any = and h2(z) = 2|z| for |z| > 1. Consider the
extended Kalman filter with My = —2 and Py = 1/¢ (which are the mean and normalized
covariance of Xg); we are going to estimate X — M at some fixed time t; > 0. Until the
first time at which X; < 1 or M; > —1, the filter satisfies

{ dMy = Py(-3X, — 5M,)dt + \/eP,(dB} — 2dB?),

. 2.3.12
P, = -5PF 4+ 1. ( )

Let (M, P;) be the solution of this equation for any t, with (M, P 0) = (Mo, Pp); note in

particular that
t
— —_ t
e/ Plds= S+ P -Py <S4l (2.3.13)
0 5 5 5
We have

t t
3X:+5M;, =3X,— 10 - 5/ Py(3X, +5M,)ds + \/E/ V1257 + 9dW, (2.3.14)
0 0
for some standard Brownian motion Wt, from which we deduce

IP[sup 13X, + 53| < 1 | 13X0 — 10] < 1/2 > IP sup

t<to t<to

J

(2.3.15)

/ (1257 +9
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The stochastic integral inside the right-hand side is a Gaussian martingale, the variance
of which is bounded from (2.3.13); by writing this martingale as a time-changed Brownian

motion, we deduce a lower bound for the right-hand side and therefore

IP[sup 13X, + 5M4| < 1 ' 13X, — 10| < 1/2] > ¢o (2.3.16)

t<tg

for some positive ¢g. We also have

lin(x)lP[tigtf X, >2 { 13X — 10] < 1/2] =1. (2.3.17)
e St .
Thus
liminflP[inf X¢> 1, sup M < —1 ! 13X — 10] < 1/2] >0 (2.3.18)
£—0 t<to t<to

since the event in (2.3.18) contains the intersection of the events in (2.3.16) and (2.3.17).
Moreover the probability for |[3X, — 10| to be less than 1/2 is some constant positive
number, so we deduce that X,, — M,, does not converge in probability to 0; since P, is
bounded as ¢ — 0, the variable Ptzl/z(Xto — M, ) is not of order /¢, though this property
holds at time O; this is due to the too strong nonlinearity of the observation function and to
the unboundedness of P, (which prevents us from applying theorem 2.2.4). This example
shows that one has to be cautious in applying the extended Kalman filter when the initial
condition is badly known; of course, in this example, if one drops the second component

of the observation, the problem becomes linear and is still nearly observable.

3. Asymptotic filtering

In §2, we have proved that under some conditions, X; — M, is of order /¢ when M,
is the extended Kalman filter. In this section, we prove that )?t — M, is of order ¢; the
result is stated in §3.1; the different steps of the proof are detailed in §§3.2 to 3.4. In §3.5,

we prove that the conditional law of X, given )); is asymptotically Gaussian.

§3.1 The main result -
We now state the main result which will be proved subsequently in several steps.
Theorem 3.1.1. Let (M;, P,) be an extended Kalman filter. Assume that

i) the functions o and ~ are C} with uniformly Lipschitz derivatives:
Y b y P )

(i) the functions 3 and h are C' and their derivatives are uniformly bounded and Lipschitz;
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for any fixed € and T > 0, the suprema over {t < T} of |3(t,0)| and |h(t,0)| are variables
of L*>°;
(iii) the law of Xo has a density po with respect to the Lebesgue measure, the derivative of

jbo in the distribution sense is a function py and there exists a family of positive numbers

v, such that ’
(Xo — Mo)* Pyt + EZ’;—E(XO) = O(v.); (3.1.1)

for each ¢ fixed, an exponential moment of | Xo|* is finite; A

(iv) the process P, is uniformly elliptic; for any fixed ¢ and T > 0, the supremum over

{t < T} of |P| is a variable of L*>°; moreover the process
At = —Pt_la(t, Mt) - (ﬂl - ’Yh,)*(t,Mt) (3.12)

is exponentially stable;
(v) the filter satisfies :
| Xe = Mif* = 0 (e + o) (3.1.3)

for a family v, and for any K > 0 and t > s,
¢
IEepr/ | Xy — My|du < Ck exp Cxv/e(t — s). (3.1.4)

Then
PR, - M) =0 (e + (ve + v;)e-cf). (3.1.5)
In the end of this subsection, we discuss the assumptions of this theorem.

Remark on condition (iii). The left-hand side of (3.1.1) is zero as soon as the law of
Xo is the Gaussian law with mean M and variance ¢Py. Thus the distance (in some
sense) between the law of X, and this Gaussian law enters the initial layer of (3.1.5). The
basic use of the variable pj/po(Xo) involved in (3.1.1) is the following integration by parts

formula: if ¢ is a smooth function with compact support then

/
E[¢'(Xo) + 22 (Xo)d(Xo)| =0 (3.1.6)
Actually a converse statement also holds; if

E[¢(Xo) + v04(Xo)] = 0 (3.1.7)
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for a variable vy of L°°~ and any ¢, then following the basic lemma of Malliavin’s calculus,

this implies that the law of X, is absolutely continuous with respect to the Lebesgue

measure and v is py/po(Xo) (see lemma 3.2 of [26]).

Remark on condition (iv). Suppose that P; is uniformly bounded and elliptic, and that
PR (t, M) Py + a(t, My) > cl (3.1.8)

for some ¢ > 0. Then one can check that the process A, is (P{'l, k) stable for some k > 0,
so that from lemma 1.3.1, it is exponentially stable and (iv) holds. If A; is bounded, its
exponential stability is also preserved when the above properties do not hold on a bounded

time interval.

Remark on condition (v). We have obtained in §2.2 sufficient conditions implying (3.1.3);
note that X, — Mp is not necessarily small but its magnitude enters the initial layer of
the result. In the framework of theorem 2.2.1 and if k; is bounded for ¢t > ¢o, we can also
deduce from (2.2.8) that

t .
IE exp -E/ | Xy — M, |?du < CeC(t~9) (3.1.9)

for ¢ > s > to and some ¢ and C (see also (2.2.16)). From Jensen’s inequality, this implies
that for any K, : '
' K [* 2 CK Je(t—s)

Eexp 7 | Xy — My |*du < Ce (3.1.10)

for ¢ small enough. Then we can deduce (3.1.4) for t > s > t; by means of

t : 1 t
2/ | X — My|du < Ve(t — s) + NG / | X — M, |*du. (3.1.11)

If the exponential moments of X; and M; are bounded on [0, ], we can then deduce (3.1.4)

fort>s>0.

Theorem 3.1.1 can be viewed as a generalization of previous results such as [21], [2];
in [22], [23], we did not assume the existence of a density for X,; here we have preferred
to use the initial law because it yields more precise results about the initial layer; however
in §4, we will also derive some results without this assumption on Xo. As a corollary,
we can also deduce from lemma 1.2.1 an estimate on the supremum of l)?t — M| over
some time intervals. The proof of theorem 3.1.1 will be divided into three steps. First,
we will introduce an absolutely continuous change of probability; then we will deduce an
expression for X; which will involve some derivatives with respect to the initial condition;

finally, an extension of the integration by parts formula (3.1.6) will yield the theorem.
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§3.2 Change of probability measure

We use an absolutely continuous change of probability which affects both the signal
and observation noises. A classical change is the one which leads to the famous reference
probability; here, we also modify the probability of the signal in order to focus it on the -
interesting events. So we fix some family of deterministic terminal times 7' (however, the

estimates will not depend on T') and we now define a new probability on Fr. Let A; be

the process defined by
1/t 1 [t .
Tl = - — h*(s, Xs)dB, + —= X, — MJ)*P~ , Xg)dW,
A; exp{ \/E/o (s,Xs) + \/E/;( P lo(s, X,)dW,

_ 51; /Ot(|h(s,X3)|2 + |o*(s, X, )P7N (X, = M,)[)ds}. (3.2.1)

For each ¢, the process (X, M) is solution of a stochastic differential equation, the diffusion
and drift coefficients of which are respectively bounded and of linear growth as ¢ — oc;
thus (see lemma 5.7.2 of [13]) some exponential moment of the supremum over 0 <t < T
of | X¢|? and |M;|? is finite. It follows from this remark that the local martingale defined in
(3.2.1) is actually a martingale, and we can therefore define IP to be the probability with
density A;! with respect to IP on F;. Applying the Girsanov theorem, if we define

t

Wy=W, - o*(8, Xs) P H(Xs — M,)ds, (3.2.2)

1
Ve Jo
then Wt and Y;/+/¢ are independent IP standard Brownian motions. The equation for X;

can be written in the form
dX, = alt, X¢)P7Y(Xy — My)dt + B(t, Xeo)dt + Veo(t, X )dW, + y(t, X, )dY:  (3.2.3)
with the notation 8 = 8 — yh. Note also that
A= exp-i—{ /ot h* (s, X,)dY, — % At]h(s,Xs)|2ds

- /0 t(Xs — M,)*P7H(dX, - B(s, Xs)ds — 7(s, Xs)dY,)

+ _;. /0 tla*(s,Xs)P;l(Xs - Ms)fzds}. (3:2.4)
We are now going to compare A; with the “Gaussian-like density” |

exp —Elg(xt — M)*P7Y (X, - My).
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More precisely, we have from 1t6’s formula

(Xe — Mo)*P7H (X — My) = (Xo — Mo)* Py (Xo — Mo)
t t
+2 / (Xs — My)* P dX, — 2 / (X, - M) P 1dM,
0 0

t t
+ / (Xs — Ms)"fg—P‘;l(Xs — M,)ds + f-:tra,ce/ a(s, X,)P; ds
0 8 0

t
/
0

with the notation |A|3 = trace(AA4*); from (3.2.4) and (3.2.5), we can verify that

P2 (y(s, X,) — y(s, Ms) — Psh'"(s, M,))

2
2ds (3.2.5)

(Xt — My)* P (X, — M) + 2elog Ay = (Xo — Mo)* Py (Xo — My)
#2 [ (X = M B [ (806, ) 85, M) = (0, X2) (b5, ) = h(s, )| s
+2 (X, = M) P2 (35, ) (0, M) (4, = o, M.)d)
#2 (46, X) = H(o, MK, = M) (45, = ho, M)
_ /OtUh(s,Xs) — h(s, M,)|* — ['(s, M)(X, — Ms)lz]ds + /ot h(s, M.)|?ds

t
+ / (X, — M,)" [iPs—l + P75, X,) P~ KW (s, M)| (X, — Ma)ds
0 .

t
/
0

t.
+Etrace/ a(s, X,)P; lds. (3.2.6)
0

2
P (y(s, X,) = v(s, My) — Pk’ (s, My)) lzds

Our aim is to estimate in some sense this expression. From the equation satisfied by P;!

1

we can write it in the form

(Xt - Mt)*Pt_l (Xt - Mt) + 2e log At = (XQ - Mo)*Po—l(Xo - Mo)

¢ t
+ 2/ Yi(s, Xs)(dYs — h(s, M,)ds) + / P2(s, X, )ds + ¥3(t)  (3.2.7)
0 0
where the functions v; are observable, defined by

P1(t,x) = h(t,z) — h'(t, My)(z — M)+ (v(t,z) — v(t, M) " P f.Mt), (3.2.8)
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| pa(t,z) =2(x — My)" P (B(2,2) — B(t, My) = B'(t, Me)(z — M)
— 2z - M P (vt 2) = 2(t,M2) ((t, ) — h(t, My))
— 2z — M) P y(t, My) (h(t, z) — ht, Me) — R(8, My)(z — M)
+ (z — M) P (a(t, z) — a(t, My)) PT M (z — My)
+|h(t,z) — h(t, My)|" = |W'(t, My)(z — M)
+e| P2 (0(t,2) = (e, M) — Pob (8, M2)
+ ¢ trace(a(t,z) P 1), - (3.2.9)

and the remaining term is put in 3.

§3.38 Differentiation with respect to the initial condition

Since equation (3.2.3)' has a unique strong solution, the processes X; and A; are
measurable with respect to (X, W, Y), so that they can be viewed as functionals defined
on the canonical space IR™ x C}. x C%, where C¥% is the space of continuous functions from
[0,00) into IR*; more precisely endow this product space with the product of the Lebesgue
measure on IR™ and the standard Wiener measures on C%. and C-'{,iw, and consider the solution
®, of (3.2.3) with (XO,W,Y) replaced by the canonical process of R™ x C% x C%; then,
since the law of X is absolutely continuous with respect to the Lebesgue measure, X, is
almost surely equal to the composition ®; 0 (X, W, Y). We adopt the following notational
convention: the same letter will be used to denote a functional  on R™ x CE x C%
and the variable ®(X,, W, Y') on Q; note however that since the Lebesgue measure is not
necessarily absolutely continuous with respect to the law of Xj, the extension of a variable
on Q to a variable on IR™ x C% x C#4 is not necessarily unique; nevertheless the variables
which will be considered will be given by stochastic differential equations, so that one can
apply the procedure that we have described for X; and obtain a canonical extension. Since
only Xy will be perturbed in this section, we will sometimes simply write ®(Xo) and omit
the dependence on (W,Y). For any vector x in IR™, the law of (X, + ,u,W, Y) is also
absolutely continuous with respect to the product of Lebesgue and Wiener measures so if
® is a functional defined almost everywhere, the notation ®(Xo+ u, W, Y') defines a unique

variable up to almost sure equality.

Definition 3.3.1. If u is a unit vector, a measurable variable @(XO,W,Y) will be said

to be continuous in probability in the direction u with respect to the initial condition if
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®(Xo + 6p) converges in probability to ®(X,) as § — 0; it will be said to be differentiable
in probability in the direction p with derivative Vi ® if

1 —_~ —_~
V5 = lim = (8(Xo + 8, W, Y) ~ 8(Xo, W, V), (33.1)

where the limit holds in TP probability; it will be said to be differentiable with derivative
Vo® if it is differentiable in all the directions and V§{® = V@ u. We will also say that
the functional ® is continuous or differentiable in L9 when ®(Xq + 8p) is in L? for § small
enough and the limits hold in L9.

The theory of stochastic flows uses a stronger definition of differentiability, since one
assumes the existence of a version ®(z, ﬁ;, Y') differentiable with respect to z; actually our
results can also be proved by using flows and the technique of [5]. However definition 3.3.1
will appear to be sufficient for our purpose and is closer to the derivability of the stochastic
calculus of variations of [28]. Since IP and IP are mutually absolutely continuous, the limits
in probability coincide for these two probabilities; but for L9, one has to make precise the

probability; except otherwise stated, it will be IP. Qur aim is to prove the

Lemma 3.3.2. Let Zt be the matrix-valued solution of

dZ, =a(t, X:) P Zodt + o (t, Xo) ((6%) (8, Xo), PrH(Xe — My)) Zydt + (B — vh')(t, X) Zodt

+ VET)(t, Xi) ZdW] + \/ex(t, X¢)Z:dB] (3.3.2)

with Zo — I; in this equation o; and +y; are the jth columns of ¢ and v, and if u is a vector,
if A(t,z) is a matrix-valued function, (A’'(t,z),u) denotes the matrix, the jth column of
which is

(A'(t,:c),u)j = -g—;%(t,m)u. (3.3.3)
Then under the conditions of theorem 3.1.1, X; and log A, are differentiable in L™~ with

respect to the initial condition, the derivative of X, is Z, and

(Xe ~ M)*P7t = (—gvo log A¢ + (Xo — Mo)*Po“l) Z7 4+ 0(e+vle™ ). (3.3.4)

Remark. The ‘O(.)’ in (3.3.4) must be understood in L>°~(IP). Actually, the chaﬁge of
probabilities IP — IP can be viewed as a change of variables used in order to compute the
derivatives, but when making estimates, we generally return to the basic probability IP;

except otherwise stated, the L9 norms will be computed under IP.
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Proof. Fix €. The main difficulty is that the coefficients of (3.2.3) are locally Lipschitz, but
generally not globally. However, if u is some vector of R™ and if X! denotes the solution

of (3.2.3) with initial value Xo + x, we have

d(XY - X) =a(t, XE)P7TH (XY — Xe)dt + (a(t, XE) — a(t, Xe)) P (X, — M,)dt
+ (B(t, XE) = B(t, X)) dt — (8, X{') (h(t, X¥') — h(t, X)) dt
+VE(o(t, XE) = o(t, X)) dW, + (v(t, X!) = 7(t, X2)) (dYs — h(t, X, )dt)
=a(t, XI')PT U (XY — Xy)dt + o(t, XI) (o(t, XE) - o(t, X4)) " P7HX, — My)dt
+ (8(t, X{') — B(t, Xy))dt — y(t, XE) (h(t, XE) — h(t, X;)) dt
+ Ve(o(t, X{') — o(t, X)) dWe + ve(y(t, XI'). — ~(t, X,))dB. (3.3.5)

Since the exponential moments of fot |Xs — M,|ds are finite under IP, we can prove from
this equation that for ¢ fixed and y — 0, X¢' — X, is of order |u| in L°~. Then by writing
the equation satisfied by the process X;' — X; — Z,u, one checks similarly that this process
is of order |u|?, so in particular, X, is differentiable with derivative Z,. One then verifies
from (3.2.7) that A, is differentiable and that

eVolog Ay = — (Xy — My)* P12y + (Xo — My)* Pyt
t . 1 [t
+ / (dY, — h(s, M,)ds) 41 (s, Xs)Zs + 5/ V3(8, Xs)Zsds. (3.3.6)
0 0

Now suppose that ¢ is no more fixed but tends to 0; the lemma will be checked if we prove

t t
(/ (dY, —-h(s,Ms)ds)*z/Ji(s,Xs)Zs+%/ ¢§(3,X5)sts)Zt“1 = O(e+vle™). (3.3.7)

0 0

Fix some time t; > 0 and consider the subdivision of [0,c0) consisting of times t; = jty;

the estimate (3.3.7) will be implied by

Z th:' Zt"1| sup

j,t_—,‘(t t'<8<tj+1

s * 1
() = B M) W X + (0 X)) 225
i
+ \/—/ dBIY1 (v, Xu)ZuZ;, I O(c + vie™). : (3.3.8)
Note that from (3.2.8), (3.2.9) and the boundedness of P,”!, we have

{ 91 (t, X:)] < C1X, — My,
(3.3.9)

lzpé(t,Xt)' S C(&‘ + IXt - Mtlz)’
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so from (3.1.3), |91 (¢, Xo)[*, |X: — M| |91 (t, X,)| and 95(t, X,) are of order ¢ +v,e0%; we
can also deduce from classical estimates applied to (3.3.2) and from (3.1.4) that ZuZy, !is
of order 1 for t; < u < t;41; thus the suprema in (3.3.8) are uniformly of order ¢ + v, e~°0%s;

the L9 norm of the left-hand side of (3.3.8) is therefore dominated by

Cq Z (5 +'”e,se_cotj)”ijZi—1”2q'

j: tj<t
Thus (3.3.8) will be proved provided that
12:2:7]|, = O(e=(*~)) (3.3.10)
for s <t and some ¢ > 0. But if 4, is defined by (3.1.2), the inverse of Z; satisfies
dZ7 =27  Ardt — 27 (([3’ — YRt Xy) = (B — vh')(¢, Mt)) dt |
- Zt_l (a(t,Xt) —_ a(t, Mt))Pt_ldt — Zt—la(t,Xt)((a*)’(t,Xt),Pfl(Xt bl Mt))dt
+ez;? (Z o505 + Z Yivs) (t, Xe)dt
J J
~ VEZ al(t, X )dW] — VEZ7 Y)(t, X4)dB]. (3.3.11)

By considering the transpose of this equation, since A; is exponentially stable and (3.1.4)
holds, we can deduce (3.3.10) from lemma 1.4.1 (applied here with G, = ;). []

83.4 Proof of the main result

Since the conditional expectation is a contraction in the spaces LI(IP), we can take

the (), IP) conditional expectation in (3.3.4) and obtain
(Xi=M) P! = IE[—sVo log AtZ;7 ' +(Xo— Mo)* Pyt 21 ’yt]-i—O(e—i-v;e_Ct). (3.4.1)

In order to prove theorem 3.1.1, we have to estimate the right-hand side. We will use an
extension of the integration by parts formula (3.1.6). Since we will consider functionals
®(x,w,y) which are not pathwise smooth with respect to z, we will have to mollify them:

to this e-nd, put
1
Y(z) = exp —(1 — z?)~! / / exp —(1 — u?)"'du (3.4.2)
-1
if |x| < 1, 0 otherwise, and consider the sequence of mollifiers

Yi(@) = k(kz). (3.43)
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For some fixed unit vector u, define also the sequence of variables
+ oo
¥z, T,9) = [ ®(a+ 6, T, u)u(6)ds (3.4.4)
~00
It is easily seen that ®(*) is pathwise differentiable with respect to z in the direction y and
95
06

(z + 6p, w,y)

= —/Q(m + bp, W, y)y(6)d6. (3.4.5)
6=0 '

By taking the above equality at (XO,W, Y), we obtain V4®(F), With this definition, we
first prove the

Lemma 3.4.1. Fixe > 0,t < T and some unit vector pu; let & = ®,®, be the product of
two functionals which are measurable with respect to o-field generated by (z,w,, ys; s < t);
we suppose that for some q > 1, ®, is differentiable in L"(I‘f’) with respect to Xy in the
direction p and that 9 is continuous with respect to X, in the direction y in Lw‘(f)).
Then

~

I o~ .
E[Q%(Xo)u + @, VH®, [ yt} = - lim E[$,V;2{" | 3] (3.46)
in probability.

Proof. Take the scalar product of (3.1.6) with yu; we first note that the resulting equality

can be extended to measurable functions ¢ which are C* in the direction p and such that
Po
¢'(Xo)p + ¢(X0)p—O(X0)#

and ¢(Xy) are integrable; in this case indeed, for almost every z, the functions § +—
(¢po)(z + 6u) and (¢po)’(z + 6 )i are integrable with respect to the Lebesgue measure, so
the integral of the latter function is necessarily 0; we conclude by integrating with respect
to z on an hyperplane orthogonal to u. Thus for any integers (k, k') we can apply (3.1.6)
in the direction p to the functional @ﬁk)@g’“') for each (w,y) fixed; by integrating with

respect to the Wiener measure on w we obtain
I‘E[ng)cpg’?') ;;—:‘:(XO Ju+ 0FvES) 4 o g ' yt] =0. (3.4.7)
We first study the convergence of @gk) as k — o; >We have
o _ 3, = / (@1 (Xo + 61) — ®1(Xo)) w4(6)d6 (3.4.8)
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so that

||q>"°) <1>1|| <Hsup |®1(Xo + 6) - <I>1(X0)]| (3.4.9)

From (3.4.5), using the fact the integral of ¥}, is 0 a.nd the integral of v (z) is —1, we

also have
vEeM) _ v, = — / ( ‘I’l(X° * 6’;) = ®1(Xo) _ vgqn) Sv,(6)ds (3.4.10)
so that
|vEe - vEe, “ m<1/k” ‘I>1(Xo + 5/;) ~ &1 (Xo) ng,lll;is_ (3.4.11)

We deduce from our assumptions that for some ¢ > 1, the terms of (3.4.9) and (3.4.11)
converge to 0; we can check similarly that @gk') is bounded in L““(I?) and converges to
®; as k' — oco. Now by taking the limit in (3.4.7), firstly as k — oo, secondly as k¥’ — oo,
we obtain (3.4.6). [] V |

If now we return to the probability IP, we have the

Lemma 3.4.2. Fixe > 0,t < T and some unit vector u; let ® = &, $, be the product of
two functionals which are measurable with respect to o-field generated by (z,Ws,ys; s < t);
we suppose that ®; (resp. ®;) is differentiable (resp. continuous) in the direction yu with
respect to Xo in L*°~. Then

!
JE[W:; log A + @;;—Z(Xo)u + B, VED, { yt] = - lim E[2;V5e{" | %] (3412)
in probability.

Proof. One can check that the variable AZ! is in L(IP) for some g > 1; this implies that
variables which are bounded (for ¢ fixed) in L*°~(IP) are also bounded in L“‘(Iﬁ). One
can also check that (for ¢ fixed) the variables A;(Xo + 6p) are bounded in Lq(ﬁ’) for some
g > 1; this fact and the differentiability of log A; in L”'(]‘f’) imply that A, is differentiable
in L(IP) for some ¢ > 1. We can deduce that ®;A; and &, satisfy the a.ssumptxons of

lemma 3.4.1; in this case (3.4. 6) becomes
’ ) -
IE[@V{;At n @Atgﬂ(xo),,,+ B,A,VED, ' yt] = - lim B{A2: V50 | 1] (34.13)
0 —00
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By dividing by E[Atlyt] we obtain a formula for IP conditional expectations which is
exactly (3.4.12). []

Remark. In the applications, we will estimate the right-hand side of (3.4.13) by means of

vER( = — / ®2(Xo + 5#;) = 22(Xo) 5 (5)ds (3.4.14)

" where we note that —&1;(6)dé is a probability measure on [~1/k, 1/k].
Proof of theorem 3.1.1. Let (e;) be the canonical basis of IR™; for each i, we apply lemma
3.4.2 with ®; = 1, 4 = e; and ®, equal to the ith line Zf’o of Z;'. By applying (3.4.14)

and summing over ¢, we obtain

|B((Volog A+ 25 ph(X0) 27 | 2] < lir?s;xpllz Zio(Xo + 8e:) = Zig(Xo)) |
- q
(3.4.15)
Now, for any 8, let ¥, be the matrix, the ith line of which is the term inside the sum of
(3.4.15); by studying the equation (3.3.11) of Z;™!, since the coefficients involved in this

“equation are Lipschitz, we can write ¥, in the form

t
¥, = (/ dSsZs) zZ! (3.4.16)
0
where S; is a matrix-valued semimartingale, the ith line of of which has the form

5/ iy X3 (Xo + 8ei) — XI(Xo)
_Z/ Z} o(Xo + 8e;) f(6) ; ds

+ \/—Z/ o Xo + be;)g*i(8) X3(Xo + 66;) — Xg(Xo)dwf (3.4.17)

where w; consists of components of W; and B, ands fJ and ¢g*/ are matrix-valued processes
satisfying |
i) <Ccl+1X. - M,]), |g¥(8)| <cC. (3.4.18)

For each fixed ¢, as § — 0, the process S} is contiguous in L~ to the process
5, = Z/ s0fi(8)Ziids + \/'Z/ Z: 0¥ (8) 23 dw. (3.4.19)

Since Z, ¢ is the inverse matrix of Z,, we deduce that
. t t
Y=Y [ fi@a S [ di@ant  @az)
i i Y0 ik VO :
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where fi and g** are the ith lines of fi and g*¥*. Then we deduce from (3.4.18) that
3:5,, and therefore also Y, Si, are asymptotically of order 1 as § — 0, uniformly in e.
Thus the right-hand side of (3.4.15) is of order 1, so that the theorem follows from (3.4.1),

(3.1.1) and (3.3.10). ]

§3.5 Asymptotic normality of the conditional law

In this subsection, as a complement to theorem 3.1.1, we check that the conditional
law of X, is almost Gaussian after the initial layer. This type of property has been studied
under particular assumptions in [29] and [19] (in [19] the convergence is checked for a

topology which is stronger than ours).

Theorem 3.5.1. Assume the conditions of theorem 3.1.1. Let f(t,z) be a family of real-
valued observable C! functions defined on R™ with at most polynomial growth as well as

their derivatives; define

& = (eP) 72X, - M) (3.5.1)
If f(t,&:) is bounded in L>°~, then

IE[f(t,ft)EZ* ~ f'(t, &) ) yt] PV = o(ﬁ + E—\;_;ie—ct). (352)
Proof. We deduce from (3.3.4) that
f(t,&)E P = —\}——Ef(taft)[—EVO log Ay + (Xo — MO)*PO_I]‘ZF1 + 0(\/E + %e_a)'
(3.5.3)

By using also (3.1.1), we only have to prove that

E[ef(t,6) (Volog Ar + 53 pb(X0)) 27 + VEF (8, €0PT? | 34] = O(e + (v + v})e™).

(3.5.4)
Let us apply lemma 3.4.2 with @, = f(t,&:), u = e; and ®; equal to the ith line of Z;;
by estimating the approximate derivative of Z, ' as in the proof of theorem 3.1.1, we can

deduce that
E[f(t»é)(VO log As + pg 'po(Xo)) Z;* + VOf(t,Et)Zt_l ' yt] = O(1). (3.5.5)

On the other hand,
1, - . '
Vof(t, &) = ﬁf (t.&)P; %2, (3.5.6)

so (3.5.4) is proved. []
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Corollary 3.5.2. Under the assumptions of theorem 3.1.1, let T be a family of determin-
istic times such that P, is bounded in L~ and (v, +v.)e™°" is of order ¢ for any c. Then
the conditional law of the variable £, given ), converges in probability to the standard

Gaussian law for the weak topology on probability laws.

Remark. If P, is bounded and v, + v, = O(¢), so that the initial law is already nearly
Gaussian with small enough variance, then no particular assumption is made on 7; on the
other hand, if v, and v, are of order ¢~ for some a, and if P, is of order e~ %e~°¢t +1,

then the conditional law is nearly Gaussian for times 7 > log(1/¢).

Proof. First note that since v,e™” = O(e) for any c, it follows from (3.1.3) that X, — M,
is of order /¢ so €, is of order 1. On the other hand, consider the Hermite polynomials
defined by induction by Hy = 1 and for k > 1,

Hi(z) = cHp—1(z) - H_,(z). (3.5.7)

Consider a n-uple of non negative integers (ki,...,k,) and suppose that at least one

element, say for instance k;, is non zero; by putting

f(@) = [[ Hiy(+%) Hia (=), (3.5.8)
J#i

the variable f(¢,) is of order 1 so we can apply theorem 3.5.1; by considering the ith
component of (3.5.2), we deduce from (3.5.7) that

E[Hkl(ﬁi) oo Hie, (€7)

yt] = 0(V5). (3.5.9)

If the above expression were zero, it would caracterize the standard Gaussian law. Thus all
the polynomial conditional statistics of &, converge in probability to those of the standard

Gaussian law. []

4. Asymptotic smoothing

In this section, we consider a family of deterministic times 7" and we look for the
conditional law of the whole path (X, t < T) given Yr. We will use the framework of
§3 with some restrictions (v =0, h linear). We first state the theorem in §4.1; the other

subsections are devoted to the proof.
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§4.1 Statement of the result

Our aim is to study the signal process X;, ¢t < T, under the filtration F; V Yr;
more precisely, we want to know whether this is a semimartingale and if it is, find its
decomposition, or at least an approximation; this will enable us to compute approximate
conditional statistics of the process. With reference to §3, we are going to assume two
additional conditions; firstly, we will suppose y = 0, so that the signal and observation
noises are independent; if indeed « # 0, since Y; is clearly not a F; V Y1 semimartingale,
the process X; will not be a semimartingale; secondly, we will suppose that h is linear; this
will avoid us difficulties due to some anticipating processes. We will also restrict ourselves

to the case where X; — M, is of order /¢ on the whole time interval.

We first define a suboptimal Gaussian smoother (Mt,—Pt) which is supposed to ap-
proximate the conditional mean and variance of X; given Yr; in order to construct it, we
linearize (0.3) around the extended Kalman filter and we consider the fixed-interval linear
smoother for the linearized system (see [18] for the formulas of linear smoothing). This

can be formulated as the

Definition 4.1.1. Consider the system (0.3) with v = 0 and let (M,, P;) be an extended
Kalman filter. The associated Gaussian smoother is then the _so]ution of the backward

equations .
M, = B(t, M) + (ﬁ’(t, M) + a(t,Mt)Pt"l)(T\'/f-t - M,) (4.1.1)

and
P, = (ﬁ’(t,Mt) + a(t, Mt)Pt‘l)?t + Py (ﬁ’(t, M) + a(t,Mt)Pfl) —a(t, M) (4.12)
with final condition (HT,?T) = (Mr, Pr).

We now want to prove that the conditional law of X, given )Jr is approximately the
Gaussian law with mean M, and covariance eP, Ina part of the subsequent statements,
we do not require v, (see (3.1.1)) to be finite; when v, = 400, this means by convention

that the law of X has not necessarily a density. The basic result is the

Theorem 4.1.2. Assume the conditions of theorem 3.1.1 with v, = 0 and P, uniformly
bounded; suppose moreover that a is uniformly elliptic, ¥ = 0, h is linear and that the

exponential moments of X, — M are uniformly bounded. Let Il be the observable variable
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with values in the space of probability measures on C} defined as follows: for each observed

path, it is the Jaw of the Gaussian process z, with initial law N'(Mg,ePy) and solution of
-1 ——1 v
dz, =a(t, Mt)[Pt (z¢ — My) — P, (24 — Mt)] dt + B(t, My)dt
+ ,Bl(t, Mt)(ﬂ?t - Mt)dt + \/Ea(t, Mt)dwt (413)

for a standard Wiener process wy. We also let II(zo, dz) be the law defined in (4.1.3) with

initial value o and we define
Zt = (eﬁt)'l/z(Xt -~ M—t) (414)

Then
(2) if ve = O(e), for any family of Yr ® B(IR™) measurable C* functions f(x) such that f
and f' have uniformly polynomial growth,

E[f@) - f'&) | ¥r] =o(vay (4.15)

(b) there exists a measurable process X, such that X, = Xo, X. — X, is of order €, and
the conditional law of (X;,t < T) given Fo V Yr is equal to II( Xo, .).

Note that for each t, the law of z; under II is N (M}, P,). The result (a) says that
the conditional law of X, is approximately Gaussian (as in §3.5) and (b) implies that
this approximate Gaussian structure is propagated. In particular, as it will be proved
subsequently, the theorem implies that the conditional law of (Xe,t <T) givén Yr is close
to II and this can be stated as the

Corollary 4.1.3. Under the assumptions of theorem 4.1.2, let k be a fixed integer, let
0 <t1,...,tx < T be families of numbers and let f be a family of real-valued observable
uniformly bounded functions defined on IR*™ which are uniformly (in = and €) continuous.

If z; is a continuous path, define
E}(m) = (Eﬁt)"l/z(zt - M,). (4.1.6)

Then
(a) if ve = O(¢), one has

IE[f(gtlJ"';Ztk) l yT] - /f(gtl(x), cee ,étk (z))II(dz) — 0 (4.1.7)
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in probability as € — 0;
(b) if Xo is bounded in L>°~ and t; > log(1/¢) for 1 < i < k, the same convergence holds.

For each deterministic time ¢, the law of £;(z) under II is the standard Gaussian law,
so the corollary implies in particular the convergence of the conditional law of £, to the
standard Gaussian law. Note that the results (b) of theorem 4.1.2 and corollary 4.1.3 hold

‘even if the law of Xj is not absolutely continuous with respect to the Lebesgue measure;

in particular for t = T', we obtain a result for the filtering problem.

§4.2 Estimation of the initial state

In this subsection, we see how the technique of §3 can be used in order to approximate
the conditional law of Xg given Y7 and obtain the first part of the theorem. We first prove
the

Lemma 4.2.1. Under the assumptions of theorem 4.1.2, the process P; is uniformly

bounded and elliptic, the process X; — M, is of order \/z and for any K > 0,

IEepr/ IXs - ]\_J_s’ds < C’Kec"ﬁt. (4.2.1)
o ;

Proof. Recall that A; is the process defined in (3.1.2) and let (,; be the associated
fundamental solution as considered in definition 1.1.4; since A, is exponentially stable, (,

is of order e7°(*~=*) for s < t. Then the solution of (4.1.2) can be written as

T
Py = rPrir + / Cisa(s, M), .ds. (4.2.2)
t

Since a and Pr are bounded, we deduce that P, is also bounded. By writing the equation
satisfied by P, 1, since a is uniformly elliptic, we prove that it is also bounded so P, is
elliptic. However, for the study of X; — M, we cannot directly apply the technique which
was used for X, — M, because M, is anticipating for F;. Thus we use an auxiliary process;

consider the solution of

pe = B(t,pe) + Ko(X: — pt) (4.2.3)

with po = Xo, for some positive Ko which is large enough, so that X;— p; is easily estimated

from the results of §1.3: it is of order /¢, its exponential moments are bounded and it

45



satisfies an estimate of type (4.2.1). Thus we only have to prove that M, — p, is of order
V£ and satisfies also an estimate of type (4.2.1). But

dit(ﬁt — pt) = B(t, My) = B(t, pe) — AT(M, = pe) = Aj(pe — My) + Ko(pe — Xy) (4.2.4)
so that

T
-M-t —pt = C:,T(MT - PT) - / C:,s [ﬂ(s, Ms) - ,B(S,Ps) + A:(Ms - ps) + Ko(Ps - Xs)]ds-
t
| (4.2.5)
Since M, — p; and p; — X, are of order /¢, the process M, — p; is also of order V& and

T
M.y~ pu] < c_/ e_c(""")(lpv - Xo| + | X, - Mv])dv +C|Mr - prle™T=*) (4.2.6)
SO ‘
t t
7= pulau < Mz = pr| +C [ (Ipu= K| + |Xu - M)
s T 8
+ C/t e (|py = Xu| + X = My|)du (4.2.7)

The exponential moments of M1 — pr are bounded; the exponential moments of the second
term are estimated from (3.1.4) and a similar property for p, — X, (see the construction

of p:); finally, from the Jensen inequality
T
IEepr/ e—c(u_t),(lpu - Xul + | Xu - Mu|> du
. .
T
< c/ e—c(u—t)IEexp —Ic£ (Ipu - Xl + | Xy — Mul)du (4.2.8)
t

which is uniformly bounded. The lemma then follows. []

Sketch of the proof of theorem 4.1.2, part (a). Recall that the process A; was defined in
(3.2.1) and consider the process L¢, 0 < t < T, defined by

t |
17 = A7 exp - =2 [ (0 = TP oo, X.) .
/|cr (s, X.)P, (X, - M,)] ds} (4.2.9) .

One can check that for ¢ fixed, some exponential moment of |M|? is bounded, so AL7' s
a(FeVr, fls) martingale and if P is the probability measure on Fr absolutely continuous
with respect to IP with density ATL;I, the process

W, = Wt+ \/_/ o*(s,X,) (X - M,)ds (4.2.10)
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is a (¥, V Yr,IP) Brownian motion. Note that Y; is measurable with respect to the initial
o-field of this filtration, so it is not a semimartingale; however, since .we have assumed

v = 0, the process X; is a semimartingale with decomposition
dX; = aft, Xt)[Pt"l(Xt — M) ——ﬁ:l(Xt ——T/I_t)] dt + B(t, X )dt + Veo(t, X )dW,. (4.2.11)

We want to obtain a formula for L, similar to (3.2.7). Note first that (4.2.9) can be written

as
1 t — 1
Ly =A;exp —{ / (Xs — M )P, (dXs - B(s, Xs)ds) - (4.2.12)
€t Jo
t .
+ / (X, — Ms)*ﬁgla(s,xs)[%ﬁ;l(xs - M,) - P7Y(X, - Ms)]ds}.
0 . '

On the other hand, since M; and P, are absolutely continuous and Yr measurable, they

are F; V Yr semimartingales and we deduce from It6’s formula that

t
(X, — H,)*?:I(Xt - M) =(Xo - M‘o)*ﬁo‘l(xo ~ M) + 2/ (X, - cha)*'l—’:ldXs
) 0 )

so that
2elog (LeATY) =(X, — M) P, (Xy — M) — (Xo — Mo)* Py (Xo — Mo)
+2/(X P [F1, - 85, X.) - a(s, X)P7H(X, - M,)]ds
+ /0 (Xo - M.yP [P, + a(s, X,)| P, (X, - 7, )ds.

(4.2.14)

By writing this equation at time ¢ = T', and using (4.1.1), (4.1.2) and (3.2.7) (since v = 0

and h is linear, one has ¢; = 0), we obtain

T
2elogLr = ()Q)-ML))’*PO—l(Xo-—Mo)—(Xo--_]\_4-0)*?;1 (XO_MO)+,A ¢4(S,X3)ds+¢'5(T)
’ (4.2.15)
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where '
Yalt,2) =¥a(t,2) = 2z = ML)P; (B(t,2) - B(t, M) - B/(t, Mi) (e — M)
+ (z = Mo)*P, (a(t, ) — a(t, M) [’ﬁt‘l(x - M) - 2P (z - Mt)] (4.2.16)

and 5(T') is an observable variable. The variable Ly can be viewed as a functional of
( Xo,W,Y) and we want to differentiate it with respect to Xy; we can indeed define a
differentiation operator Vo as in definition 3.3.1 and check that X, is differentiable in

L~ and that its derivative Z; is solution of

dZ, =a(t, X:)(P7* = P, )Zudt + (8, X, Zedt + V20! (t, Xo)ZodW)
+0(, Xe)((0*) (8, Xe), Py (Xe — My) — P, (X, - M) Zdt  (4.2.17)

with the notation defined.in (3.3.3). We deduce that Ly is also differentiable and that
2:Volog L = 2(Xo — Mo)* Pyt + 2(X, — 7o) P, ' + /0 ) Vy(t, X1)Zodt.  (4.2.18)
By proceeding as in §3.4, we can a.léo prove the integration by parts formula
B[1(€)Tolog Lz | Jr] = ~B[2(Xa)1(E) + £ E)Po) ™ | 7o) (4219)

From (4.2.18), (4.2.19) and (3.1.1), the proof of (4.1.5) is easily reduced to the proof of

/T Ya(t, Xo)Z1dt = O(e). - (4.2.20)

The process 94 (t, X;) is of order ¢ so it is sufficient to prove that Z, is of order e=°. First
note that the process W, is a (F; v Vr, I'f’) semimartingale, so under IP, it is also a F; V Vr

semimartingale and it is a ¥, Brownian motion; moreover, the process
— -1 —=-1
Ar = a(t, My)(P[' =P, )+ B'(t, My) (4.2.21)

can be shown to be exponentially stable (it is (P;, k) stable for some k > 0) and equation
(4.2.17) can be written as

dZ, =A,Z:dt + (a(t, X,) - a(t, M) (P! = P, ') Z,dt
+ (B'(t, Xe) = B'(t, My)) Zydt + \Jeol(t, X )Z  dW
+ (T(t,Xt)((O'*)’(t, Xt), Pt_l(Xt - Mt) - _P.:l(Xt - nM-t))-Z_tdt (4222)

From lemma 4.2.1 and (3.1.4), the assumptions of lemma 1.4.1 are satisfied so we can
deduce that Z, is of order e=<t. O
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§4.3 Stochastic calculus of variations and change of probability

The process Wy is a (Fy V yT,I—P—) semimartingale, so since IP and IP are mutually
absolutely continuous, it is also a (F; V Yr,IP) semimartingale; its martingale part is a
Brownian motion and in this subsection, we want to compute its finite variation part. The
main tool will be the differentiation of variables ®(Xo, W,Y) with respect to W, more
precisely with respect to absolutely continuous perturbations of W. The theory of these
perturbations is generally called the stochastic calculus of variations, or the Malliavin
calculus, and has been widely studied (see [28]); the fundamental result of this calculus is
an integration by parts formula and actually, the result that we will prove (lemma 4.3.2

below) is a result of the same type. We will adopt the

Definition 4.3.1. Let ® and ¥, be functionals of (Xo,W,Y). The variable ® will be
said to be differentiable with respect to W with derivative U, if for any bounded F; V Yr

adapted process u;, one has

s T -
lim ~ (@(XO,W +6 / usds,Y) — @(XO,W,Y)) = / U u,dt (4.3.1)
§-0 6 0 0

where the limit holds in probability. In this case, we will note D,;® = ¥,.

Using the calculations of §4.2, one can deduce from (4.2.11) and (4.2.15) that X, and
L are differentiable with respect to W and that

Eth = \/E_Z_S-Zt—la'(t,Xt)l{tss}, (4.32) ’

T
2¢D;log Lt = / ¥4(s, Xs)De X, ds. (4.3.3)
¢ ‘

On the other hand, one can check the existence, for each fixed ¢, of a a > 0 such that Ar
and LTAJ' are respectively in L1+°‘(I‘f’) and L'*+*(IP); by putting ¢ = (1 + @)?/(1 + 2a)
and by means of the Holder inequality, this implies that

T o az a e @
IEL,‘}.:IE[(LTA—I)( +a)/(42e) (A -1) )/(1““‘)1\;}

< [ (a +a)/a]°¢/(1+2a) [IE(LTA‘1A1+°‘)](1+a)/(1+za)
< [ E(LrAz) 1+a] a/(14+2a) [I“EA”"‘](HQ)/(HZQ)

T
= (4.3.4)
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One checks similarly that

1 — ' — P
lim sup EHLT(W + 6/ usds) — LT(W)” < o0 (4.3.5)
50 0 q

for some g > 1. We are going to verify that these two properties imply the
Lemma 4.3.2. The process
t
W, =W, - / E[D,logLy | F, vV Yr|"ds (4.3.6)
0
is a (F¢ V Yr,IP) Brownian motion.
Proof. For any bounded F; V Yr adapted process u;,
T T 2 T
___ 1 — 6
* — K bt * o 2 _
./o u,dW, = gli% 3 (exp{&/o uldW, A |us) ds} 1) (4.3.7)
where the limit holds in L~ (P). Thus, since Ly is in a L(IP), ¢ > 1,
T T ’
E / wdW, = IE[LT / u:dWSJ
0 0

62 T

= lim %(E[LT exp{&/:r uldW, — 5 Iuslzds}] - 1). (4.3.8)

0

But from the Girsanov theorem, the multiplication by the exponential in the expectation

is equivalent to a perturbation on W so that
T . 1— . . .
IE/ uldWy = lim ‘—IE[LT(W + 6/ usds) — LT(W)]. (4.3.9)
0 606 0 ,

The integrability condition (4.3.5) shows that we can exchange the limit and the expecta-

tion and therefore
T ____ __ T__
IE/ usdW, =]E/ D,Lru.ds
0 0
— T—-
= IE[LT / D,log Lt u,,ds]
0 .
T—-
= ]E/ D,log Lt uyds. (4.3.10)
0

Thus W, is a martingale; from its quadratic variation, it is necessarily a Brownian motion.

O
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Proof of theorem 4.1.2, part (b). When considered as a (F; V Yr,IP) semimartingale, the
process X; has the decomposition
dX, =a(t, Xo) [P X — M) — P, (X, — M) dt + B(t, Xe)dt
+Veo(t,X)E[D;log Lt | Fi Vv Yr| dt + vea(t, X;)dW;. (4.3.11)

On the other hand, consider the solution of

dX, =a(t, My) [Py (X — My) — P, (X, — My))dt + B(t, My)dt
=+ ﬂl(t,Mt)(Xt - Mt) + \/_E-O'(t, Mt)th (4312)
with initial condition Xo = Xp. Then the law of X conditioned by X, is II(Xo,.), so in

order to prove the theorem, it is sufficient to prove that X; — X; is of order . Using the

process A, defined in (4.2.21), the equation for X; — X, can be written as

d(X¢ - X) =A( X — Xo)dt + (a(t, Xo) — a(t, My)) (P;I(Xt ~ M) -P; (X, - 7\7,)) dt
+ (ﬂ(t,'Xt) — B(t, M) — B'(t, Ms)(X: — Mt))dt
+ VE(o(t, Xe) - o(t, My)dW,
+ Veo(t, Xo)IE[Dlog Lt | F, vV Yr] dt. (4.3.13)

The process D, log L is given by (4.3.3) and by proceeding as in the proof of (4.2.20), we
can deduce that it is of order /¢; moreover the process A, is exponentially stable so we

can apply lemma 1.3.2 and deduce from (4.3.13) that X, — X, is of order . O

Proof of corollary 4.1.3. We first deduce from theorem 4.1.2, part (b), that in the left-hand
side of (4.1.7) one can replace the process X, involved in &, by X;; thus, defining:

QS("’) = /f(gtl (.’E), v 7£tk (m))n(—M—O + (51_50)1/277’ d.’L‘), (4-3-14)

it is sufficient to prove that

E[6E) | Yr] - [ éln)ma(dn) — 0 (4.3.15)

in probability, where 7 is the standard Gaussian measure on IR™. By using the exponential
stability of the process A, defined in (4.2.21), we prove that if 7 and 7’ are two vectors
of R™ and z; and z; are the solutions of (4.1.3) with initial values My + (¢Po)'/?5 and
My + (¢Po)*/?7’, then

| a0 — 1] < Ce*tVEln — o (43.16)
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|ée(2) ~ &x(a)| < Ce™tn - 7. (4.3.17)

Thus, if 7 is the infimum of ¢;, 1 < i < k, we have

lo(n) — o(n")| < p(e™"In—7')) (4.3.18)

where p is a bounded function converging to 0 at O linked with the uniform modulus of
continuity of f. In case (a) we can deduce from theorem 4.1.2, case (a), that the conditional
law of £, converges to mo (see the pfoof of corollary 3.5.2), so since the functions ¢ are
uniformly continuous, we obtain (4.3.15); in case (b), we can define on a enlargement of
the probability space an independent standard Gaussian variable no; the distance between
&, and 7o is of order 1/,/¢ and

6 | 1] - [ s(nymoin)| < B [|6(Eo) ~ ()| | 7]

SE[p(e™ & - ml) [ yr]  (4319)

which converges to 0 because p is bounded and e™*"[¢, — 7o| converges in probability to

0.

5. Estimation of some non continuous functionals

Results of §2 imply that continuous functionals of X can be approximated by means
of some Kalman-like suboptimal filters. Now if the functional is not continuous, other tools
can sometimes be used; for instance if the functional is given by a stochastic differential
equation driven by X, we can use the results of [24] in order to estimate the difference
between this functional and the solution of the same equation driven by some observable
approximation M; of X,; the following result says that under the assumptions of §3, the
convergence holds when M, is the extended Kalman filter if the time interval is not too

large.

Theorem 5.1. Consider the time interval [0,T) with. T = K/e, K > 0. Suppose that X,
is solution of (0.3) with 8 = eb; assume that X, is bounded in probability, that b(t,z) has
uniformly linear growth, that o and v are bounded, that h’ is bounded and Lipschitz; let
M, be a Kalman-like filter with a bounded gain G, and suppose that supy<7 [ Xt — My
converges in probability to 0, that X, — M, = O(g) in L* and that X, — X, = O(4/€) in
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L?. Let f(t,z) and g(z) be families of respectively observable and deterministic functions

which have uniformly linear growth and are uniformly Lipschitz; let U, be the solution of
dU, = e f(t,Uy)dt + g(U:)d X, (5.1)
with some deterministic initial value Uy = ug. If V; is the solution of
dVy = ef(t,Vi)dt + g(Vo)dM, (5.2)
with Vo = uqg, then sup,.r |U; — V3| converges in probability to 0.

Sketch of the proof. It is well-known that the process

I = —\j-_g()q - /OtIE[h(s,Xs) | 3] ds) (5.3)

is a standard }; Brownian motion: it is the innovation process. Now write (1.1.1) in the

form

dM; = eb(t, M,)dt + G, IE [h(t, X,;) — h(t, My) | V¢]dt + Gl _(5.4)

which is the decomposition of M, as a ), semimartingale and note that since )?t — M, and
| X: — thz are of order ¢, the second term is of order ¢ in L! (apply Taylor’s formula to
the function h at point X ¢); thus, by integrating on [0, T, it appears that the variation on
[0,T] of the finite variation part of M, is bounded in probability; its quadratic variation
is ‘also bounded. The same property holds for X; considered with the filtration F; D ;.
Moreover we have assumed that sup, | X; — M| converges in probability to 0. Thus we can

apply theorem 2.4.3 of [24] and deduce the theorem. ]

Some equations which are more general than (5.1) can also be dealt with; for instance
the function g may be allowed to depend on t and to be random; we refer to [24] for the
set of assumptions which has to be used in this case. In theorem 5.1, the time is at most
of order 1/¢ because each error on the estimation of U, is propagated on the whole time
interval [s,T'] without damping, so that for large times |U; — V4| may be large; however, if
(5.1) is a stable equation, so that a perturbation of order 1 on the state at time s leads to
a perturbation of order e~=(t=9) at time ¢ > s, then the difference U; — V; remains small as
T — oo; in this case, if we consider (M;,V;) as a suboptimal filter for the signal (X, Uy),
this filter has two time scales: a fast component M, (memory length of order 1) and a slow

component V; (memory length of order 1/¢).
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