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- Continued Fractions,
Bessel Functions,
and a Divergent Series

Philippe Flajolet René Schott
INRIA Rocquencourt - CRIN, BP 239
F-78150 Le Chesnay (France) F-54506-Vandoeuvre-leés-Nancy

Abstract. The counting sequence of a special class of set partitions leads to special
numbers called Bessel numbers. The corresponding ordinary generating function has
a simple continued fraction expansion related to Bessel functions. We determine
here the asymptotic form of Bessel numbers and discuss their relation to Bell num-
bers. The estimation problem is of some methodological interest as it requires 1o
find the asymptotic form of coefficients in an asymptotic but divergent expansion.

Partitions non chevauchantes,
fractions continues,
fonctions de Bessel

et une série divergente

Résumé. Le dénombrement d’une classe spéciale de partitions d’ensembles con-

duit & des nombres spéciaux, les nombres de Bessel. La série génératrice corre-
spondante posséde un développement en fraction continue de forme simple qui se
trouve étre relié aux fonctions de Bessel. On détermine ici la forme asympto-
tique des nombres de Bessel et I’on discute leurs relations aux nombres de Bell.
Le probleme d’estimation asymptotique présente quelqu’intérét méthodologique -
puisqu’il nécessite de trouver la forme asymptotique des coefficients dans une série
elle-méme asymptotique, mais divergente.



Non Overlapping Partitions,
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Bessel Functions,
and a Divergent Series
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F-78150 Le Chesnay (France) F-54506-Vandoeuvre-lés-Nancy

Abstract. The counting sequence of a special class of set partitions leads to
special numbers called Bessel numbers. The corresponding ordinary generating
function has a simple continued fraction expansion related to Bessel functions. We
determine here the asymptotic form of Bessel numbers and discuss their relation
to Bell numbers. The estimation problem is of some methodological interest as it
requires to find the asymptotic form of coefficients in an asymptotic but divergent
expansion.

1 Introduction

The number of ways of partitioning an n—set into equivalence classes is the
familiar Bell number B,, [2], with exponential generating function

~ 2" z_
B(z) = Z Bnm- = e 7L, (1)
n>0 )

For reference, the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140,
21147. Expanding the generating function yields an exact infinite sum for
Bell numbers,
ey
B,=e1) L (2)
k>0

a formula first derived by Dobinski in 1877. Finally, using a combinatorial
theory of algebraic continued fraction, Flajolet [7] derived for the ordinary
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Figure 1. Two types of set partitions.

—and divergent— generating function, a formal expansion

B(2) = Z B,z" = 1

n20 1—1.2—

(3

2. 22
1-2.2~ 2

1_3.2_3-2

s

a formula closely related to classical results on Poisson—-Charlier polynomials.

This paper is concerned with a special class of partitions, called non—
overlapping partitions (NOP’s). It is customary and convenient to identify
the underlying n-set to the integer interval [1..n]. With the implied order
structure, two blocks (classes) 4,8 overlap if

min(7y) < min(6) < max(y) < max(é).

For instance, in partition @ = {{1, 3,4}, {2,5}}, the two blocks v = {1,3, 4}
and § = {2,5} overlap. A partition is then called non-overlapping if no pair
of classes v, 8 overlaps. Thus

w= {{la 3, 9}, {2, 6a8}, {47 3, 7}7 {10}’ {117 13}7 {12}} (4)

is non-overlapping. In other terms, call support of block v, the interval
[min(y), max(v)]. In a Nop, supports have a nested structure: For any two
(block) supports, either they are disjoint or one covers (contains) the otlier!,

' A somewhat related notion also appears in the literature {13): Two classes v, 6 in
a partition “cross” il 3z,y € v and Jz,t € S such that £ < 2 < y < 1. Nreweras
established that the number of non-crossing partitions of size n is the amiliar Calalan
number G = ﬁi’ "::') Thus non-overlapping partitions lie somewhere belween non-
crossing and unconstrained partitions. We shall actnally prove thal C, € B « N, wilh
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Let B}, denote the number of NOP’s over n elements. These numbers en-
tertain close relations with Bessel functions. For this reason, we chose to call
the B}, Bessel numbers. (In the same spirit, Bell numbers are sometimes
called exponential numbers because of the shape of their generating func-
tion.) Our purpose here is to obtain an asymptotic form for Bessel numbers,
our main results being summarized by Theorem 1 and Proposition 4.

Direct enumeration shows that the sequence of Bessel numbers starts
with

1,1, 2,5, 14, 43, 143, 509, 1922, 7651, 31965, 139685, 636712, 3020203,

14878176, 75982829, 401654560, 2194564531, 12377765239, 71980880885.
(The difference between B4 = 15 and B} = 14 is due to the unique overlap-
ping partition for n = 4, namely w = {{1,3},{2,4}}.)

At present, the authors do not know of a simple exponential generating
function that would be the analogue of Eq. (1). In more combinatorial
terms, NOP’s do not decompose as easily as unconstrained partitions that
are simply “sets of sets of atoms”. (In fact the shape of our results strongly
suggests that no simple expression is available.)

The starting point for our treatment is a continued fraction analogue of
(3), namely

B*(2) = Z B;2" = 3 ) (5)
n>0 1-1.-2-

1-2°
1-2.2-— =

1—g.,- L%

which derives painlessly from earlier combinatorial works. The difference
between (5) and (3) is that numerators are reduced from the integer sequence
1,2,3,... to 1,1,1,..., a reflection of the fact that NOP’s have asymptotic
density 0 amongst the class of all partitions of size n.

A difficulty however awaits us, since B*(z) is defined by (5) only as a
formal power series expansion. Series B*(z) is a purely divergent series: it
has radius of convergence 0.

Our first step will therefore be to attach continued fraction (5) to special
functions of analysis. It turns out that it is expressible in terms of the Bessel
function J,

_ (_l)m T\ om4v
=)= go m! 1*(m+u+1)(§)2 * (©)



and is also closely related to the Lommel polynomials [1]. We find the
identity

u—1(2) -u( l)n

vJu(2) ~1- Z By nt2 ()
in the sense that the right hand side represents asymptotically the function
on the left, as v — +o00.

The problem is now to find the asymptotic form of coefficients in an
asymptotic (and divergent) series. No Cauchy theorem will do for that
purpose.

Using an intuition that goes back at least to Mellin, we shall try to
relate the expansion of the function in (6) as ¥ — 400 to the geometry of
its poles as v — —o0. The key to doing this is a Mittag-Leffler expansion
which generalizes, for meromorphic functions, the familiar partial fraction
expansion of rational functions.

In this manner, we obtain an exact form for the B} which is however
rather useless as such: It is expressed in terms of the indices » of Bessel
functions J, that admit * = 2 as a root. (Studies on zeroes of Bessel
functions usually assume that parameter v is kept fixed, and let = vary.)
But, Nature helping, the geometry of these numbers is itself asymptotically
simple, and we are lead to an asymptotic equivalent of B},

By~

k>0

kn+2

an asymptotic analogue to Dobinski’s formula (2). This is our main result
(Theorem 1).

One of the ways of approaching the asymptotics of Bell numbers is
through Dobinski’s expansion (2). A similar treatment can be inflicted to
form (8), so that a bona fide expansion of the number of non-overlapping
partitions can ultimately be derived.

The reader is referred to a recent work of Fédou [6] for related com-
binatorial models involving Bessel functions, and interesting g-analoguess.
Also non-overlapping partitions are of interest in the study of some data
structures in computer science. They code all possible evolutions of a stack
with “inspection” or a symbol table under Knuth’s model. The correspond-
ing problems of average case dynamic (or “amortized”) analysis [12,9,10]
of data structures provided the initial motivation for this investigation of
non-overlapping partitions.



2 Continued Fractions and Bessel Functions

General (set) partitions are in bijective correspondence with a class of so—
called path diagrams. Such a correspondence produces the continued frac-
tion expansion (3) for the ordinary generating function of Bell numbers.?

In essence, to a partition w of [1..n], we associate a path in the integer
lattice as follows: Start from (0,0). Scan the integers j from 1 to n. Move
by @ = (+1,+1) when j is the minimal element of a non-singleton block in
@; move by d = (+1,—1) when j is the minimal element of a non-singleton
block in t; move by £ = (41, 0) otherwise —in this last case, we encountered
either an intermediate element of a block, or a singleton element.

In this way we encode non uniquely a partition by a path formed with
ascents (&), descents (d) and level () steps.

A complete encoding of an unconstrained partition @ is obtained by sup-
plementing a numerical sequence which connects intermediate and maximal
elements to their respective classes, ordered for instance by age rank. (For
this purpose, singletons will be treated as intermediate elements.) Thus
when scanning j, if A blocks are open then a descent has h possibilities, and
a level step has (h + 1) possibilities—one more, because of singletons. The
pair formed with the path and its number sequence determines the partition
and is called a path diagram.

It is now easy to see, on associated path diagrams, the rule defining
NoP’s: If an element is maximal in its block, it has to close the most recently
opened class. In this way, the number of possibilities for a descent is reduced
to 1, while the number of possibilities for a level step remains equal to
(h 4+ 1). For the non-overlapping partition that we considered earlier (4),
the encoding is

1 2 34 5 67 8 9 10 11 12 13
a a £ a £ £ d d d £ a ¢ d
- =0 ~21- - -0 - 1 =

(Age ranks are numbered from older to younger, starting from 0.)

From the combinatorial theory (Thm. 1 and Prop. 7 of [7]), the gen-
erating function of a class of path diagrams admits a continued fraction
expansion, where the number of possibilities for a level step appears in the

2The reader can either accept Proposition 1 as a starting point for our asymptotic
treatment or else refer to [11,7] for detailed definitions of path diagrams and background
information on combinatorial aspects of continued fractions.
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denominators while the possibilities for ascents and descents appear in the

numerators. It follows that the change in the possibility rule for path dia- R
grams (from unconstrained partitions to non—overlapping partitions) is ex-

actly reflected by the change from (3) to (5).

Proposition 1 The ordinary generating function of non—overlapping parti-
tions, B*(z) = 3,50 Bn2" admits the formal continued fraction expansion:
B*(z) = ! ©
(2) = P) ) )
1-1.-2-
2
1-2.-2- -_—
1-3.2- 2

We now move to the world of Bessel functions, of which however we shall
only use the most basic properties. From their defining equation (6), the
fundamental recurrence follows:

Juopi(z) = 20271, (z) = J,q(z) (10)
To prime the continued fraction pump, rewrite this relation as
Jy—l(z) -1 1
—_— = T - ——————,
J,,(.’E) Ju(x)/Ju+l(z) 4
and simply iterate
J;_l(x) =2ug~! ~ ! T
/() oy + 1)z — -
2Av +2)z7! -
e e
If we repeat the process ad infinitum, and further substitute z = 2, we get
Ju-1(2) 1
—_— - , 11
22— .
v+2-— T
v+3- —

whose shape closely resembles (9). The formal derivation above is also valid
analytically, as was shown by Hurwitz (cf [15, Sec. 9.65]), and Eq. (11)
remains valid for all complex v.
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The continued fraction expansion of Eq. (11) admits itself an asymptotic
expansion in descending powers of v. The connection between (11) and (9)
is achieved by the correspondence v < —2z~1. We have thus obtained:

Proposition 2 The asymptotic expansion, as v — +00, of a quotient of
consecutive Bessel functions is ezpressed using Bessel numbers by

Ju—l(z) ~1l= ZB*( l)n (12)

vJ,(2) S0 ynt2

Thus, the quotient J,_1(2)/(vJ,(2)) plays the role of an ordinary gen-
erating function of the Bessel numbers B},

3 The Mittag—Lefller Expansion

For ease of notation, we define

@)= 0 and k)= {/;—1((22)) (13)

We propose to investigate® first the geometry of zeroes of function j(v)
which provides the poles of h(v). By a local analysis, we determine the
simple elements that compose h(v). Putting these elements together yields
the partial fraction expansion of A(v).

The geometry of the zeroes of j(v) is amazingly regular. From numerlcal
computations, we find that the first few zeroes (with modulus at most 10)
are negative reals that are extremely well approximated by negative integers.

(1 = —0.25380 58170, (2 = —1.78932 13526, (3 = —2.96105 88806,
Ca = —3.99604 79973, (s = —4.99977 43198, (s = —5.99999 18413,
Cr = —6.99999 97949, (s = —7.99999 99961,

Co = —8.99999 99999 45511, {10 = —9.99999 99999 99380.

Lemma 1 All zeroes of function j(v) = J,(2) are negative real numbers.
The r—th negative zero, (,, of j(v) satisfies

p— lel—)!+0((—7j)—2). (14)

3Most results in this and the next section derive from a few simple key observations
followed by trite real analysis. We shall thus limit ourselves to indicating the main steps
in the proofs.



This lemma, is a quantitative version of a result of Coulomb who first ob-
served that the zeroes of J,(z), with z fixed, are asymptotic to the negative
integers [3].

Proof. We start from the equation defining j(v):

S 1 1
W) = iy Tern It e
= -1 1 —] (15)
I'(v+1) [ v+l 20(w+1)(v+2) )

From the first form, no negative integer can be a root of j(v). The basic
observation for the proof is the following: When v =~ —r (r € N), cancella-
tion of the series expansion of j(v) comes predominantly from cancellation
of two terms

(29

1+ s
rifv+ 1)(v+2)---(v+71)
and we denote this expression by f(v). We may also freely assume that
7 > 10 since zeroes of modulus less than 10 have been characterized.

A. The approximate equation. We propose to analyze the zero of f(v)
which lies in the vicinity of —r and let (} denote that zero. Set (¥ = —r+¢,
with € = o(1) as 7 — o0o. Using the complement formula for the Gamma

function, f(v) transforms into
)

_ . (=1 ™
fry=1 vl sinmvT(-v)T(v+r+1)’
so that ¢ is a root of
sinme _ 1
T rIT(1+€)(r—e)
1
= ;‘(T—T)'(l + O(G’I‘))

From this relation, we find that ¢ —hence (}— exists and (} satisfies

1

Gr=-rt rl(r-1)! +

0((71)2)'

B. The exact equation. Considering again function f(») and noting that
the other terms that compose the expansion of j(v) are small, we find that

(Sl
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j(v) has a real root in the interval [—r—27n, —r+ 2], where p = 1/(r!(r—1)!).
Introduce now the complementary function

gv)= ) (-1
m¢0’rm!(u+ Dy+2)--(v+m)
so that f(v)+ g(v) = T(v+1)j(v). Elementary asymptotic expansions show
that on the circle centered at —r and with radius 27, we have |g(v)| < | f(v)].
Thus, by Rouché’s theorem, f(v) and j(v) have the same number of zeroes
inside this circle.
The possible zeroes of j(v) around the negative integers have been thus
been localized. Clearly g(v) = —v™! + O(v™2) as v — —oco. A simple
modification of the argument in Part A then reveals that

G- | =O(#)-

C. There are no other zeroes. A detailed proof is given in [3], so that we
just summarize the essence of the argument in our context for completeness.
The only way that j(v)['(v + 1) can be zero is if one of the terms in the
expansion becomes large enough to cancel the leading term, 1, in (15). This
can only happen if one of the quantities (v + 1), (v + 2),... becomes small,
i.e. if v is close enough to a negative real number; but zeroes in these regions
have already been characterized by the argument of part B. W

Lemma 2 When v — (,, we have

Cr ](C’r - 1)
h(v) ~ where Cr = =—mm—onZ, 16
( ) v=4(r Cr]l(Cr) ( )
Furthermore, the coefficients ¢, satisfy for r — +oo:
&= ———(1+0() (17)
T (e =1 r

Proof. The first part is obvious. The second part follows from the values
of (r, the series definition of Bessel functions (15), and elementary growth
properties of the Gamma function.

Consider j(—r) and j'(—7). The first 7 terms of the expansion of j(—r)
reduce to 0, so that j(—r) = (=1)"/r!+(=1)"* /(1! (r+1)!) +- - -. Since the
residue of I'(s) at s = —m (m a positive integer) is equal to (—1)™/m!, we



find that j’(~r) is driven by its first terms, j'(~r) = (—1)""}(r — 1)! -
In summary,

i-n=La+0ld) and (=)= (<171 - D +0(3)). (18)

Similar calculations reveal that since (; is very close to —r, then j'({,) is
closely approximated by j'(—r), and actually j'(») is fairly stationary around
negative integers. Once this has been established, the asymptotic value of
j(¢, — 1) derives from the near equality

](Cr - 1) - j(Cr+l) ~ (Cr -1- Cr+1)j,(—’l‘ — 1).
In this way, we gather the estimates

: ( 1)r+l ! r—1 1
6 =1 = iy (14 0)) and F(G) = (1) = D1+ O(2))

(19)

From there, the asymptotic form of ¢, follows. W

It only remains to collect elements representing the local behaviour of
h(v) around its poles. To take care of the pole at 0, define ¢o = j(—1)/5(0)
and (o = 0. Consider next the sum

hr(r)=3 - (20)

rZOV- ¢

Due to the fast decrease of coefficients ¢,, h*(v) is well defined and mero-
morphic for all ». Thus the function

d(v) = h(v) - h*(v)

is an entire function of v.

We observe that A*(v) tends to 0 along large circles of radius R =7 + 1
with 7 € N. On such circles, from the series defining Bessel functions, we
see that j(v —1)/(vj(v)) tends to 1. Thus d(v) is an entire function that is
bounded on a family of arbitrarily large circles centered at the origin. There-
fore, by Liouville’s theorem, d(v) is a constant (actually, d(v) = d(+00) = 1).
We have thus established:

Lemma 3 The function h(v) admits the Mittag-Leffler expansion

h(v) = "Jl((;)) 1+Z (21)

10

L]
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where

-1 1 1
S — =—74 —— —). (22
oA 0G) and (= =+ e 4 O(). (22
The existence of a Mittag-Lefller expansion was first derived by Maki
[14, Th. 5.1] as a consequence of general considerations on orthogonal poly-
nomials. Our lemma thus also constitutes a quantitative version of Maki’s
result.

¢ =

4 Asymptotic Forms

The Mittag-Leffler expansion (21) yields an asymptotic expansion of h(v)
as v — +00. To see it, start with the identity

1 un+2
——=1+4utu?+ ™ —
1-u 1~-u
so that (r > 0)
1 1 n+1 Cm Cn+2
= - L .
v — C'r v]-— , E V'm+1 V"+2(I/ — CT)
Combining these expansions leads to the identity
n+1 m 0 n+2
¢ ¢
hiv)=1 - —_
(v) = + + MZ (; Vm+1) + TZ:B v 2 = ()

The last sum is clearly O(u'"‘3) as ¥ — +o00o. This provides an exact form
for the coefficients in the asymptotic expansion of h(v), which by (12) are
the Bessel numbers.

Proposition 3 Bessel numbers are expressible in terms of the zeroes (, of
Bessel function j(v) by

_ n+1 . J(C'f‘ )
,; ¢ |Gl with ¢, = i) (23)

By Lemmas 1, 2, and 3, all quantities entering Eq. (23) have known
asymptotic forms, whence:

11



Theorem 1 Bessel numbers satisfy asymptotically

kn+2
B*
" k>1 (k')z

(24)

Proof. Lemma 1 provides a very accurate expression for {,. Lemma 2
contains an estimate of coefficients c,, where the relative error term in ap-
proximation (19) is O(r~1). Thus, we find

+)> 0
S 2k (= = by Gl
Letting S, denote the sum appearing in (24), we thus have B} = §, +
O(Sn-1). But by our next proposition, we have S,—1 = 0(S,), and the
result follows. W

Numerically, the error of approximation (24) is 22% when n = 50 and
10% when n = 100. A more orthodox asymptotic form can also be produced.
Apart from subexponential factors, Bessel numbers grow like

* n "
Br = (Qelogn) )

Proposition 4 Bessel numbers have the asymptotic form

1 n+3
v21rn (w')2

where w ~ n/(2logn) is the positive root of equation n + 2 = 2wlogw.

(25)

Proof. We only need to estimate the sum S, appearing in the right hand
side of Eq. (24). In passing, we shall also check that S,,—1 = 0(S,). The proof
follows closely the asymptotic analysis of Bell numbers using the Laplace
method for sums as detailed in De Bruijn’s book [4], so that we need only
indicate the main steps.

By Stirling’s formula, the general term in the sum (24) roughly equals

(2rk)~'exp(t(k)),  where (k) = (n+ 2)logk — 2klogk + 2k.

By cancelling t'(k), we find that the index kmax of the largest term in S,
is close to w, where w satisfies n+2 = 2wlogw. Observe that w ~ n/(2logn).

The second derivative t”(k) is —(n + 2)k=2 —~ 2k~1, so that an interval
|k — kmax| < nl/2 provides the dominant contribution to the sum.

12

v



In this way, we find for 5,, the approximate form

Sp ~ exP(t(w))E xp( t"(w)(k w)2)

2nrw

exf;(;iw)) - exp(it"(w)nz) dk
exp(t(w))
2rw [t"(w)|

This concludes the proof of the theorem. W
Notice also that a full asymptotic expansion of w = w(n) can be obtained
and then plugged into (25). In this way, we get

loglogn

1 .
;loan—logn loglogn — log(2e) + O( —=——— Tog 1 —).

5 Conclusions

Some of the classical developments relative to Bell numbers have parallels
for Bessel numbers that we now briefly indicate.

Function h(v) plays the role of an ordinary generating function for Bessel
numbers. We may observe that h(v) is for Bessel numbers the counterpart
of the incomplete Gamma function in the world of Bell numbers: for Bell
numbers, we have

L LU 1 )

€ >0 n>0

where the poles are now exactly at the negative integers.

Other parallels are relative to refined counting by number of classes (Stir-
ling numbers), elimination of singleton classes (“2-associated numbers”),
convergents to continued fractions that are connected to orthogonal poly-
nomials, as well as auxiliary properties of continued fraction expansions .
(Hankel determinants and congruence properties).

1. Let S; , represent the number of non-overlapping partitions of an n—
set into k equivalence classes. These numbers are analogues of the Stirling
number of the first kind. A refinement of the argument of Section 2 provides

13



for their bivariate generating function a continued fraction expansion

1
> Sppute" = 2

nk>0 l—u-z—

) P =2 5

1-(2+4+u)-2— —Z

... 27)
2. Convergents of the continued fraction of Bell numbers involve Poisson—
Charlier polynomials. If we consider the h-th convergent

1

EM@) = 1 ; (28)
v+1-
v2— ——
v+h
to fraction (11), we find instead a form,
k) = T2 +2)
K%(») M D)
involving (modiﬁed) Lommel polynomials [15, pp.296-303], [1, p.188],
Umi2} o o \
rm(v) = ’E% ( n )(—1)"(v+n)”‘ L, with 2t =z(z+1)--- (z-}ia-—l).

As follows from the combinatorial theory of continued fractions [7], conver-
gents K are related to enumeration of NOP’s of bounded “height”, height in
a NOP being defined as the maximum number of block supports covering an
element of [1..n]. (For instance, the partitions of Figure 1 both have height
equal to 3).

3. If we forbid partitions to contain singleton classes, we obtain what can
be called, after Comtet, 2-associated numbers [2, p.221]. Let ;B denote
the number of NOP’s of size n without singletons. A modified form of our
basic continued fraction (5) expresses the ordinary generating function of
the ;B as

(29)

14
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From (11), we see that now J,(2)/J,~1(2) acts as an ordinary generating
function for these numbers, and the asymptotic analysis can be developed
accordingly. It is 2-associated Bessel numbers that are most directly relevant
to computer science applications. ,

4. Values of Hankel determinants are known to be related to coefficients
of continued fraction expansions. For instance, we have here

B; B ..- B
By B -+ Biy

. . |=1
By, Bpy -+ Bi,

5. Congruence properties modulo prime numbers also derive from such
expansions [8]: In contrast to Bell numbers, Bessel numbers are not even-
tually periodic modulo any prime. For instance, setting f, = B} mod 2, we
find .
fo=1,  famp=1, fampa=1-fa

In other words, the sequence is 2-automatic in the sense of [5].

6. Dynamic analysis of data structures requires investigating the distri-
bution of “altitudes” in a random NOP. Analytically, this requires finding
the speed of convergence of zeroes of Lommel polynomials to zeroes of Bessel
functions. The authors plan to examine this problem in a companion paper.

Acknowledgement. The authors are grateful to Lynne Butler for sev-
eral interesting electronic discussions and for pointing out existing works on
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