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Abstract

This paper aims at describing a high-performance programmable pipeline architecture consis-
ting of a linear array of PCS processors. The PCS processor which is capable of performing
20 million floating-point operations per second (20 MFLOPS) has been built from off-the-shelf
chips on a wire-wrapped board. The prototype processor is attached to a SUN-3 workstation.

Efficient microcode is generated using the microcode compiler that has been designed and
implemented. The microcode optimization includes microcode compaction and loop optimiza-
tion using two techniques: software pipelining and loop unrolling. Preliminary results obtained
on vector benchmarks are given.

Optimisation de microcode
pour le processeur PCS

Résumé

Ce rapport décrit ’architecture d’un opérateur modulaire (PCS) réalisé & partir de composants
discrets rapides et capable d’exécuter jusqu’a 20 millions d’opérations flottantes par seconde (20
MFLOPS). Ces facilités d’interconnexion permettent la mise en ceuvre de structures paralléles
performantes capables de supporter une parallélisation de type pipeline. Un processeur PCS
prototype (carte réalisée en technologie “wrapping”) est attaché a une station héte SUN-3.

Le processeur PCS est composé d’unités fonctionnelles pipelines pouvant fonctionner en
parallele et de facon synchrone. La gestion de ce parallélisme interne est pris en charge par
un compilateur de microcode. Celui-ci génére automatiquement, & partir du langage de haut
niveau qui a été spécifié, un microcode efficace. Dans ce rapport, les composantes du compi-
lateur sont successivement décrites. Le module d’optimisation du microcode (compaction de
code, optimisation des boucles) ainsi que le modéle de machine qui rend le module d’optimisa-
tion indépendant de I’architecture sont plus largement décrits. Des résultats préliminaires sont
donnés.

1La réalisation du processeur PCS a été menée en collaboration avec la société SOGITEC de Bruz avec le
soutien de la Collaboration Bretagne Image (CBI) et a bénéficié d’aides de la Région de Bretagne et de I’Etat
(DRIR).
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1 INTRODUCTION g
1 Introduction

Technology offers us opportunities to develop parallel computation for both special-purpose
and general-purpose devices. Among several approaches to parallel organization that can take
advantage of these new possibilities, the systolic array concept is particularly interesting. A
systolic array is a parallel device made of a number of identical processing elements which are
regularly and locally connected; there is no link between two distant elements. In a systolic
array, data circulate in the network in a pipeline fashion; the array makes multiple use of
each input data. For compute-bound problems such matrix computation, this removes the I/O
bottleneck between processor and memory. A systolic array usually operates synchronously; the

- flow of data through the array is organized in such a way that a processing element never has

to wait for data and can consequently compute at its maximum speed. Over the past few years,
the systolic array concept has materialized by the realization of systolic machines. Among the
systolic arrays realized so far, there are prototype and industrial machines. MICSMACS [14] is a
prototype VLSI programmable systolic array, which has been designed at IRISA. MICSMACS
consists of a linear systolic array comprised of 18 full-custom VLSI 2 um CMOS chips (the MICS
“module), and an interface board (the MACS module). The operation of the array is SIMD, each
processor receiving a 16-bit instruction word every 100 ns. MICSMACS is connected to an IBM
PC/AT microcomputer. The Warp machine [5] designed at Carnegie-Mellon University and
jointly built with its industrial partners, is a linear systolic array of 10 identical cells, each of
which is a 10 MFLOPS programmable processor. The Warp machine is currently produced and
marketed by General Electric.

The PCS processor [7] we described in this paper aims at similar goals to Warp, even if
its internal architecture organization is different. It has been designed as a high-performance
programmable elementary processor of a linear array of cells to be used as a parallel hardware
accelerator. This accelerator is able to support a wide class of applications in which the parallel
implementation is based on pipelining since the use of FIFOs to support communications bet-
ween processors allows the data exchanges between processors to be completely asynchronous.
The PCS processor is implemented from off-the-shelf chips on a wire-wrapped board and its
development is carried out with the SOGITEC company.

Efficient code is produced for the PCS processor using a microcode compiler. The micro-
code compiler exploits the low level fine grain parallelism inherent to the wide full instruction
word concurrency of the PCS cell horizontal architecture. The optimization part includes micro-
code compaction and software pipelining. Microcode compaction builds efficient microinstruc-
tions by scheduling microoperations to execute with the highest possible concurrency consistant
with parallelism inherent to the instruction word and data dependency considerations in the
program. Software pipelining schedules looping operations in order to minimize the interval at
which successive iterations are initiated and thus to have at any time multiple iterations of
a loop in progress simultaneously in different stage of the computation. In order to be able
to support various architectures made of multiple pipeline functional units, an important part
of the work has been devoted to machine modeling that allows the microarchitecture of the
cell to be fully specified and makes the compiler to be retargeted to architectures composed of
multiple pipeline functional units quite straigthforward.

In this paper, in section 2 we first present an overview of the PCS-based system. The
next sections deal with the compilation aspects of the PCS-based system. Section 3 is devoted
to the PCS cell compiler organization. In section 4, the optimization part of the compilation
process is presented. The micromachine modeling that allows the microarchitecture of the
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cell to be expressed is also outlined. The techniques used to produce an efficient microcode
(compaction and loop scheduling) are also described. Finally, preliminary results obtained on
vector benchmarks (Livermore Loops, ..) are discussed in section 5.

2 Overview of the PCS Machine

A PCS cell-based hardware accelerator is fully exploitable if it is efficiently integrated in an
existing hardware environment, namely a workstation. The access to the PCS-based system
from the workstation has to be realized through an interface processor (IP). IP is in charge
of sending data to or receiving data from the leftmost and the rightmost cells of the array of
PCS processors and managing the communications with the Host workstation. IP is of major
importance in the system since it has to support all of its tasks in parallel. Even so, the global
performances of the system will depend mainly on the bandwith between the host workstation
and the array of PCS cells. It is obvious that the array of cells will be used especially to perform
compute-bound tasks; tasks where the number of operations will be an order of magnitude larger
that the I/0.
The components of the PCS machine as depicted in Figure 1 are:

o the host workstation

o the parallel hardware accelerator made up of an array of PCS cells (the prototype version
only includes one PCS cell)

e the interface processor (IP)

The components of the PCS prototype machine will now be described. The way all the com-
ponents are linked together and the communication mechanisms will also be outlined.

host
workstation

SUN-3/110

VME bus

VSB bus

VSB Interface VSB Interface VSB Interface

Interface

Processor PCS cell PCS cell PCS cell
1P

N

Figure 1 : The whole machine

“
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2.1 The Host Workstation
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'The Host is a SUN-3/110 3-slot card cage workstation. The CPU board includes the 16.67-MHz

MC68020 central processor, a MC68881 floating-point coprocessor, 4 Mbytes of main memory
and a full 32-bit VMEbus interface. The VMEbus is dual-ported with master and slave interface;
even so only the master mode has been considered in this application. The master interface
provides access from the CPU to the VMEbus. The second slot is used for memory expansion
(4Mbytes). The third slot receives the interface processor that is connected on the VMEbus.

Library routines have been written and are at users disposal. The PCS library includes
functions to access the accelerator as well as system calls to control the execution of tasks on
the accelerator. The way these routines are used is quite standard since they can be called like
usual library functions in a C program. The execution of a routine is based on requests sent by
the host to the interface processor.

‘2.2 The Interface Processor
"The IP is a MC68020-based VME/VSB? processor board. The board includes 1 Mbyte of main

memory with dual porting to the MC68020 processor and the VMEbus. This allows normal
MC68020 processing and local bus activity to continue during access from the VMEbus. The
board also includes a full VSB interface which allows different operations to be dedicated to
either the VSB or VMEbus, optimizing processor and bus utilization.

Communications between the host workstation and the IP are supported via a shared
memory implanted on the VMEbus. Whereas communications between the IP and the acce-
lerator operate on the VSB. The communication mechanism between the host and the IP is
based on interrupts. An interrupt is supplied via the VMEbus by writing at a given address in
the shared memory.

The execution by the host of a library routine generates a request sent to the IP via the
shared memory. Then the request, handled by the IP, activates a task on the interface processor.
The tasks deal with the flow of data between the components, and the execution of treatments
on the accelerator. These are mainly:

¢ in normal mode,' the access to the input/output FIFOs of the accelerator, the local memory
banks of PCS and the execution of tasks on the accelerator.

e in diagnostic mode, the control of the execution, the display of internal registers of PCS,
etc.

2.3 The Array of PCS Cells

The PCS processor is the elementary operator of a linear array of cells to allow pipeline systems
to be designed. The array of cells is attached to the host workstation by means of the interface
described previously and constitutes the workstation parallel accelerator. The PCS cells are
linearly connected and the data flow is unidirectional as illustrated in Figure 1. Each cell has
two 32-bit input and output channels and can transfer up to 40 million 32-bit words ‘to and
from its neighbouring cells per second (160 Mbytes/second). The cell executes smgle-precxsmn
floating-point operations 2 at a peak rate of 20 MFLOPS.

2VSB stands for VME Subsystem Bus.
3double-precision floating-point operation is not supported by the architecture.
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The architecture of the cell has been designed using high performance off-the-shelf chips
and is composed of two parts: the operative part with its data path and the control part. The
operative part and its main functions are depicted in Figure 2. All data paths are 32-bits wide.

The operative part of the PCS cell encompasses:

o a 32-bit floating-point multiplier/divider (MPY), implemented by a single component (the
ADSP-3212), which supports 32-bit IEEE single-precision floating-point multiplications
and divisions, as well as 32-bit two-complement fixed-point multiplications.

e a 32-bit floating-point ALU (ALU), implemented by the ADSP-3222 chip, which supports
32-bit IEEE single-precision floating-point addition, substraction, extended-precision in-
teger operations, logical operations, data format conversions, floating-point division and
square root are also included.

e two multiport register files (RFA, RFB) of 128 32-bit words, implemented by the ADSP-
3128 chips are used to store intermediate results or scalar variables and to support the
peak execution rate of the two computation units. Each register file has a bidirectional
port used to interface with the memory banks.

¢ two memory banks (MBA, MBB) for local data storage. Each bank consists of 64K of
32-bit words and has its own arbitration logic which allows local access or external bus
access to be performed.

e two address generators (AGA, AGB) for efficient memory management, implemented by
the ADSP-1410 chips. Each generator is able to generate a 16-bit memory address, and
to modify this memory address in a single instruction cycle. An address crossbar switch
(ACS) allows external data to be provided via the input port of the address generator
selected. This external data can come either from the input queues (16-bit least significant
word), from the register files (16-bit least significant word) or from the microcode memory.

¢ two input FIFO queues (FQA, FQB). Each queue consists of 512 36-bit words (32-bit
data and 4-bit condition) and are used to interface the cell with the neighbouring cells.

e adata crossbar switch (DCS), which links up the elements F' QA, FQB, RFA, RFB, MPY,
ALU; the computation units and the fast storage units are tightly linked together. This
choice has the advantage of allowing the chaining of arithmetic operations and therefore
reduces the use of the multiport register files. This network has six input ports and eight
output ports and it can be reconfigured in every cycle under microcode control.

The floating-point units are seen as 3-stage pipeline units and all the operations except
division and square root can be initiated every instruction cycle. The PCS cell is horizontally
microcode controlled. The cell has a 16K words of microcode memory and its own microsequen-
cer implemented by the Am29331 chip. Such a large microcode memory suggests that entire
application programs can be loaded into the cell avoiding the need to reload PCS during the
processing. The microcode is loaded through a specialized interface.

The use of the PCS cell must be as flexible as possible; we want to be able to associate a
particular treatment to a given input data. For that reason, we have chosen to associate 4 bits
called synchronization conditions (SC) with each input and output datum. These SC are tested
by the microsequencer in order to generate the right treatment associated with the input data.

[\
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addresses from microcode

Sequencer Address Crossbar Switch
ACS
Microcode
Memory Address Address
Generator Generator
AGA AGB
Memory Memory
Bank Bank
MBA MBB
Register Register
File File
RFA RFB
DatalnA Fifo Queue DataOutA
1 Fqa —
. Data Crossbar Switch
DatalnB . Fifo Queue DCS DataQutB
: e s | —
FQB
Floating Floating
Point Point
ALU MPY

Figure 2 : PCS cell data path
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In order to implement an algorithm in a pipeline way, a synchronization mechanism bet-
ween cells is provided. Several cells can be easily connected and form a linear pipeline system,
But each cell in the array has to execute a particular code as is the case in a MIMD machine.
The data flow control is made step by step. The implementation of such an algorithm raises the
problem of the transmission of SC through the pipeline. A cell that transmits data to another
cell must generate SC to indicate the treatment to be performed by this cell. PCS supports
three modes of SC generation: either four bits issued from the microinstruction are passed to
the neighbour cell, or the input SC are sent to a finite state machine also controlled by a mi-
croinstruction field, in such a case, the SC is generated by the finite state machine, or the last
mode called the transmission mode, where the SCs received by the cell are directly sent to the
next cell without modification.

3 Compilation for a PCS-Based Architecture

This section is devoted to the compilation aspects of the PCS-based architecture. The Ipcs
language used to program the cell is first presented, then a brief overview of the compiler
organization is given. '

3.1 The lpcs Language

The Ipcs is the language used to program the PCS cells. We suppose that the algorithm to
be mapped on the array of cells has been previously decomposed into pipeline or parallel tasks
which communicate locally. These tasks can then be expressed using the Ipcs language. This
language was defined to simplify cell programming; the microcode level is hidden from the
user. However, the language was restricted to constructs that run efficiently on the cells. This
choice was made because of the specialization of the machine to pipeline and/or systolic mode
of operation. In the systolic mode, each cell executes the same Ipcs program. In the pipeline
mode, a different lpcs program is written for each cell.

The Ipcs language is a block structured language with assignment, conditional, loop and
procedure statements. The main particularity of lpcs is the communication primitives which
allow inter-cell data exchanges to be specified. Communications between cells are specified
explicitly with the asynchronous communication primitives in and out. Moreover, cells can
only communicate with their neighbours. The in primitive receives data from the left cell, or
from the host if the cell is the first of the array. The out primitive sends data to the right cell
or to the host if the cell is the last one. Though the internal parallelism of the architecture
is managed by the compiler, the inter-cell communication must be checked by the user. This
can be done using the PCS simulation tools, and in practice this is very simple, since all
communications can be controlled by the software. Moreover, the user has access to the FIFO
flags (full, half-full and empty flags) in the language.

The abstraction level provided by the language allows the cell to be very simply pro-
grammed. For example, a complex algorithm such as the parallel geometric operations in the
ray-tracing algorithm has been straightforwardly programmed on the array of cells.

Figure 3 shows a simple example of a Ipcs program which evaluates a 4 x 4 matrix
multiplication (C = A x B) using an array of four cells. The program is composed of two parts.
The first one initializes the data for the cell with the A matrix. The second one reads the B
matrix elements in FIFO 1 and computes the partial dot product of elements of the C' matrix
which are sent in FIFO 2 of the neighbouring right processor.
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program .

float Ligl4l;

int i,j;

.float x,y,row,resin,resout;
for i= 1 to 4 do

in(1,x); Lig(i] = x;
for j=2 to 4 do

{t

~ in(1,y);out(1,y);
y

out(1,0);

for i = 1 to 4 do

in(1,row);
for j =1 to 3 do
{
in(1,x); out(1,x);
}
out(1,0);
for j =1 to 4 do
{
in(2, resin);
resout = resin + row * Lig[j];
out (2, resout);

}

Figure 3 : A lpcs program example
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3.2 Overview of the cl Compiler

The main problem that is to be solved by the compiler is the management of the horizontal

microcode parallelism of the PCS cell. The input to the compiler is a Ipcs program, and the
output consists of a horizontal microprogram for the cells. Figure 4 illustrates the compiler

organization which is composed of four major modules:

® the syntaz analyzer which translates the lpcs program into quadruple forms [1}. This
phase is machine independent and can be easily updated to enhance the Ipcs language.

e the microcode generator which translates quadruples into sequential micracode. This phase
is machine dependent and manages resources like registers and memory banks.

e the machine description parser which parses the machine description and generates the
input to the optimizer. The machine description allows all the features and timing cons-
traints of the microarchitecture to be fully specified. This part is of major importance
in order to be able to support any improvement and modification of the hardware and

makes the optimizer completely machine independant.

e the microcode optimizer which parallelizes the sequential microcode. The optimizer is the
most typical part of a compiler for a horizontal microarchitecture. It manages the multiple

pipeline functional units and the fine grain parallelism of the machine.

lpcs program
l )

parser

flow analysis

intermediatf language

memory and register
allocation
sequential microcode
generation

machine microcode optimization
compaction
software pipelining

Aontal
simulation microprogram

Figure 4 : Compiler organization

description

machine
independent

machine
dependent

machine
independent
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- The microcode generator consists of many steps. The first one is the global flow analysis
phase which collects information for all variables of the program. These information are used
to allocate memory banks to variables and registers. To allocate registers we use the graph
coloring method proposed by Chaitin [6]. The memory bank allocation is also done by a similar
method. The sequential microcode is then generated by macro-expansion [22).

The sequential microcode and the machine description are input to the optimizer which
generates a horizontal microcode for the target machine. Loops and basic blocks of the pro-
gram are parallelized. The machine description used by the optimizer gives the behaviour of
the machine and permits to calculate both the conflicts on the functional units and the data
dependencies. For loops it uses global data dependencies (loop carried dependencies) which
are calculated by the front-end of the compiler [4]. This computation is not done at high level
statement but at the level of memory reference. This does not present more difficulties than
building them at the lpcs statement level. The optimizer applies techniques like microcode
compaction and software pipelining. The software pipelining is a loop optimization technique
which minimizes the interval at which successive iterations are initiated, smaller the interval,
higher the throughput.

4 Microcode Optimization

We first present the machine modeling which allows the complete description of the PCS cell
architecture to be specified. The local compaction algorithm used to schedule microoperations
is then described. Finally, the optimization phase which is the most important part of the
compilation process is considered.

4.1 Micromachine Modeling

Machine modeling is of major importance in order to make the optimization process machine
independant. Moreover, an important feature of machine modeling is that the behaviour of
resources must be entirely synchronous and predictable. The model that has been defined is
close to existent models [16] which have been enhanced to handle architecture features like:

o transient resources: a resource (for example a register) is said to be transient if its value
is implicitly destroyed after some time, the value has to be used before it is lost.

¢ multi-cycles microoperations: some operations are not executed in one machine cycle.
Therefore, an operation which uses a result produced by such a microoperation has to be
delayed.

o delay branches: there are delay branches when the sequencer unit has pipeline stages.

Therefore, the model introduces temporal restrictions between microoperations, the solution to
this problem is described in section 4.1.5 which is devoted to the compaction algorithm.
4.1.1 Resources

The machine resources are the functional units of the target machine. We distinguish four types
of elements:
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o static which stores a data permanently, except if there is a modification operation in the
program.

o latch which can be read and written simultaneously.
e transient which stores the data only during the write cycle of the data.
o field used to code the microoperation.

The compiler gets all the features of the resources from a description which contains all the
" resources of the micromachine. For instance a PCS register bank declaration is:

STORAGE : RFA /* name of the register bank */
TYPE : STATIC /* resource type */
/* resource capacity: 128 32-bit words */

CAPACITY : ( 32 , 128 )
ESTO |

In the following section, R is the set of the resources of the micromachine and Type is a function
which gives the type of a resource:

Type : R — {transient,latch, static, field}

. 4.1.2 Microoperation

The description must supply all the knowledge on the behaviour of the microoperations in
order to calculate conflicts on resources and data dependencies. This is done by providing
timing information for all the resources. A microoperation (MO;) is defined by a sextuplet
composed of the following fields:

<name,input,output,element, field, synchro>
¢ name identifies the microoperation.

e input, output, element describe the input resources Ij0,, output resources Owmo;, and
elements of the architecture Uyo, which are neither input nor output resources (Ip0, C R,
OMO. C R, UMO' C R)-

o field is the set of fields and their values (Cmo; C R x N) for the coding of the microo-
peration.

¢ synchro is a list of quadruples which describe the temporal use of the resource. They
have the following structure:

<resource,begincycle,endcycle, R/ W>
— resource is the name of the resource and must be in another field of the description
of the microoperation.

— begincycle and endcycle specify the time at which the resource is used and relea-

sed,

Lo

G
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— the R/W attribute indicates how the resource is used (write or read). A resource
which cannnot be shared is declared with the W attribute.

We define the function Tyo,:

TMO.- : IMO; U OMO.- U UMO; U CMO; —
N x N x {read, write,nil}

which indicates how and at what time a resource is used when the microoperation is initiated.
In order to illustrate these notions, the declaration of an ALU microoperation is given in
Figure 5. ‘

1. the operands: Ino, = {aluina, aluinb}.
2. the result: Opo, = {aluout, AluCond}.

3. the internal pipeline stages:
Umo; = {alu, alul, alu2}.

4. the coding: Cyo; = {(Alu-Opcode,2)}.

5. the way the resource is used:
TAlqueration(alu":na) = (0, 1, read)
. TAlqueration(aluo'Ut) = (2, 3, write)
Tatuoperation(Alu_Opcode) = (0,1, write)

‘Figure 5 : Declaration of an ALU microoperation

4.1.3 Data Dependency

The first step of the optimization process consists of constructing the dependency graph. The
data dependency is a partial order on microoperations which represents a set of precedence
relation to be satisfied in order to preserve the original program semantic. To represent this
data dependent relation (A), we use an acyclic directed graph (GD) whose nodes are microo-
perations. Let BB be a basic block of microoperations:

BB = MO0,,MO,,....MO,

Let GD = (S, P) be the graph, S the set of vertices labeled with elements of BB and P the
set of edges (MO;, MO;) € S x S. Let r be a resource of R. There is an edge between MO;

and MO; if MO; SM Oj, according to the following rules:
1. (MO; is direct dependent on MO;
Mo; 4 MO;) if:
j > i, OMO.' nIMO,‘ # 0
AMO; 3 MO, 8 MO;
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2. MO; is output dependent on MO;
M0O; & Mo;) if:

J>1, Opmo, N OMO,- = {7‘}
Type(r) = static

3. MO; is anti dependent on MO;
(MO; 5 MO;) if:

J >, IMO; nOMoj = {r}
Type(r) = static

4. MO; 5 Mo, if:
MO; & MO; or MO; & MO; or MO; & MO,

The set of transient and latch resources cannot introduce anti dependence or output dependence
between microoperations.

4.1.4 Delay Between Microoperations

To be correct, the building of the microprogram must satisfy the delays between microopera-
tions. To deal with delays, edges are valued with a timing pair:

(type,d) C {>,=} x N

this expresses the delay to be satisfied between the two microoperations that are linked by an
edge.

If type is >, then the two microoperations must be distant of at least d cycles. If type is
=, then the delay between the microoperations has to be equal to d and the delay is said to be
a strict delay. The delay between two microoperations is evaluated depending upon the type
of the resource involved in the data dependency and the type of the dependency. For instance,
if MO; depends on MO; by a direct dependence (MO; 5 M O;) and if MO; is scheduled at
cycle ¢ and writes a transient resource r, n cycles later, then M O; must be scheduled at cycle
c+n.

The graph GD enhanced with all the delays is called GDD. All the delays are automa-
tically deduced from the description of the microoperations and the resources. Let w be the
function that associates to M O; the time at which it is initiated. A correct scheduling w of the
microoperations has to satisfy these relations:

o if MO; 2§ MO; then:
w(MO;) —w(MO;) > d

o if MO; =¥ MO, then:
w(MO;) —w(MO;) = d

o
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4.1.5 Local Compaction Algorithm

The local compaction algorithm [9] schedules basic blocks of microoperations and tries to mi-
nimize the execution time. Dewitt has shown that the problem is NP-complete, because this
problem is very similar to the resource constrained scheduling problem [15]. Three compaction
algorithms are usually considered:

o the list scheduling algorithm which may use a First Come First Serve priority [8]. The
microoperations are examined in the original order of the microcode. Each microoperation
is scheduled as soon -as possible, and when a microoperation is scheduled it is never
disallocated. A

o the critical path algorithm defined by Kleir and Ramamoorthy [18] which identifies critical
microoperations and tries to sthedule the other without extending the scheduling.

e the branch and bound algorithm which guarantees the optimality of the solution since all
the solutions are examined, however, the complexity is exponential.

In practice, heuristic algorithms give generally near optimal results. To be correct the
algorithm must satisfy the following two conditions:

o resource constraints: the scheduling may not introduce conflicts between the functional
units of the machine. To avoid conflicts on resources, we use the reservation table forma-
lism [19].

¢ Data dependency and delay.

The compaction algorithm is used to schedule the basic blocks of the microprogram and is a part
of the loop scheduling algorithm. The main problem of micromachine modeling is the handling of
strict delays, that have edges valued with =. To deal with this problem, we introduce the notion
of template which is a set of microoperations connected by strict delays. Two microoperations
belong to the same template if there exists a path between the microoperations in GDD and
if all the edges along the path are valued with strict delays.

By definition, all the templates are disjoint. There exists a single scheduling of the tem-
plates since all the microoperations are linked by strict delays. This notion allows the microo-
perations to be scheduled without the use of a backtracking algorithm. The following condition
ensures that the scheduling of the templates exists:

Compaction condition: Let GB = (EB, AB) be the template graph whose nodes a,fe tem-
plates. This graph is deduced from the GDD graph. If GB is acyclic and if all the
templates are legal then there exists a correct scheduling w of the microoperations.

Proof: The proof is based on the use of a list scheduling algorithm on the graph of templates,
and the scheduling of microoperations within a template. :

Let LB = By, ..., B;, ..., B, be the HLF (High Level First) list of templates. A template
B; is legal if there exists a scheduling wp, that respects delays and data dependencies between
the microoperations of the template without conflict on resources.

We choose the list scheduling algorithm with the HLF priority. The scheduling
wp : LB — N is done on the template first. The algorithm is the following:

e Input: the template graph GB.
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e Output: the scheduling of the template wg.

1. cc = 0;
2. While LB #10

(a) For each template B in LB Do
If B can “be allocated” at cc
Then schedule B, update the reservation table and LB.

(b) cc ++;

By “be allocated”, we mean that data dependencies and delays are satisfied and there is no
conflict on the resources.
The microoperation scheduling w is then obtained by the function:

w(MO) = wB(MO € B,') +w3..(MO)

4.2 Loop Optimization

Loop optimization is important in order to produce an efficient microcode. It is brought to
the fore with the following example which adds two data read from the input queues and then
sends the result to the PCS cell output register:

for i=1 to 10 do
read fifo A,read fifo B;
add;
write output A

enddo

Based on the timing constraints of the architecture, the execution of one iteration is the follo-
wing:

cycle c : read fifo A, read fifo B
c+l : nop

c+2 : add
c+3 : nop
c+4 : nop

c+5 : write output A

Without parallelism between iterations the loop takes 60 cycles to complete. However, an
iteration can be initiated every cycle and its execution takes then 15 cycles as illustrated by
the following scheme:

cycle ¢ : read fifo A,B

c+l : nop read fifo A,B

c+2 : add nop read fifo A,B
c+3 : nop add nop

c+4 : nop : nop add

c+5 : write output A nop nop

c+é write output A nop

c+7 ' write output A

v
t

R

3
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The parallelization of loops has been approached in different ways. The methods proposed
by Touzeau [25] and Eisenbeis [10] are an extension of techniques used to optimize static
hardware pipelines [23]. Other algorithms are based on global scheduling algorithms like Trace
scheduling [13] or Percolation scheduling [2]. Their principle is first to unroll the loop and then
to compact it. The main advantage of such methods is their ability to handle complex loops
with branching. However, they do not take into account the cyclic regularity of the loop, and
therefore generate great microcode size.

In this section, the loop optimization algorithm used in the compiler is described. It uses
techniques defined in [10] [25]. We focus our attention on optmizing simple loops; loops made
up of assignment statements without branching.

4.2.1 Data Dependency, V-Lodp

The scheduling of a loop must deal with two types of data dependencies:
o the local data dependencies (intra-iteration) of the body of the loop (GD).

- o the global data dependencies of the loop (loop carried dependencies) which give the pre-
cedence to the constraints between the microoperations of successive iterations.

The scheduling of a loop is correct only if it respects the two types of dependencies. For instance
in a loop containing the statement a = a + A[4] * B[i] a given iteration cannot read the value
of a before it has been written by the previous iteration because of the direct data dependency
on variable a.

In order to take into account loop carried dependencies the loop body graph GD is
enhanced with the global dependencies. The graph is now called GGD. If this graph is acyclic
the loop is said to be a vector loop (V-loop [11]) otherwise it is a recurrent loop (R-loop).

4.2.2 Software Pipelining

The algorithm searches first the scheduling of one iteration, then the final loop is pipelined based
on this scheduling. In this paragraph we are only interested in V-loop. The R-loop problem is
described in the next paragraph. The algorithm searches a scheduling which has the following
two properties: '

o all the iterations have the same scheduling.

o the latency (instiation interval) between two successive iterations is L.

This problem can be resumed in searching a global scheduling of the loop Q that satisfies
the data dependencies and is deduced from a local scheduling of the loop body: ‘

QMO) = j + L+ w(MO;)

with MO},1 <7 <m,1 <j <N the microoperation MO; of iteration j. For a V-loop, a global
scheduling of this form satisfies the global dependencies for all positive values of L. With the
global scheduling we can construct a new loop, semantically equivalent to the original one. This
is called a software pipelining. Figure 6 illustrates the software pipelining execution where the
Yoop body is divided into 3 parts (C;, C», C2) concurrently executed. The algorithm consists in
two parts: '
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FL t1 t2 t3 t4 t5 t6 7 t8 ‘
C1 ci|cicic o
cdci prolog c2| c2c2c2 e
C3CcACy -new loop body C3 C3C3C3
c3c

: )
_(_iﬂ epilog

Figure 6 : Software pipelining

e Find a scheduling w. This scheduling must be compatible with the minimum latency L and
has to satisfy the data dependencies and the use of resources. In Figure 7, microoperations
MO,, MOy, MO3, MO, are executed in parallel since successive iterations are initiated

with latency L, the amount of resources used by these microoperations may not exceed
the machine resources.

o Verify that latency L is compatible with register occupation If not, there are two solutions.
The first one is to try another latency L + 1, the second one is to apply technique like
modulo variable expansion [20] or the method defined by Eisenbeis et al [12].

mol
mo2 mol ____
mo3 mo2 |mol

——

mo4 mod |mo?2 mol

resources mol...4 are simultaneously used
_.L mo4 {mo3 mo?2
1 mo4 | mo3
1 mo4

Figure 7 : Resource constraints

4,2.3 Loop Body Scheduling

The algorithm used to find the scheduling of the loop body is similar to the local compaction
algorithm, except that:

e The global data dependencies graph GGD is used. It guaranties that loop carried depen-
dencies are respected for all latency values.

o We apply the modulo constraint [24] for latency L on the resource to ensure that the L.
latency does not generate resource conflict.

[4)

hil
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Modulo constraint: let w be a scheduling of the loop body C. It is compatible with the
modulo constraint for L if:

VMO e C,Vre R ' TMo(r) = (i,j,T/W)
then AMO' € C,ke Z

with Tyo/(r) = (¢, 7', r/w)

and [w(MO) + i+ kL,w(MO) + j + kL[

NWw(MO') + i, w(MO') + j'[# 0

The problem is to limit the latency search space. However, we can restrict this search to
an interval defined by the following conditions:

o The lower bound is the minimum number of cycles imposed by the critical resources. A
resource is said to be critical if the removal of the contribution of the resource in the lower
bound calculation reduces the lower bound.

e The higher bound is the length of the scheduling of the loop body without modulo cons-

traint. If this value is reached there is no parallelism between iterations.
~ 4.2.4 Loop Optimization Based On Loop Unrolling '
In paragraph 4.2.2, we have shown how the optimization of V-loops is treated. We sketch heré’
another loop optimization algorithm which deals with R-loops in a more natural way than
the software pipeling technique does. The basic idea of the algorithm is to search a period in
an unrolling/compaction process. The compaction algorithm used is quite similar to the one
- defined previously; when a period is found in the scheduling of the iterations it is used to
construct a software pipelining of a loop. In order to illustrate the method, let us consider the
following loop:

for i =1 to 100 do

{

D[i] = C[i] + A[i] = B[i];
}

Let C be the body of the loop. The algorithm uses the unrolling function u: ‘
u'(C) = C1C,...C; '

where i is the degree of the unrolling and C; are the successive occurrences of the loop body.
ror instance, the u*(C) of the previous loop is:

oli] = c[i] + A[i] * B[i];
D(i+1] = C[i+1] + A[i+1] * B[i+1];
D[i+2] = C[i+2] + A[i+2] » B[i+2]; g

If we unroll and compact successively several iterations of the loop, then we always obtain’
the same scheduling of the iterations after an unrolling of degree 2, as shown in Figure 8 where'
successive iterations are listed separatly, side by side. The vertical axis is time; all statements®
on a horizontal line are simultaneously executed. We suppose that only two concurrent memory’
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A, B, D, F: memory access 1 2 3 4
C, E: ALU operation 1 |AB
P 2 |ICD A
B 3 {E B D
A\ c/ 4 |F C A
D 5 E BD
\ E/ 6 F C A
7 E B D
l 8 F C
F 9 E
10 F .,
the dependency graph code atfer 4 phases

Figure 8 : Example of loop unrolling

access (A, B, D, F in the figure) are authorized without conflict, and that all operations take
one cycle to complete. Then, we can construct a new loop with two cycles latency between
successive iterations.

Aiken and Nicolau [3] have proposed another approach which also uses a greedy schedu-
ling and unrolling algorithm. Their algorithm gives an optimal scheduling, but only consider
data dependencies. If resources are considered the problem is NP-complete. The algorithm we
proposed considers resources but it does not necessarily give an optimal scheduling.

The interesting idea of this algorithm is the use of the unrolling to find a cyclic scheduling
of the loop. The algorithm permits to construct a software pipelining which is equivalent to a
complete unrolling of the loop except for the first iterations. The other idea of the algorithm
is to extend the space of solutions for the scheduling of loops on the basis of classical software
pipelining techniques. The software pipelining technique asserts that all the iterations have the
same scheduling, our algorithm enables several iterations to have different schedulings.

5 Preliminary Results

The performances of the PCS cell are discussed in this section. We present two sets of bench-
marks.The first one is the 14-loop Livermore kernel [21] which has been chosen as program
fragments representative of scientific programs. The second one is the MVF vector library ker-
nel [11] which is given in Table 1. These results ‘have been obtained on the prototype cell
which so far does not take into account some hardware improvements. Subtantial performance
improvements can be expected in the near future.

The performances of loops using software pipelining are analysed using the Hockney
formula [17]:

(N + Nyy3)

T(N) = =~

e N:is the number of iterations of the loop.

[
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ml | y(i) = (a *x(i)) + b

m2 |y(i)=(a+x(i))*b

mvl | z(i) = ((x(i) * y(i)) + a) *b
mv2 | z(i) = ((x(i) * b) + a) * y(i)
mv3 | z(i) = (y(i) + x(i)*a) + b

mv4 | z(i) = (x(i) * a) + (y(i)) + b)
mv5 | z(i) = ((a *x(i)) + b) + y(i)
mv6 | z(i) = ((x(i) + b) * a) + y(i)
mv7 | z(i) = ((x(i) + y(i)) *a) + b
mv8 | z(i) = ((x(i) + y(i)) + a) *b
mv9 | z(i) = ((x(i) + a) + y(i)) *b
mvfl | t(i) = ((x(i) * a) + y(i)) * 2(})
mvf2 | t(i) = ((x(i) + y(i)) * z(i)) + a
mvi3 | t(i) = (x(1) + (y(i) * 2(i))) * a
mvf4 | (i) = x(i) + ((y(i) * a) * 2(3))
mvf5 | (i) = (x(i) + y(i)) + (x(i) * a)
mvi6 | t(i) = (x(i) + (y(i) * a)) + z(i)
mvi7 | t(i) = (x(i) * y(i) + a) * z(i)
mvi8 | t(i) = ((x(i) +a) * y(i)) * 2(i)
mvi9 | t(i) = (x(i) + y(i)) *(a + 2(i))

Table 1 : MVF kernel

o T(N): is the execution time for N iterations.

obtained when N is the infinity.

Nyj,: is the number of iterations to get half of V, (Va2)-
v(N): is the speed in MITS for N and is equal to:

19

Voo: is the asymptotic speed (in MITS: Million ITerations per Second), which is the speed

The performances of the 14-loop Livermore kernel are given in Table 2 and are illustrated
with the N, /2 value in column 2 (number of iterations to get half the value of V) and with the
asymptotic speed in MFLOPS in column 3. The Fortran programs were manually translated into
the Ipcs syntax. The translation was straightforward. Kernel 8 was simply compacted because
of the great number of operations (more than 300). For multiple loops, only the internal loop

is considered.

Table 3 shows results for the MVF vector library kernel. All the performances are optimal
for this set of loops. The goal of the m, mv, mvf families is to get a systematic evaluation of
the behaviour of the different code generators for loop operations. The loop mul comp is the
multiplication of two complex vectors and drot a Givens rotation.

The data dependency and the critical resource bottleneck are the main factors of the limit
of the maximum achievable rate. In the case of the prototype PCS cell the critical resource
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LOOp N; /2 Voo
kernel 1 4.2 | 10
kernel 2 44 | 10
kernel 3 1.7 5
kernel 4 1.7 5
kernel 5 19 | 2
kernel 6 | 4.3 | 6.7
kernel 7 3 |88
kernel 8 0 |45
kernel 9 2.7 | 7.7
kernel 10| 2.9 | 2.5
kernel 11| 1.8 | 1.6
kernel 12| 44 | 4
kernel 13| 3.1 | 2.5
kernel 14 | 6.9 | 4.2
average 3.3 | 56

Table 2 : Livermore kernel

Loop Nija | Vo
ml 4 10
m2 4 10 *
mvl 4 10
mv2 4 10
mv3 4 10
mv4 3 10
mv5 4 10
mv6 4 10
mv7 4 10
mv§ 4 10
mv9 4 10
mvfl 4 10
mvf{2 4 10
mv{3 4 10
mvf4 4 10
mvfh 3 10
mv{6 4 10
mvf7 4 10
mvi{8 4 10
mvf9 3 10
mul comp [ 2 10
drot 1.8 | 10 , A

Table 3 : MVF kernel
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bottleneck.is mainly due to two resources: the ALU functional unit and register access. The
ALU functional unit constitutes a resource bottleneck when address calculations are done to
it, because of the address generator saturation. This is the case in kernel 8. Register access
constitutes the other most frequent bottleneck and this is the case when all operands come from
memory banks because in this case chaining optimization is limited. The other limit is data
dependency. However, the small number of pipeline stages permits to obtain quite acceptable
performances in case of recurrences as shown in the following dot product loop:

for k=1 to 1024 do
{
q =q + x[k] * z[k];
}

which runs at 5 MFLOPS.

6 Conclusion

We have described a prototype pipeline machine made of a linear array of identical PCS proces-
sors. The PCS processor is implemented using off-the-shelf high-performance chips on a wire-
wrapped board and is controlled by a standard MC68020-based VME/VSB processor board
interface that sends control functions and handles inputs and outputs. The interface board is
attached through the VMEbus interface to a SUN-3 host workstation. The machine is a testbed
for image synthesis techniques and all kinds of compute-bound algorithms. The current appli-
cation that has been tested on the machine is the geometric operations of an image synthesis
by polygons algorithm.

We designed and implemented a microcode compiler for the PCS processor. Once the
algorithm to be mapped on the architecture has been decomposed into pipeline and/or parallel
tasks (the level of decomposition is taken into account by the user), the microcode compiler is
capable to generate an efficient microcode for each task and all the communications between
tasks are asynchronous. The compiler manages the low level fine grain parallelism inherent to the
wide full instruction word concurrency of the PCS horizontal architecture. The optimization
part of the compiler includes microcode compaction and loop optimization using a software
pipelining technique. Another loop optimization method based on the unrolling of the loop is
under investigation and the sketch of the algorithm has been given. The comparison of these
two loop optimization techniques will be completely described in a subsequent paper.
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