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Optimal Control in a Failure Prone Manufacturing System

Contréle Optimal d'un Systéme de Production
perturbé par des Pannes
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Abstract:

This paper addresses the optimal control in a failure prone manufacturing
system. A discrete-time model is used. A single commodity is produced and there
is a constant demand. The optimal control policy minimizes the long run average
cost incurred by holding inventory and by failing to meet the demand.

We show that the optimal control policy in any finite horizon problem is
characterized by a critical number, which we call the ideal inventory level (or
hedging point). The system should not produce at all if the resulting inventory
level exceeds the ideal inventory level, and it should produce at full capacity if the
resulting inventory level is less than the ideal inventory level, it should produce
exactly enough to meet the ideal inventory level if the ideal inventory level is
attainable.

We also show that the ideal inventory level increases and converges to a finite
value as the horizon length increases. This implies that the optimal control policy
in the infinite horizon problem is also characterized by a critical number.

Résumé:

Dans ce papier, nous étudions le controle optimal d'un systéme perturbé par des
pannes. Le modele utilisé est a temps discret. Le systéme fabrique un seul type de
produit dont la demande est constant. Le contrdle consiste & minimiser le cofit
moyen engendré par les stocks et par les retards sur 1'horizon infini. '

Pour le cas de l'horizon fini, nous montrons que la politique optimale de controle
pour chaque période est caractérisée par un nombre positif que nous appelons le
niveau idéal du stock. La politique optimale de contrdle consiste & conduire 1'état
du stock vers ce niveau idéal. Plus précisément, on doit produire a la capacité
maximale si celle-ci conduit & un stock inférieur ou égal au niveau idéal. On ne
doit utiliser qu'une partie de la capacité (et méme ne pas produire) dans le cas
contraire de maniére 4 approcher au mieux le niveau idéal.

Nous montrons ensuite que le niveau idéal du stock croit et converge vers une
valeur finie lorsque la longueur de l'horizon tend vers l'infini. Cela implique que

la politique optimale de contrdle dans le cas de I'horizon infini est également
caratérisée par un niveau idéal du stock.

Keywords: Manufacturing Systems, Failures, Production Control

Mots-clés: Systeme de Production, Pannes, Contrdle Optimal
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1, Introduction

The manufacturing system considered in this paper produces a single
commodity. We use a discrete-time model. The manufacturing system is subject to
breakdown, and it can be in two states in each period: the running state and the
breakdown state. The transition between the two states is modelled as a
discrete-time Markov chain. The time between failures is modelled as a
geometrically distributed random variable with mean p-l, while the repair time is
modelled as a geometrically distributed random variable with mean rl. In other
words, if the system is in running (resp. breakdown) state, it will be in breakdown
(resp. running) state in the next period with probability p (resp. r). When the
system is in running state, the production in each period can be up to a maximal
quantity U; when it breaks down, it cannot produce at all. In the following, the
quantity U is called production capacity.

The demand in each period is equal to a constant d. We assume that U>d > 0.

Let x; be the inventory level at the end of period t. It may be negative, which
corresponds to a backlog. Let u; be the amount of production in period t. The
inventory level can be determined by

xt=xt+ut-d.

We suppose that the positive inventories incur a holding cost of ¢* per unit
commodity per time period, while negative inventories incur a cost of ¢’, with ¢*>0
and ¢>0.We seek an optimal control policy u, such that the following performance
index is minimized

1 T
lim —E[ X (ctx*+cxy)] ()
Toe T t=1

where x*; := max{0, x}, and x°; := max{0, - x;}.
Let o denote the system state as follows

o =1 if the system is in the running state;
=0 if the system is under repair.

Clearly, u, = 0 whenever a; = 0, and so we only need to determine the optimal
production u; when the system is in the running state, i.e. o, = 1.
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We show in Section 4 that there exists an ideal inventory level z* toward which the
production should be aimed, that is

u =0 ifx, ;-d2z*
=U ifx, ; +U-d <z*
=z*+d-x.; otherwise. 2

When the system is in running state, it should produce nothing if the resulting
inventory x; exceeds the ideal inventory level, it should produce at full capacity if
the resulting inventory level is less than the ideal inventory level, it should
produce exactly enough to meet the ideal inventory level if the ideal inventory level
is attainable. In the following, we call this policy a critical number policy with the
critical number z*.

Clearly, the production capacity of the system in the long term is equal to Ur/(p+r).
If Ur/(p+r) £d, the system does not have the capacity to meet the demand even if it
produces at full capacity when it is up. Thus, z* = e under these conditions. We do
not consider this trivial case in the following.

Literature survey

The production control in a failure prone manufacturing system is first addressed
by Kimemia and Gershwin[1983], and pursued by Gershwin, Akella and
Choong{1985], Akella, Choong, Gershwin[1984], Maimon and Gershwin[1988].
They use a continuous-time model in which machine failures are modelled as
some Markov process. They show that the optimal control satisfies a
Hamilton-Jacobi-Bellman (HJB) dynamic programming equation.

Akella and Kumar{1986], and Bielecki and Kumar[1988] address a simplified
version of this problem with only one product and one machine. They show that
the optimal control policy is in fact a critical number policy and give the close form
of the optimal critical number (or ideal inventory level). Bielecki and Kumar claim
that a zero-inventory policy may be optimal even in the presence of uncertainty.

Sharifnia[1988] addresses another simplified version of this problem with one
product but multiple failure modes. He establishes equations for the ideal
inventory levels.
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The paper is organized as follows. In Section 2, we present the main results of this
paper and gives some informal arguments. In Section 3, we address the
computation of the ideal inventory level. No analytical solution is obtained, but we
propose a simulation-based technique. In Section 4, we show that the control
policy in any finite horizon problem is a critical number policy (or hedging point
strategy) and the critical number increases and converges to a finite value as the
horizon length increases. This implies the optimality of the critical number policy
in the infinite horizon problem. In Section 5, we show that the average inventory
cost when using any critical number policy is bounded. Conclusions are given in

Section 6.

2.Main Results

This paper is motivated not only by showing the optimality of critical number
policy, but also by discovering why the optimal policy is a critical number policy.
In this section, we present the main results of this paper and give some informal

arguments.

We first examine a modified version of problem (1) with finite horizon T. We show
that there exists an ideal inventory level z, toward which the production u, should
be aimed, that is

u =0 ifx ;-d2z
=U ifx, ; +U-d <z
=z +d-x; otherwise.

The ideal inventory level z, is time-dependent. Intuitively, the system breaks down
more often over periods t-1, t, ..., T when given o, ; =1 than it does over periods t,
t+1, ..., T when given o =1. So one should try to keep higher ending inventory level
in period t-1 than it should in period t. This implies that

zl2222...2ZT=0.

Figure 1 shows an example with T =10. z, is the ideal inventory level and x is the
optimal inventory level. During the first 5 periods, the system is up. First, the
system produces at full capacity in order to meet the ideal inventory levels z;. The
ideal inventory level is met at the end of period 3. After that, the optimal policy

5



consists in following the ideal invetory trajectory. The system fails to work in
period 6 and the optimal inventory trajectory x; leaves the ideal inventory

trajectory.

bz —

Xt

up | up |up | up Jup |down|up |do up |up

Figure 1: Ideal inventory and optimal inventory trajectories

Since the ideal inventory level z, increases as t decreases for any finite horizon
problem, the ideal inventory level z; increases as the horizon length T increases.
Suppose that z; increases without limit as T increases. Then, the optimal control
policy in the infinite horizon problem is to always produce at full capacity. Since
the long term capacity of the system is greater than the demand, the inventory
level will also increase without limit. Intuitively, this cannot be the optimal policy.
We conclude that the ideal inventory level z; converges to a finite value as T
increases. This yields that the optimal policy in the infinite horizon problem is
also a critical number policy. To summarize, we have

z¥= lim z;.

T >

Ideal Inven ] Com

In this section, we examine the computation of the ideal inventory level z*. We
show that the zero-inventory policy may be optimal even in the presence of
machine failures.



Consider a policy u, = T %(x, ) given by a critical number z. It is

n%x4) =0 ifoy =0
=0 ifxg,-d2z,04=1
=U ifxgq +U-d<z,04 =1
=z¥+d-x; otherwise. 3

The only quantity to choose is z.

We assume that when the policy (3) is used, the process (x;, o) has a steady-state
probability distribution

PZ(A, o) := lim Prob (x, € A, oy = @)

t—oo
where A is an interval set. Define
QZ%(A) := P%(A,0) + P%(A1).

The average inventory cost corresponding to the policy (3), denoted by J(z), can be
computed by

0 +o0
J(z)=- | ¢ x Q%dx) + [ e* x Q%(dx) 4)
-00 0

By similar procedure as that used by Bielecki and Kumar[1988], the following
properties can be proved:

PX(z, =), ) =0 fora=0,1 (5.1)
P({z}1)==w>0 5.2)
PZ(A, o) = PZ*9(A+ 6, o) for o = 0,1 (5.3)

If the inventory level x,, starts with a value greater than z, it will be depleted by the
demand d until it hits z. After that, the policy (3) ensures that the inventory level
never exceeds z. Thus, the property (5.1) follows. The property (5.2) claims that
there is a strictly positive probability mass at z. Whenever x; hits z with o =1, it
stays at z until o, switches to zero. So x, spends a positive fraction of time at exactly
the level z. This implies that the point z has a positive probability mass.

Property (5.3) means that the translation in z merely translates the probability

distribution PZ. The properties (5.1), (5.2), and (5.3) can rewritten as follows
7



P%((z, =), o) =0 fora=0,1 6.1)
P%({z}),1) = PO{0},1) == @ >0 (6.2)
P%(A, o) = POA - 2, ) fora =0,1 (6.3)

We are now ready to optimize J(z). From the above properties, moving z from 0 to
a negative value merely shifts the distribution PO by z units. From property (6.1),

we have
Jz)-J0)=c |zl for z <0.

Hence the ideal inventory level z* will never be negative.
Clearly, J(z) is a continous convex and piece-wise differentiable function.Its

left-side derivative and right-side derivative always exist . For any z > 0, they can
be computed as follows

tim  So0 QO — 21y + ¢*Q%(~ 2, 1),
X—>Z-
and
tim T QU= - 2)+ Q0 - 2, 0.
X—>Z+

A necessary and sufficient condition of the ideal inventory level z* is that the
lef-side derivative is negative and the right-side derivative is positive, i.e.

~ ¢ Q%(= o —2*)) +¢*Q% (- z*, 01) <0,
and ¢))
~c Q%(= o3 -z*) +c Q%[ -2* 0] 2 0.

The necessary and sufficient condition of z* = 0 is as follows:
-0 +-0
—¢ Q((=240))+c™Q([0,0])20.

It implies that the ideal inventory level will be zero if the probability mass o is
great enough.

We have not obtained the analytic solution of the probability mass ® and the
probability distribution function Q%(-z,0). They can be evaluated by simulation.

Nevertherness, we give in the following example an analytical solution when
U=2d.



Example: Let us consider the case in which the production capacity is equal to
exactly twice of the demande, i.e. U = 2d. The assumption that the long term
capacity is greater than the demand implies that

r>p

where r and p are the repair rate and failure rate respectively. We show in
Appendix 1 that

z*/d = max{0, [v] }

where [v] denotes the smallest integer greater or equal to v and
r—p ct+c

ln(1+-p—(r_—F;')')—ln o

Inl-r)—In(1-p)

V =

The necessary and sufficient condition that z* = 0 is as follows:

2(1-p)

21+ =.
p+ct/c

r
P

Fix the problability p. The long term production capacity decreases toward the
demand as the probability r decreases toward p. Then, the ideal inventory level
increases without limit. The value of z* given above verifies these issues, i.e.

Hm z* — oo,
T —p+

Consider now the continuous-time model as a limit case of the discrete-time
model. Let A be the elementary interval length and let 8, A and p be the demande
rate, the failure rate and the repair rate respectively, i.e.

d=8A,p=AA,andr=pA.
It is quite easy to show that for p > A,

o g* 8, 2M(ct +¢) 2Mc*t+c)) N
1 zZ = if ———— :
A-0 H—2A ctH(A +p) ct(A+p)

=0 otherwise .

This limit is equal to the ideal inventory value given by Bielecki and Kumar{1988]
for the continuous-time model. This leads us to believe that the other results of this

paper may be true for the continuous-time model.
9



f Critical N r Poli

In this section, we show that the optimal control policy is a critical number policy.
We first show that the optimal control policy is in fact a critical number policy in
any finite time horizon problem and the critical number increases and converges
to a finite value as the horizon length increases. This yields the optimality of
critical number policy in the infinite horizon problem.

Let us consider a modified version of problem (1) with horizon T. Let F(T.,i,£) be
minimal expected inventory cost over periods t, t+1, ..., T, when x; = § and o=, i.e.

T
F (T,i, &)= min E{ )y g(xs)}

s=t
subject to
X =Xgq +ug-d fort <s<T
u <a, U fort <s<T
x=fandoy =i

where g(x) = ¢c*x* + ¢'x".
The expected cost function F(T,i,§) has the following properties:

1) F(T,i,f) is a continuous, convex and piece-wise linear function in &;
2)Forany V §; <&, <0,Fy(Ti§))>F(T,it,);
3) There exists a finite £ (T,i) 2 0 that minimizes F{(Ti,£).

These properties are quite easy to show. For the clarity of the presentation, we do
not give the proof.

It is clear that for any initial inventory level x, ;, the optimal control u; should
minimize the expected cost F((T,1,x;,) when the system is up. Intuitively, the
convexity of the function F(T,1,§) implies that the optimal control policy should
drive the ending inventory x; toward é*t(T,l). The following theorem confirms
these arguments.

10
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Theorem 1: For the horizon T problem, the optimal control policy is a critical
number policy. More precisely, there exist z; 20 fort =1, 2, ..., T such that when
given x; ;, the optimal control policy u, is given by:

uwy =0 ifog =0
=0 ifx,q-d2z,04=1
=U A ifx,; +U-d<z;, 04 =1
=z +d-x, ifzt-USxt_l-dSzt,at=l.

Proof: Notice that the ideal inventory level z, is equal to §*t(T,1 ). Itis clear that u;,=0
when a; = 0. We examine separately the optimality in the three cases with a; =1
where the optimal control is given.

Case I: x4 -d2 ﬁ*t(T,l), oy =1
Since Fy(T,1,§) is convex in £ and for any u; > 0,
X=X+ -d>x, -d> i*t(T,l),
then
Fy(T,1,x) 2 F(T,1,x -d).
This implies that u; = 0 is the optimal control.

Case 2:x, 4 +U-d < £"(t,T)1), o =1

For any u, < U, we have
x, =% + U -d<x,; +U-d<SEYTL).

This yields that
Ft(T’l ,Xt) 2 Ft(T,l ’Xt']. + U ‘d).

Thus, u, = U is the opimal control.
Case 3: £*,(T,1) -U<x,-d<ET1), o =1
Let u; = i*t(T,l) +d - x, ;. The resulting x, is equal to &.*t(T,l ). Thus, ﬁ*t(T,l A+ d-xq

is the optimal control.
Q.E.D.

11



Since Fp(T,1,8) = g(§), the function Fr(T,1,8) reaches its minimum at &= 0. This
yields that

zp= §p(T1) =0.
We examine now the dynamique property of the ideal inventory level. The
following theorem claims that the system should try to keep higher ending

inventory level in any period that it should do in the subsequent period.

Theorem 2: Let z; be the optimal critical numbers for the horizon T problem. Then,

we have
% 2222...2ZT=0,
and
ZtSZt+1+d V1i<t<T-.

Proof: We will show the theorem by induction.

Since zy_; 2 0 and zp = 0, it follows that zp ; 2 z. V £ 2 d, the expected cost can be
Fr.4(T,1,§) computed as

FT—l(T’l ,&) = c+ g + c+ (& - d).
This implies that
zT-l < ZT +d.
Suppose by induction that the therorem is true for any t > k. That is
ZkZZk_H_ 2. ZZT=0
and
7, <z 4 +d Vk<t<T-1.
By Lemma 1, we have

7 Sz < 7 +d.

Thus the theorem is proved.
Q.E.D.

12



Lemma 1: For any k < T-1, if the conditions

zt+1£ztSZt+1+d VkStST-l

hold, then
Zy < 2.1 < Zy +d.

Proof: (see appendix 2).

Now we are ready to show the stability of the optimal control policy as the time
horizon T increases. Intuitively, the average inventory cost when using the
optimal control policy are most likely to be bounded. Thus, the ideal inventory level
z, cannot increases without limit when the time horizon T increases. The
following theorem addresses these issues.

Theorem 3: The ideal inventory level z; converges to a finite value when T
increases. That is

lim z) = 2% < + .
T—oo

Proof: Let pit be the probability that the system is in state i in period t given o =1.
p?, and p!, satisfy the following conditions: '

T p t—1 . r
p1t=p+r+p+r(1_p—r) Zmln(p,m),

and

From the optimality of z, and &.*t( T, 0), we have
F,(T.1, z;)
= C+ Zl + E {Ft(T’ 02, X2)/(X1 = 1 and XI =Zl}
> c* z) + ply Fy(T,1,zy) + pO,F,(T,0.6%,(T,0)).

Similarly, it is true that Vt < T,

pleg Fra(Tlz ) + PO 1Fp 1 (T,0.6% 1 (T.00)
2p, D etz + pl, F(T,1,z) + pOF(T,0,6*,(T,0)).

13



Consequently, we have

T (D]
Fy(T.1, 2)) 2 lelt ctz,
t=

By combining the above equations, we obtain

T
F\(T,1,2)2B X z,
t=1

where B = ¢t min(p, r/(p+r)) > 0.

In Section 5, we shall show that the average inventory cost J(0) exists and is
bounded when the control policy (3) is applied with z = 0. This implies that the
minimal average inventory cost is bounded, i.e.

FI(T’ 1, Zl)

T <J(0) +0Q) VT

This implies that the mean of z; is bounded. By theorem 2, z; converges to a finite

number when T increases.

Q.E.D.

From theorem 3, we conclude that the optimal control policy for the infinite
horizon problem is also a critical number policy. The critical number can be

defined as
z*= lim z,.
Tooo
. f ez 0 r .

The purpose of this section is to show that the average inventory cost J(0) given by
the policy (3) with z = 0 does exist and is bounded. Thus, J(z) exists and is bounded
for any other z. The following theorem proves these arguments. Notice that the
proof of theorem 4 is similar to the one given by Bielecki and Kumar [1988].

14
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Theorem 4: Let x; be the inventory level when using policy (3) with z = 0 and x,=0.
Then it follows that

- lim E[x,] <A*d

t— o0
where A is a positive constant.

Proof: When applying the critical number policy (3) © 0 with xo =0 and o =1, x; will
never be positive. Figure 2 shows a typical inventory level trajectory. The inventory
level starts at level 0, and it stays at level 0 while the system remains in the
running state. It leaves the level 0 when the system breaks down and return to
level 0 after a certain number of periods.

a, a, b a 41 bpyp

b;
* e 3 e »
N

-X

ty

Figure 2: Inventory level trajectory of critical number policy

Let {a,,} be the sequence of periods in which the inventory level come back to level 0.
Let {b,} be the sequence of periods in which the inventory level leaves the level 0.
Let T, be the number of periods in which the inventory level stays at level 0 after
a, and let T’ be the number of periods that the inventory level stays negative after
b

0
Thus, we have

x, =0 Vn>0andt=a,a,+l,..,b,-1,

x, <0 Vn>0andt=b,,b +1,..,a,,-1,
and

Tn=bn-anandrn=an+1-bn.

Clearly, the system should be in the running state when the ending inventory level
is zero, i.e.

x, = 0 and o =1, Vt=ag,, a,+1, ..., b, -1.

Consider an elementary interval t for which x; =0 and o =1. The only way that the
15



inventory level stays at level zero at the end of the next period is that the system

stays up. As a consequence, .

Prob{o,; =1and x;,; =0/ a, =1 and x, =0} »
= Prob{o,; = 1/ o, =1} o
=1-p.

This means that T, is a geometrically distributed random variable with the mean

pl.

We examine now the time periods b, b,+1, ..., a,,; -1 in which the ending
inventory level is negatif. If the mean of I',, exists, it follows that

- E(xy) <E(T,)d.
We only need to show that E[I', ] exist.

Since x; leaves level 0 only when the system breaks down, we have

Op,g=landxy =0 -
and

op, =0and x, <0. Y
Let
ko :=bn

k1 i=min{t > ko # oy}

be the successive periods in which the system state changes, and let

Y = Kom 1 - Komg and Zyy := ko - ko 4

be, respectively, the number of periods in which the system stays consecutively in
states 0 and 1. Clearly, Y, and Z_ are geometrically distributed random variables

with mean rl and p! respectively.

Let y, be the inventory level if the control policy is to produce always at full capacity
fort >b,,. Then

m m
Y, _q= 2 (U-dZ - X dY,.

2m i=1 i=1

16
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Let
7 := min{ kop¢ Ygom-1 2 O}

By the definitions of T,, and I';,, we have
T-by=Th + I

By proving that the mean of t exists we show the existence of the mean of I';,.

" From the Principle of Large Deviation (Varadhan[1982]), the quantity

1 m
<gand | XY Yi—r‘1

m.
i=1

,
_2 Zi_p—l

m
i=1

.

1- Prob{

decreases exponentially in m. This implies that

m
5 (Zi+Yi)Sm(p‘1+r‘1+e+n)
i=1

1 - Prob o
and 2 ((U-d)Z, —dY ) 2m[(U-d)(p~ ' -e)-a*¢™ ' +m)]

i=1
also decreases exponentially in m. Since
Ur/(p+r) > d,
there exists €,n so that
U-d@l-e)-d*clm)>0.

Thus, the quantity

m m
1—Prob{ Y (Zi+Yi) Sm(p‘1 +r‘1+e+n)and p ((U—d)Zi —in)ZO}
i=1 i=1

decreases exponentially in m. This implies that
1-Problt-b, <m(pl+rl+e+n)

also decreases exponentially in m and therefore also 1 - Prob[ 1 - b,, < s]. It follows
that the mean of 1 - b, exists. Q.E.D.

17



6. Conclusion

We have shown in this paper that

1) The optimal control policy in any finite time horizon problem is a critical

number policy;

2) The critical number increases and converges to a finite value as the

remaining time horizon increases.

These two points yield the optimality of the critical number policy in the finite time

horizon problem.

Futur research is necessary to examine the case of demand uncertainty and to

extend the results in this paper to the continuous-time model.
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Appendix 1
Ideal Inventory Level Computation when U=2d

Since Ur/(p+r) > d and U= 2d, we have
r>p.

When applying the control policy no(xt_l) with xy =0, the inventory level x, takes
value at some discrete points -nd with integer n = 0. Let g;(n) be the probability that
x; takes value -nd while the system is in state iin equilibrium. It yields that

q;(n) = q;(m) (1-p) + qy(n) r forn>1;
gpm) = q;(n) p + gy(n) (1-1) forn>1;
qo) = q;(0) p;

q;(0) = q; (0) 1-p) + g() T + q; (1) (1-p);

q0) =0;

zi,n q;(n) =1.

Solving these equations, we obtain

q@®=Ca™! forn>1,
qop(n) =C a” forn>1,
q;(0) = C a/p,
qy0)=0
where
a=(1-r)/(1-p)and C = (pr - p2) I - 1) (r+p)].

Let S(n) be the probability that the inventory level is equal to -nd, i.e.
Sn) = q;(m) + qom).

The average inventory cost J(z) can be computed as follows

J(z)=ct I S(n)(z-nd)-c ¥ S(n)(z-nd) Vz20.

nd< z nd 2z

From the necessary and sufficient condition of z*, it is easy to show that z* = n*d
where n* is the minimum of non negative integer n which satisfies

ct £ SE)-¢c X S@H)=z0.

i<n i>n
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After some manipulation, we obtain
n* = max{0, [v]}
where [v] denotes the smallest integer greater or equal to v and

1-a ct+c
ln(l+m)—ln —C_+—

V= In a

The necessary and sufficient condition of z* = 0 is

1> ct+c¢
- +1 l—a
c(1+ p+pa

)

which implies that

2(1-p)

21+ —.
p+ct/c

I
P

Appendix 2
Proof of Lemma 1

Lemma 1: For any k < T-1, if the conditions

21527 +d Vk<t<T-1 (al)
hold, then

Z, 2 <z +d

Proof: Let {y,(e); t 2 k-1} be a realization of the discrete-time Markov chain starting
with v _1(e) = 1. Let {xlt(é‘,, ¢)} be the optimal inventory trajectory starting with
x).1 =€ under the realization {y,(e)} and {ult(ﬁ, )} be the corresponding control. Let

{x2,(§, &)} be the optimal inventory trajectory starting with x, = £ under the
realization {y, ;(¢)} and {uzt(ﬁ, ¢)} be the corresponding control.

1) Proof of zZy < Zy1
It is equivalent to show that V€ < z,,3c>0suchthatVA<c

Fk-l(T, 19 a 'A) = Fk-]_(T, 1’ &) 2 Fk(T, 1’ & "A) = Fk(T’ 1) &)- (32)
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By condition (al), the invehtory levels xlt(ﬁ, €) and x2t(§, £) can never exceed the

ideal inventory level when § <z, i.e.

x1,(€, &) <z, and X% (&, &) < z vk<t<T. (a3)
Since 2, ; 2 z; for t =k+1, k+2, ..., T, we have

xl 1(& ©) 2x2 (& ©) vk<t <T. (ad)

Let
A(e) ;= minft: T>t >k, v, 1(€) =1 and u2(&,€) < U}

be the first period in which the production uzt(&,, g) is less than the capacity. This
implies that the ideal inventory level is attained at the end of period A(e). By
convention, A€) = T +1 if A(e) does not exist.

As a consequence, we have V t < A(g)

ult_l(é, e) = u2t(§’ 8) = Yt-l(s) * U’ (a5)
and

Xlt_l(é, 8) = th(g, 8) < zt. (36)

Let ¢ be defined as follows:

c:= min (U-u2 ( ¢)).
e/AE)<T A )

From (a5) and (a6), it follows that VA <c¢

xl, 1 (E-A,€) = x2(E-A,8) =x%(§,€)- A Ve and t <Me). (a7)
From (a3) and (a4), we have

X2 ) &4, 8 = %20 & ©) = e Ve, (a8)
and

xl}\,(ﬁ)-l (&,—A, 8) < xl)\,(ﬁ)-]. (E_. 8) < Z)\'(e)_l Ve (a9)

From (a7), (a8) and (a9), we have



Fk(T’ 1’& - A)

A(e) -1 )
= { tgk glx (& e)—A]+FM£)(T, 1, Z) ©)

: A(e) -1
=F (T, L&) + E{ z (g[x3(E, &) - Al-g(x?¢, e)))},

t=

and
Fk_ I(T’ ls é - A)
A(e)—2 1 1
) {t=l}(:— 1g[xt(§’ &) - 4l+ Fk(e)— 1[T’ ], xx(e)_ 1@ - A, e])}
A)-1
2P (B 1O+ E{ I (glx(5 0 - A]- glxiG, e)])}.
t=k
This yields that
Fk-l(T, 1, é "A) N Fk-l(T’ 1, &) 2 Fk(T, 1, g -A) - Fk(T’ 1, &)

2) Proof of z(k-1) < z(k) +d
It is equivalent to show that V&> z,,3¢c>0suchthat VA<ec

Fi T8 +d +A)-F (T, 1, +d) 2 F (T, 1, & +A) - Fi (T, 1, §). (al0)
We prove (al0) in two cases.

Case 1: §2(k-T+1)d
In this case, the initial inventory is greater than the total demand either with
x_1= &+d or with x; = &. Thus we have

x1,(E+d, &) 2z, and ul(E+d, €) = 0,
and
x2,(€,€) 2z, and u(£, ) =0 Vi, &

Then, it is obvious that VA > 0,
Fri(TLE+d+A) - Fy (T, 1,8 + d) = (k-T+2) A,
and

Fi (T,1,§ +A) - Fi (T, 1, &) = (k-T+1) A.

Thus the equation (al0) is true for any & > (k -T+1) d.
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Case 2: £ < (k-T+1)d

Let

p(e) := minf{t: T 2t > k such that xlt_l(é';+d, €) =z, ; and ult_1(§+d, £)>0,
or x2(&,¢€) =z, and uZ (&, €)> 0).

By convention, pu(e) = T+1 if u(e) does not exist.
As a consequence, Vt < p(g)

Xlt_1(§+d, 8) = x2t(§, 8) + d (all)
and

ult_1(§+d, 8) = u2t(€, 8)- (al 2)

Let ¢ be any positive value which satisfies the following conditions

c<z —xl(§+de) Vet<pe)-landz —xi§+d e)>0;
cSzt—x%(E,, £) Ve,t<u(s)andzt-—x%(£, g)>0;
1 1 .
c< Ule)- 1(§+ d, e) Vg () < Tand Uy - l(& +d,e)>0;
2 : 2 .
c< uu(e)(é, £) Ve we)sT anduu(e)(i, £)>0;
c<-x%(& €) Vet uEe) =T+ landx%( e) <O.

Since § < (k -T+1) d and the set of realization ¢ is finite, c exists.

For any 0 < A < ¢, the inventory levels xlt_1(§+d, €) and xzt(é, g) for t < p(e) increase A
when & increases A, i.e.

and (a13)

Combining equations (al3) and (all), the following equation is true for t < p(€)
g(xt, 1 (E+d+A, €)) - gxly 1 (E+d, £) 2 g(x2(E+A, ©)) - g(x2,(&, €). (al4)
Let us first consider the realizations in which pu(e) <T. We have either
xlu(e) 1(E€+d, €) = Zye) - 1 and ulu(e) 1(E+d, €) >0

or
xzu(e)(éa 8) = Zu(e) and uzu(a)(ﬁ, E) 0.
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In any case, it is easy to show that

x! o) 1(E+d+A, €) 2 ey 1+, © 225 1,
and

qu(e)(&’ g) < qu(s)(g'l-A, £) < Zu(e).
This means that

Fuey 1(To1x g 1E+d+A, €) - Fy 4(T1 Xl e 16+d, ) 20, (al5)
and

FI.I.(E)(T’]' ’qu(ﬁ)(é-'-A’ E)) - FH(S)(T’]' ,qu(e)(g, 8)) <0. (3.16)
We consider now the realizations in which p(e) =T+1. We have

xly 1 E+d+A, &) = X2 E+A, ) + d=x2(E, e) + d +A VE<T. (al?)
Since £ < (k -T+1) d and p(e) =T+1, then

x2T(§, £) <0 and xlT(F,+d, £) <0. (al8)
Let 1 be the first period for which x2t(E_,, ¢£) is negative. From (all), we have

x2(E,€) < 0 and x1} ;(E+d, )2 0. (a19)
By the definition of A, we have

x2|(E+A, €) = x%(€, €) +A < 0. (a20)

From (al18),(a19) and (a20), we deduce that

g(xl) (E+d+Ag)) - gxl) (E+de) + gxIp(E+d+AE)) - glxlp(E+d,e))

¢t A-cA, (a21)
and
g(x2(E+A, 8) - gx% (€, €)) = - ¢A. (a22)

By combining (al4), (a21) and (a22), it yields that Ve such that p(e) =T+1,

T
2 l(g(x1[(§+ d+ 4,8) - g(x}§ +d,8)))
t=k-

T
2 I (g + 4, ) - x (& ©)) (a23)
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L]

By (al4), (al5), (a16) and (a23), we have
F (T, L&+ 4)

H(e) - 1 i
] { t=zk gOxiG &)+ A)+ Fue L xu(e)(é+ 4,€))

u(e) -1 ) )
SFJRL®+E{ti{@@gé®+A)—yﬁ@xﬂ),

and
Fk-— I(T’ L §+d+ A)
nEe)-2 . 1 Coeae
= {FE_ 1g(xt(l'; +d,e)+ A)+ Fu(s)_ (T, L xL ey- 1(;3 ,
nE)-1 ,
2F, _ (T, L&+ E{ Zk (g(x%(f;, e+ A)- g(xt@' &)t .
_ 2
It follows that

Fp(TLE+d +A) - Fy (T, 1, £+ &) 2 Fi(T, 1, & +A) - Fi(T, 1, &)
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