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RESUME

On considére des schémas discretisés de problémes de
contréle optimal en temps continu. On cherche le cogt
optimal definie par les équations de HIJB assocides. On -
présente un algorithme qui construit une suite de
supersolutiones 4 partir d’un ensemble de subsoclutiones
de telles équationes et qgi;;onVérge en un nombre fini
d’itérations. On donné.auééi une.estimétion de 1’erreur

d’approximation commis.

ABSTRACT

We consider a discrete scheme for optimal control
problems in continuous time. We look for the optimal
cost given by the' corresponding HJB equations. We
present an algorithm which generates a sequence of
supersolutions from a set of subsclutions of such
equations, convergent in a finite number of iterations.

¥e alsc give a bound for the approximation error.



1. INTRODUCTION

We present in this paper an accelerated algorithm to solve a
nonlinear fixed-point problem originated by discretization of

optimal control problems in continuocus time.

Generally speaking, it is possible to sclve a great number of
optimization problems by finding solutions to the associated
variational /quasi-variational inequalities C(VID, or equalities of
Hamilton-Jacobi-Bellman  C(HJBD type. When we apply finite
difference methods or finite element methods C(see [11, (21 and
{31, these VI become diocrete variational or quasi variatiocnal
inequalities (DVID which can be considered as optimality
conditions for a Markov chain optimal control problem. Such DVI
are solved by finding a fixed-point of a nonlinear contractive
operator Cit can be shown that this is equivalent to getting the
solution of these DVID. When doing suitable iterations and with a
proper choice of the starting point, the later problem can be
considered as the equivalent one of generating a sequence of
subsolutions which grow up to the desired solution. An important
feature of our algorithm consists on defining another sequence of
supersolutions whose limit is the fixed point. In this way, we can
also give a bound for the approximation error of the method. The
solution of the fixed-point problem is frequently found by an
iterative pr.oced-ure which <can become very slow when the
contraction factor of the operator is very close to unity Csee
[41>. The proposed accelerated algorithm is based on the
resolution of linear systems which appear implicitly in the
contractive operator definition. In our computational
implementation we have applied a conjugate gradient algorithm for

the linear system resoclution (see [5]D.



2. DESCRIPTION OF THE DISCRETIZED PROBLEM

¥e employ here a notation akin to that introduced in [11,

that is, let B = { £ } be a finite set of indexes such that for

each f3€® there exists a matrix Aﬁ with the following properties:
c1> AP is a square matrix of order N. | 4
2> Aﬁi’j > 0 Vi, Vi.
3 ZA”U <1 Wi

b]
For w e (RN. we define M‘Bw = Aﬁw + fﬁ, where fﬁ € IRN.

~An operator M : IRN —_— [RN is introduced by the definition:

(Mw) = minCMBw . = min {ZAﬁ.. w. o+ fﬁ. }
l._ ﬁez L5 {368 5 L% | J L

Due to properties (1) - (3>, M is a contractive operator, in the

following sense:

If we introduce in R" the norm | v || = max |wt|, then there exists
1<i<N

n € [0,1) such that

[ Mv - M0 | <m [ w-w | vw wer' o

The accelerated algorithm proposed in this paper computes the
solution of the following problem:

Find w e R / Mw = w ca

Because of (1), there exists a unique sclution of

equation (2> which can be computed by the following algorithm:



ALGORITHM O

Step 0: Take woéRN, v = 0, and start the procedure.
Step 1: Define w’''= mincM w™> Ci.e. W™ = MW 0.
peX
v V+e
Step 2: If wo = w, then stop; else set v = v + 1 and go
to Step 1.

This Algorithm produces either a finite sequence w’ whose
last element is w; = w Csolution of fixed-point problem C(2)) or an
infinite sequence w’ converging to w. Also, the following bound
for the approximation error holdé.:

v

SRS B B

3. ACCELERATED ALGORITHM

In the computation of Algorithm O it is common to
observe that the index (_QCi) which realizes the minimum remains
constant for e}ach component i, after a finite number of
iterations. So Algorithm O is essentially used to solve the linear
system ‘

w = (MBC'L)W).
L 1
through iteration

V+1 ™ BCi.)wv) 3

Tharefere we kave defined an accelerated algorithm that uses
" this experimentally observed property by solving (when suitabled,
the linear system implicitly defined in C(3).

This new algorithm converges in a finite number of steps.



Description of the accelerated algorithm CAlgorithm 1):

Step

Step

Step

Step

Step

Step

Step

Step

N

0: Take wleR r P >

max

procedure.

1.

Set v = 0, 4 = 0, and start the

1: Define wl,‘)ﬂ('u) = minCMﬁvau)D,t.

fie2

Determine (i,») such that w''Cw = ¢

w€+1Cp),

2: If w‘,:c J7)

l'v)vapDDi

i

then stop; else go to Step 3.

3: For v > 1, compute q =

4: If q = O then set p

5 If p Spmax then set

to Step 6.

v

card { i 7 ﬁti,v) = ECi,v—l) }.
p +1, else set p = 0.

= v + 1 and go to Step 1; else go

6: Define pCi,uw = Eti.v) and solve the system

ch ud

7: Set v = O, w‘: Cu+1d

]

CMﬁCl’“)pr)Di

kaMD. M = + 1 and go to Step 1.



4. CONVERGENCE OF ALGORITHM 1:

For the sake of simplicity, convergence of Algorithm 1 will

be proved for those cases where the following-condition CC1d is

satisfied:

For any vector of indexes y = CY:“"’yN)’ v, € B, define
zCy> as the solution of the system:

2(}/),L = (NYCL)zC}/)),L
Then we say CC1D> is verified if ¥ Z ¥ s 2Cy> = (PO

THEOREM:

If CCi1)> holds, then Algorithm 1 produces a decreasing
sequence of elements yCud) that converges in a finite

number of steps to the fixed-point w of opefator M.

Proof:

First we prove the following assertion:

Proposition 1:

V u, Step 6 s reached after a finite number of cycles through

loop €1,2,3,4,52, allowing the generation of a new element y{ut+io.
Let us assume by contradiction that _there is an infinite.

number of cycles (1-...-50, then the corresponding sequence vap)

will converge to the unique solution w of the fixed-point problem

cad.

If we suppose there are two different vectorsvy and ; in the

calculation of vauD which appeér an infinite number of times



Finally

y.Cd> = lim[C Mﬁ)kwv]ts [c Mﬁ)kwv]‘Sw?S
1 8
k->m

<swtrt< ... s w:Cy) < w‘:cu) =y Cu-13 'q=))

Thus
)kCuD =< kay—l) Vuzl, Vi

Considering there is only a finite number of possible
variations fC.,ul), we can only generate a 'finite number of
different yCuD; that' is why after a finite number of cycles, the

test in Step 2 is satisfied and Algorithm 1 finishes, having found

the fixed-point of operator M.

Remarks:

C1) Property C9): y_‘C;.D < y_LCu—l) V u 21, ¥V i holds

independently of the initial point w® chosen.

(2> When that initial point w® is a subsoclution (i.e.

o , o ,
w < min CMﬁQ )i J we can write

B

w‘;con < w:COD < ... < w‘_:‘°’co> < y COd

From the monoctony of Mﬁ and definition of w Cw = Mw is the

fixed pointd we will have

w‘,:co> < G,L Vi, Vv < oo

10



and

w = lim yCud) < yCud vV u = 0.
H—>®

Therefore we can obtain the following bound for the

convergence of Algorithm 1:

w‘:co> < w‘,:co:a < w‘_:co> <w S yCw < WL = ¥ Cumtd

Consequently

(33 Vectors yCu) are supersoclutions since they verify

1y 2 G,L V i, due tc Remark (2.

ii)d in;.D 2 CMyCyD)i Vi, Vu=0, because

[Mﬁ’c'»»u) 3

yw = yC;_D]L > m;.gn [M y'cm],L = [Mycw],l .

(4 w is the maximum subsolution of (2 and the minimum

supersoclution of (a>.

C5) When condition CC1) is not verified, Algorithm 1 can
be modified, in order to keep convergence, using similar
techniques to those described in [8] (developed there for
the special case of differential games with Astopping
timesD. In our case, these modifications take the

following form:

11



Step 0°: Take w’eRN, p > 1. Set v = 0, u = O, £ > O and start

max -

the procedure.

Step 1°: Define w.''(ud = minCMBvayD)i.

Step §7: If p <p___ then set v = v+, ¢ = /[]w””cs-o - wlow |

3e3

Determine Es Ci,) = { pe® - |w‘:“‘cm—cmﬁw”'cm>i| < e, }
v

-

and go to Step 1; else go toc Step 6°.

Step 6°: Let it be fCi,u) any f3e® such that w‘_:'”cu) = CMﬁvauD)i

Solve the system

yCud = Mt "Dyc,.o)L

(6] Algorithm 1 can also be applied in cases where M is
not strictly contractive C(i.e. it is only verified

inequality [Mw - Mﬁ" < w - ;") but a fixed power of M

have this property, i.e. there is an integer s such that
uMsw - MS;" < n Jw - ;", with n < 1. Property of
convergence is conserved. An application of this type can

be seen in [7].

iza



{7} Algorithm 1 can be extended using others. stopping
rules in Step 5. It is alsoc transformed in a convergent
algorithm which accelerates Algorithm 0. These extensions,
itsvpropertiesuand the corresponding proofs of convergence

are considered in [(S].

5. PRACTICAL CONSIDERATIONS AND NUMERICAL EXAMPLES

We_show in this section some cqmparisons between computing
times of Algorithm O and Algorithm 1.

We can observe the strong dependence of the acceleration
phenomenum on the contraction factor 7. The proposed Algorithm
shows its efficiency specially when 7n is close to unity.

The results shown have been produced in a VAX 780, for the
solution of an optimal control problem posed' for a divergent

multilevel system with stochastic demand (see [G1).

n CPU time CPU time % Reduction
Alg. O Alg. 1
(in sec.) (in sec.)

0. 80 22. 33 17.76 23.13

0. 856 70.58 20. 00 71.66

0.91 108. 71 21.01 81.68

0.96 300. 73 22. 09 92. 65

0.938 gg1. 02 22. 43 Q7.74

13



6. CONCLUSIONS

Ve present Algorithm 1 and we show it will always converge
.after a finite number of steps. If condition CC1) holds, the proof
of the convergence can be simplified, but in absence of CC1d, the
algorithm can be modified Cas shown in Remark 5) so as to assure
its convergence.

Algorithm 1 is specially suitable for solving fixed-point

problems whose contraction factor is very close to unity.
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