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Résumé

Dans cet article, nous nous intéressons 2 la propagation d'ondes élastiques dans des milieux
isotropes hétérogénes, invariants par translation dans une direction. Nous faisons 1'analyse
théorique de l'existence d'ondes guidées et de leurs propriétés. En particulier, les seuils, ou
fréquences de coupures, sont €tudiés en détail. Le principal outil mathématique est la théorie
spectrale des opérateurs autoadjoints, et plus spécialement le principe du Max-Min.

Abstract

In this article, we are concerned by the propagation of elastic waves in isotropic heterogeneous
media, invariant under translation in one direction. We give a theorical analysis of the existence
of guided waves and of their properties. In particular the thresholds, or cut-off frequencies, are
studied in detail. The main mathematical tool is the spectral theory of selfadjoint operators, and
more specifically the Max-Min principle.
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0. INTRODUCTION

The question of the existence of guided waves when the domain of propagation is infinite
and invariant under translation in one space dimension is not a trivial problem since it generally leads to
an eigenvalue problem for an unbounded selfadjoint operator with non compact resolvent in an
appropriate Hilbert space. The cases corresponding to scalar propagation equations, namely the
Schridinger equation, the acoustic wave equation, the water wave equation, are now well-known and
have been investigated from various points of view by several authors, i.e. [D.G.1], [We.l & 2],
[Wi.1 & 2]. The case of wave phenomena governed by hyperbolic systems is much more complicated
and has retained much less attention in the mathematical literature. Recently, the case of Maxwell's
equations was studied by [Ba.Bo.] ( See also [G.1], [We.3]).

In this paper we are interested in the elastodynamic equations ([Ac.],[E.S.],[Mi.]) which
govern the propagation of elastic waves in solids and more specifically by the guided waves
propagating in media which are invariant under translation in the direction x3.In our case, the
phenomenon of waveguide is provoked by a local variation in the plane (x1, x2 ) of the coefficients
characterizing the elastic behaviour of the material, that is to say, in the case of linear isotropic media,
the density p and the Lamé's parameters A and . The situation is slightly more complicated than in the
case of Maxwell's equations since there exist two types of waves ( instead of one for Maxwell's
equations ) propagating in a homogeneous medium ( i.e. when p, A, | are constant ) : the P-waves
propagating with the velocity Vp= ((A+21)/p)1/2 and the S-waves propagating with the velocity Vs =
(w/p)12. In [B.J.K.], the authors studied another type of elastic guided waves : the surface waves . In
their model problem, the medium is homogeneous but the propagation domain is the exterior of a
infinitely long borehole. In that case, the boundary condition, namely the free surface condition plays a
very important role in the mechanism of surface wave (see, also, [G.2]). In our case, the only
phenomenon which will generate the guided waves will be, as we said before, the local variations of p,
A, W as functions of the two space variables x; and x2 and the main objective of this article is to find
some conditions on these functions to guarantee the existence of guided waves. In a second step, we
shall study some properties of these waves.

Before giving the outline of the paper, let us give our notation. The unknown function is the
displacement field U(x,t) = (U1(x, 1), U2(x, 1), Us(x, 1) ) forx given in R3 and tin R+. U(x,t)
obeys the linear elastodynamic equations [Mi.] . In the case of a homogeneous isotropic medium, (p,
A, W) are constant, these equations can be written :

PU_
e’

©.1) A ; by vv.o) + % AU

When p(x), A(x), p(x) are functions of x1 and x2 , (0.1) is no longer valid and the mathematical model
takes a more complicated form that we shall give in section 1.



By definition, a guided wave ( or guided mode ) is a solution of the elastodynamic

equations in the form :

(0.2) Uj(x.1) = Uj(x1, x2) expi(wt-Pr3) j=1,2,3

where :
- w>0 isthe pulsation of the mode

- B>0 isthe wave number
- (Wj(x1, x2),j=1,2,3) is acomplex valued vector field which must satisfy :

3
0.3) 0<2 fz |Hj(x1, x2) P dxy dxp < +oo
=1 Jm

This last condition means physically that the displacement field remains concentrated in a bounded
region of the plane (x3, x7 ). Such solutions do not appear in a homogeneous medium but can appear,
as we shall see, if the coefficients vary with (x1, x7 ). But in any case , the guided mode exists if and
only if @ and P satisfy a relation which is by definition the dispersion relation of the modes. Plugging
(0.2) into the equations reduces the problem to the research of the eigenvalues and the eigenfunctions of
a selfadjoint operator A(B) in the Hilbert space L2( R2, p dx1dx3). In such an approach, B appears as a
parameter, @2 is the eigenvalue and % is the corresponding eigenfunction. Thus, all the results we
obtain stem from the spectral analysis of A(B) and the main tool of the analysis is the Max-Min
principle ([R.S.2]).

This article is organized as follows. In section 1, we present the mathematical framework,
give the mathematical formulation of our problem and obtain some important preliminary results about
the bilinear form a(p;.,.) associated with the operator A(B). In section 2, we determine the essential
spectrum of A(B) and study the properties of possible eigenvalues embedded in the essential spectrum.
The main results of the paper can be found in section 3 in which we study in detail the discrete spectrum
of A(B) . Our two main existence results (theorem 3.5 and theorems 3.6 & 3.7) are given in section
3.1. In section 3.2, we introduce the very important notion of thresholds and study in detail the
properties of these thresholds ( theorems 3.8-3.14).

L MATHEMATICAL FRAMEWORK
L1 The equations

Looking for guided modes with pulsation ® and wavenumber B one reduces to solve the
system :

(1.1) APBu=02u, ueL*R?H3,



where the differential operator A() is defined by :

A@wW) 1%, O ) ), k=1,2
Uy =--=— -= =1,
k pjl axj p k3
(1.2)
2 a ( B
A@us =-L Y —1" +Ed.w,
B)u)s PE P B

where the symmetric matrix oB(u) is derived from:

oPu) = A (divﬁ(u)) 1+2nebu),

divﬁ(u)—gﬁl—+i@-—ﬁu3 ,

ax1 aX2

(1.3)

eha =1 (a—“f’-+B w) k=12,
x

%3(") =-Bus.
To obtain these formulations, it suffices to start from the linear elastodynamic equations [Mi.] :

2 2
U132 (oqup i=123,

(1-4) O'ij(U) =A (div U) Sij + 2].1 Sij(U) i,j =1, 2, 3,

aU;  dU;
__——+____

) 1j=1,23,
an axi

\eij(U) = ‘ZL(

and to consider displacement fields in the form (0. 2) .The following change of unknown functions



=i, up=i, u3=iis,

leads then to equations (1.1),(1.2) which permits us to work only with real coefficients and to consider
only real valued functions .

From now on, we shall use only two space coordinates, namely x; and x3, instead of three,

That is why we shall set x = (x1, x2).

L2 The assumptions

We shall suppose that the functions p(x), A(x) and p(x) are measurable, positive and

bounded and that they satisfy the following conditions :

(i) There exists a strictly positive real number R and three positive constant Poo, Aco, Heo SUch that :

(1.5)

(i1)

(1.6)

P(X) = Poo i(x)=kw, KxX) = Moo for XI2R

0 < p. =©sSs. inf. p(x) < py =©8S. SUP. p(x) < +oo
xe R? X€

0< A =¢ss. inf. ) (x) < A, =©SS. SUP. A(x) < +oo
xe R? xe R?

0 < P =©ss. inf. H(X) € Py =C8S. SUP. y(x) < +oo
xe R2 Xe

A particular example of functions p(x), A(x), p(x) satisfying such assumptions is the following:

- Let O be a bounded open set of R2 and let ((po, A, HO), (Poor Moo, Heo)) be six strictly positive

constants, we define:

(P(), Mx), p(x0) =

(pO’ )"0’ u'O) ifxe o
(Pocs Aoos Moo) ifxe O

Such an example defines what we shall call a "jump coefficient” medium (we also suppose that O is

homotopic to a point, i.e. O has no hole).



ical formulati

In the sequel we consider only real valued functions and real Hilbert spaces. In particular
we shall set :

H=L2R%R%*=L2R??

equipped with the following inner product :

3
W, v) =2, f uj(x) wi(x) p(x) dx
=1 Rz B

We shall denote by ||ufl = (u, u)1/2 the corresponding Hilbert space norm. Let us introduce:
v=H'R*R%=H'R?>
We can define on V the following symmetric bilinear form :
3
aBu,v)= 3, L’ Bwdw & wve VxV

ij=1

that we can also write :

3
(1.7) aB; u, v) = I Ax) divBu divBy dx+2 Y, j LX) e‘?j(u) é}j(v) dx.
R? R?

ij=1
Formally we have
a@; u,v) = (APu, v)
We can give now the two equivalent formulations of our problem .

Variational formulation
Find ue V,u #0, such that
aB; u,v) = 02 (u,v),Vve V.
Spectral formulation

Let A(B) be the positive and selfadjoint operator in H, with domain D(A(P)) dense in H,
defined by :



D(AB)) ={ue V; %foﬁj(u) e LAR?), k=1, 2, 3, j=1, 2
i
AP =AP)u if u € D(A(B)).

Our problem is equivalent to the following one:

Find u € D(A(B)), 4 # 0, such that

APBu =0?u

The properties of the operator A(B) ( selfadjointness, ... ) as well as the equivalence of the two
formulations are a consequence of the Lax-Milgram theorem , of the coerciveness result (1.8) which we
shall establish in the next section, and of the identity :

V(4,v)e D(AB)) xV a(B; u,v) = (AB)u, v)

We are thus led to study an eigenvalue problem for an unbounded selfadjoint operator in which the
wavenumber B appears simply as a parameter. Let us note that, as the resolvent of A(P) is not compact,
even the question of the existence of eigenvalues for A(B) is not obvious and this is why we need a
rather complete study of the bilinear form a(B; 1, v) to be able to state precise results.

L4 P ies of the bili ‘ (B: . v)
Lemma L1
3 ou; ou;
With \Wui=Y, Vu; 2, Vuy= (— ,—1 ), one has
j=1 ax1 axZ

(1.8) a(B; u, u) 2 . (f

IVu|2dx+ﬁzj uidx) ,Yue V.
R2

RZ

Proof of lemma 1.1 :

From (1.7), we deduce the inequality :

3
(1.9) a(B; u, u) 2 2u,] ( Zleg(u)lz) dx

R? ij=1

Then it is sufficient to prove that :




2] (Zle”(u)|2)dx f (IVu12+[32IuI2)dx+f | divB u 12 dx
R? R? R?

1,j=1

To obtain this identity, we first note that :

2Z|e|3(u) 22122 g Py PR 22 S0 0
i,j=1 oaxy 0x3 dxy ox1 0x3 0x3
1282 B 2By 2 P Py P2 puy 22
X1 oxy aX2 dxa
Then, thanks to integration by parts, we get out of the terms | —a—ldx i#j, and j u_,?-—dx and
R aXJ ax, . ox Xj
get (1.8).@
We give now a decomposition of the bilinear form a(B; u, v) that we shall use in the next sections.
—;E L] Il ] 2

(1.10) a(B; u, u) = BZL:"II U2 + bCB; u, u) + p(B; u, u)

where we have set:
b(B; u, u) = bo( u, u) + b1(B; u, w) + ba( u, w)

2 2 2
wos [ b S o 2
(1.11) Rt | \ox1 oxz oxy oxy ox

by(B, u, ) = f omo{rs P - 2Bus(a"‘ "’“2)]«
RZ

2
ou
+| 22

0x2

X1 BX2
bo(u,u) = | Vusf dx
R? .
(1.12)  p(B,u, u)= p* (E-p::) plupdx + 2[3[ (M - Hoo) —a-(ulus) +_§_(u2u3) dx
r? P Pe R? oxy ox2

The bilinear form b(B; u, u) is positive since one has the identity

. _ ou; au22 2
(1.13)  bolww) +byBuwy= | p||=2+2] +2)

du; P 2 2
’-5u3|:l dx +j l'divBul dx
R aXQ ax1 j=1 R?

ax;

Proof :
By definition of a(B; u, v) we have immediately, after having developed some terms:

2 2
a@uw=| Alavtufare | ulol28 )42 r)’L(E)M1 +au2) dx
R? R? ox , axz oxa ax1




2 dou
l +I pIVu3|2 dx +22l5[ ll_?'ujdx“’ﬁzf ol P+ ua P + 2QusP) dx
Rz j=1 R? a R?

!

Then it suffices to remark that

uél"}'“jdx= I (TR T (au3 +Qﬁu3)dx f u%ugdx
R? an R? axj ax,- R? ax,-

Mdivﬂulzdx=f l(iﬂ+§£) dx+f {ﬁ |usf? - 2Bu 3(81:1 augﬂ dx
R? R? ox; 0dx2 R? ox; 0x2

Ho Heo
u(|u1I2+|u2|2+|u3|2)dx=I (E--—) plufde +—|lul?
R2 R2 p p°° pco

to obtain the identity (1.10). To get (1.13), we simply use the equality :

V' B, q
2 ———) +—2-|u3| 'ZBa—-

axj Xj

Remark 1.3

In the decomposition (1.10), the main property of the bilinear form b(B; u, v ) is its positivity. The
interest of the bilinear form p(B; u, v) comes from the following compactness property :

For any sequence (u™) converging weakly in V, we have, if u is the limit of (u™):
(1.14)
lim pB; u™, un)=pP;u, u)

n—> o0

To prove (1.14), we simply note that, as (u") is bounded in H( R2)3, (uM) is compact in L2( x| <R)3.
The result follows immediately, as j—loo =0 for [x 12 R.

2. SPECTRAL STUDY OF THE OPERATOR

In this section we give the main spectral properties of A(B) with the exception of the
discrete spectrum. We shall study the discrete spectrum of A() in section 3. This section is divided in
two parts : in the first one we determine the essential spectrum of A(B) and in the second one we study
the properties related to eigenvalues embedded in the essential spectrum.

2.1 The essential spectrum of A(f)
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We recall that the discrete spectrum 64(A(B)) of A(B) is the set of finite multiplicity
eigenvalues which are isolated in the spectrum, o(A(B)), of A(B). By definition, the essential spectrum
Oess(A(B)) is the complement of 64(A(B)) in 6(A(B)). We have the following characterisation of the

essential spectrum:

Characterisation 2.1 (cf [Sch.])
A number o belongs 10 Gess(AB)) if and only if :

There exists a sequence (u™) in D(A(B)) such that
n|2=1

@.1) 7

ur - 0 inH (weakly)

APB)ur = 0 inH (strongly)

Theorem 2.2
<5'ess(A(B) )= [ Bz 'g:: , Foo [

Proof :

() Cess(A)) Bzgf 4o [

The inequality (1.8) shows that any sequence (") satisfying (2.1) is bounded in V. From property
(1.14), we know that, as (u™) converges weakly in V to 0,

lim p(B; un, u®) =0.
n—>-+oo

We shall now use the decomposition (1.10).

0= lim ((AB)-o)un, un)
n—+oo

= lim a(B;u®, u™) - ©
Nn—+oo

2 Heo . i n
_(B _‘_):-0) + nl_l—r)n+°°b(ﬁ, unvu )

Then, as b(B;u",u™) 2 0, we deduce immediately




o2 2.”:

Poo
. 2 Heo
(il) <yess(A(B) ) - [ ﬁ ‘p_ » +oo [

We construct, for each & in the interval [B2{Le /peo, +o<[ , a sequence (u") verifying (2.1). For this, let
us denote by A.o(B) the operator corresponding to constant coefficients p=poo, A=Aco, =}oo. We have,

in the sense of distributions :

Heo
A B)us = oo (k} + k% + B%) us
where
k2

us (x1, x2) = (k12+k%)‘”2 cos(k1xy +k2xz){ -ky } , . (kik)e R?
0

(Physically, the function us corresponds to a shear wave or S-wave, see [Mi.]). Unfortunately, us
does not belong to the domain of A(B). That is why we introduce a cut-off function ¢, to define

un = ¢ us

0n(x) = 0 OEL3N X2

1 if X<l -
¢<x>={0 :f dan oe C5RY

Pes f IO lus(x)? dx = 1 (determines o)
R2

Then, if one chooses (k{, k2) such that o =:)L: (k% +k22 +[32 ), it is rather easy to check that the

o0

sequence (uM satisfies (2.1). The theorem follows immediately since Oess(A(B)) is closed.

2.2 About the ei I bedded in t ial I
22.1 ies of the eigenfunction
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Lemma 2.3

. . . . . Hoo 2 s
Any eigenfunction u associated with an eigenvalue o2 such that w? > o B satisfies

2.2) aﬁ-ﬁui=o ifi=1,2 and x| 2R.

ox;

Proof: When Ixi 2R, the three Lamé's coefficients p, A and 1 are constant and the equations satisfied

by u are written :

d 0 0
BBy - Bop) + (e + o) — L+ 22 Bug) = p. 0 iy
0x1 | ox; 0xa
0 0 0
2.3) Motz - BPug) + Qe + o) — L+ 22 B ug) = -p.. 0% iz
X3 0X; OX3
2 aul auz 2
Ho.(Al3 - B U3) + heo + Poo) B (— +—=- B u3) =-p., ©° u3
X1 0x2
Let us introduce, fori=1,2:
rg= ous _ B u; € H.
Xi

Combining equations (2.3), it is easy to see that

Poo 2 Moo .
Ari3+u—'(0)2'ﬁ E:)ri3=0 i=1,2.

To complete the proof, it suffices to apply Rellich's theorem ( [Wi.2], p. 56 ).8

Lemma 2.4

A + 21
Any eigenfunction u associated with an eigenvalue &2 such that o > —-b—u— B satisfies :

oo

ux) =0 for xi2R

Proof: From (2.2), we deduce that :

Au3=|3(-a—ul+a—li2—) for xl 2R

axl 812



Plugging this equality into the last equation of (2.3) leads to :

o Ao + 2U,
Au3+——p———((o2- Bz———E—)u3=0
Ao + 2. P

By Rellich's theorem, we know that u3(x) = 0 for x| 2 R. Then, using (2.2), we have u1(x) = u2(x) =
0 for xi 2 R.

2.2.2 Multiple j fficient guide :an i

We first state a result concerning a jump coefficient guide.

Corollary 2.5 "
For a jump coefficient guide, any eigenvalue ? of A(B) satisfies

2 At 21,

w? <P 5

Proof : Let us recall that (see section 1.2) :

PX) =Py, HX) =My, AMx)=Ao ifxe O
P(X) =P, HX) =M., AX)=A. ifxe O

: . d .
Reasoning as for Lemma 2.3, we show that the functions rj3 = aﬂ - B u; satisfy :
Xi

P 2 Heo ) 2
Arg + — (@?-B°—)riz=0 inR“\C
3 llu( Bp” 3

This proves that r;3 is analytic in R2\ O . As R2\ O is connected and r;3 = 0 for i 2 R, we deduce
that r;3 = 0 in R2\ O. By the same manipulations as in the proof of lemma 2.4, we now see that

2 A + 21

Au3+——E:—(m2-B Yz =0

Ao + 2., Peo

which proves that u3 is analytic in R2\ O and equal to 0 for x 2 R. As R2\ O is connected, we can
state that :
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u3=0 inR2\ O
and therefore, as r;3 =0 in R2\ O, that :
u=0 inR2\ 0.

Now, let Ag(B) be the differential operator defined by ((1.2),(1.3)) when p(x) = po, k(x) = Ko and
A(x) = Ag. In the sense of distributions, we have

Ao(Bu = 0%u in O |
Ao(Bu = w?u inR2\ 0 (asu=0)

Let ao(B;.,.) be the bilineir form given by (1.7) when p(x) = po, f(x) = poand A(x) = Ao. As the
support of u is included in G, it is easy to see that, for any v in D(R?) (= C‘a’ (R2) :

ao(B; u, v) = a(B; u, v)
from which we deduce
<poAoBu,v>=w?u,v)
This proves that :
Ao(Bu= w?u in D'(R2).

We can mimick the first part of the proof, replacing pe., e and A by po, Hoand Ao and show that u
is identically O which contradicts the fact that u is an eigenfunction .8

The proof of corollary 2.5 leads to a natural generalization of the previous result. First of all, let us
make a definition.

Definition 2.6
Assume that there exists N bounded connected open sets Oj (in R2), j = 1,2,...,N and strictly
positive constants {(pj, Wj» A}, j = 1, 2,...,N, such that :



gNnQ=92 ifj#k

N

R2\ Q is connected
j=1

P =P Ax) =&, ux) = ifxe O
—

PO = Poos AX) = ooy () = . ifx€RZ\
j=1

We shall say that such assumptions define a multiple jump coefficient guide.

We can now enounce our result :

Theorem 2.7

For a multiple jump coefficient guide, the operator A(B) has no eigenvalue in the interval

Moo + 21,
]B2’TE_’+°°[

-]

Proof: We can suppose without loss of generality that the sets Oj are numbered in such a way that, for
k _
any k, the set (R \Nu Q) is connected. It is then easy to see that the result can be obtained by
=1
N

multiple iterations of the proof of corollary 2.5. One first shows that u is equal to zero in (R v ),
i1
N-1 __

thenin (R2\ U ), and so on ...
j=1

Remark
The proof shows that the number N can be no finite in theorem 2.7, and that the open set O can have a
hole in corollary 2.5.

2.2.3 Multiplicity and accumulation points of eigenvalues of

These two questions can be studied in a similar way since in both cases we have to work with a
sequence (u?) in D(A(B)) which converges weakly in H to 0, with llunli = 1. To express that G is an
eigenvalue of A(f3) with infinite multiplicity, we simply write :

(2.4) APur=cur ,n=1,2,..,
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while o is an accumulation point of the eigenvalues of A() if and only if there exists a sequence Oy of

real numbers such that

A@P) ur=onun

2.5)
On— O (n—o+e0)

P ition 2.8
. - 2 Moo 2 A + 200 : .
Any eigenvalue o of A(B), distinct from B p—-and § o has finite multiplicity.

o0 -]

Proof: Suppose that u" satisfies (2.4) and converges weakly in H to 0. As in theorem 2.2 we can

conclude that ¢ 2 |32 -g: Suppose now that ¢ > Bz —E: and let (u™) be a sequence of eigenfunctions

o0 - -]

associated with o such that:

[ funll = 1
| un>0  (weakly)inH

To study a(B; un, um), we use the decomposition (1.10). After having remarked that :

0
by(B; un, um) = j [ ) - et ] [ B2112 - ZB( ui a‘“) uj | dx
R? X1 X7
(2.6)
-(uuwf [ B2uge - 2B<9“i+9“—2> ug ] dx
R x1 aX2

we integrate by parts the second term of the right hand side of (2.6) and use lemma 2.3 to replace

aug/ax_i by Bu;j when [x] 2 R. Then we obtain:

2 Aet2i,,

a(B; un, um) -p || un |2 =bo(u™, um)+ba(um, um)+B* (hestit.r) [ quPP+uBP) dx + P(B; un, un

1x{>R

where p(B; ., .) as the same compactness property (1.14) as p(B; ., .). As bg and bz are positive, [lul]} =
1, and a(B; u, u™) = G, we get:

2 At}

A

2 p(B; un, u™)



Taking the limit when n goes to infinity shows that 6 2 B2 (Acot+21loo)/Poo. Now suppose that ¢ > 32
(hoot2HLoo)/Poo. Applying lemma 2.4, we can state that the sequence («") converges strongly in H to 0
(and not only weakly) : indeed by compactness, (u") converges strongly in L2(]q] < R)3 and, by lemma
2.4, the support of 4 is included in the ball [x| < R. This contradicts the equality [lu"|| = 1 and
completes the proof of the theorem.R

It is natural to think that the absence of eigenvalues in the interval JB2 (Ao + 2}loo) /Poo, +oo[ is a general
result. But this remains a conjecture which could be proven if one could use for systems a unique
continuation theorem as it exists for the operator -A for instance (see theorem XII1.63in [R.S.2]).

The situation concerning the eigenvalues in the interval 182 oo /Pos, B2 (Aoo + 2}Les) /Poo| is much less
clear. In fact there exist some examples of functions (p(x), A(x), p(x)) for which such eigenvalues do
exist. We refer the reader to a forthcoming paper in preparation for a more detailed analysis of this
particular point.

P ion 2.9

The eigenvalues of A(B) can accumulate only at infinity or at 32 AcctHlon .

o0

Proof:
It is similar to the one of proposition 2.8. A priori, a sequence of finite multiplicity eigenvalues of A(B)
could converge to B? [ /Peo but the result of theorem 3.8 will exclude this possibility.m '

3. THE DISCRETE SPECTRUM OF A(3). EXISTENCE AND PROPERTIES OF THE
GUIDED WAVES

This section, in which we study the eigenvalues of A(f) which are not embedded in the essential
spectrum, contains the main results of this article. We have divided this section in two parts. The sub-
section 3.1 is devoted to our two main existence results. These results lead us to introduce the important
notion of thresholds, that we study in details in the subsection 3.2.

The main tool of the analysis is the well-known max-min principle [R.S.2]. We are going a statement
of this principle for the particular case of our operator A(B). Let us first introduce some notation.

Definiti 3.1
For any integer m > 1, we shall denote by sm(P) the real number defined by one of the two equivalent
formulas (cf.[D.S.], p. 1544)

aB; v, v)

3.1 sm(B) = sup inf =

(V1,v2,-..vm-1) € H [ v € [vi,v2,...,vm-1}+
vz 0
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3.2) sm@B) = inf sup a(ﬁﬂ v2, v)
(V1seeesvm) € V|V E [V1,...,vm] vil
v #0

where we have set

Vy--vml={v= ZOLjvj ; (@y,....0m)e R™)
j=1

WVieoVmlr={v €V ; (1)) =0, 1<j<m }

Joining the result of theorem 2.2 to the Max-Min principle permits us to enonce the following theorem:

Theorem 3.2

The sequence (sm(B)) is an increasing sequence of real numbers converging to B2y, /p.. Foreachm,
the following alternative holds:
(i) sm(B) < B2 Hoo /Peo :the operator A(B Yhas at least m eigenvalues, counted with their multiplicity,
strictly smaller than B2 Moo /Pos, Which are:
51(B) < 52(B) <...< sm(B)
(ii) sm(B) = B2 Hoo /Pos : the operator A(B) has at most m eigenvalues strictly smaller than B2 Moo /Poo.

3.1 Exist { suided mod

In fact in this section we discuss the existence of discrete spectrum. Let us first remark that, from the
coerciveness inequality (1.8), we immediately deduce the:

Lemma 3.3
ca(AB) o[ B2 £, p2 i)

+ oo

Therefore, the discrete spectrum of A(B) will be empty as soon as W/ p+ = Moo/ Peo. Let us state a
precise result in the following corollary.

Corollary 3.4

Assume that:
P(X) £ P ae xe R2
H(X) 2 Hoo a.e.x € R?2

then A(B) has no discrete spectrum.

This simple result shows that the question of the existence of discrete spectrum is not trivial. Besides,
theorem 3.2 gives us a method to prove the existence of eigenvalues in the interval B2 . /P4 B? o
/e [ : if we are able to construct m appropriate test functions (v1,..., 1) in V such that:



33) Vve W2l aB; v, v) - p2 £=<0

-]

then point (i) of theorem 3.2 holds and we know that A(B) has at least m eigenvalues, namely 51(),
SZ(B)"--, sm(B)-

3,1.1 A first existence result
We set:
(E) — ess. inf. u_(x_)
P)- x e R2 pW
Theorem 3.5
If the inequality (P-) <M= holds, then, for each integer m > 1, there exists B 2 0, such that
P)° P

sm<ﬁ)<32‘;—°i for B>Bh

which means that A(B) has at least m eigenvalues in the interval (B2 k, B2 e ), namely (s;(B),

P+ Poo

52(B),..., Sm(B)).

Proof:

From the inequality (11 /p). < Heo /P We deduce the existence of a non negligible measurable set C such
that P(x) /p(x) < Heo /Peo ,a.. x € C. There exists an open set U such that C N U and C N (R2\T)
have a strictly positive measure. Repeating this result, we prove the existence, forany m=>1,of m
open sets (U1, U2,..., Um), UjN Uy = @ if k # j, and m compact subsets (C1,..., Cn) of C, with
non zero measure such that:

Ux o Cx k=1,2,..m
Hx) Mo
pPX) Poo
For each k, we can find ull( in H(l)(Uk) such that

ae.xe€ Cx, k=1, 2,...,m.

[ =By uled >0 and | 2 p)dx =1
Uy Poo P U

~k . . . ~k
Let 7%, the function of V equal to u‘f in Uy and equal to zero everywhere else. The functions uk= (%}, 0,
0) generate a m-dimensional subspace Vi of V. Moreover, as the U are disjoint, the vectors uk cons-
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titute an orthonormal basis of Vi and give also the principal directions of the quadratic form defined on
Vm by a(B;-,"). Therefore, there exists an integer k, 1 < k < m, such that:

sup a(B; v, v)

i~ a(Bs uk, u.

ve Vi
vz 0

But, thanks to equality (1.10):

e e k)2 k\2 .
(3.4) a(B; ukuk) = p* '“:+f [(“ » (a_uL) o (aﬂ) } " sz (”__g) pluf ax
fad Uk axl ax2 Ue Poo P

which proves that, for B large enough:

a( B; uk, uk) < p? e

o0

Remark: In the case where the inequality p(x) /p(x) < Moo /Peo holds in some open ball, the proof of
theorem 3.5 is simpler and leads to a more precise result that we shall give in section 3.2 (theorem
3.10).In fact, the idea of the proof is to compare the number sm(B) with the eigenvalue of an "interior"
Dirichlet problem for a classical scalar elliptic operator in this ball.

31,2, A | exist It: lized S |
One can naturally wonder whether the condition (i /p). < Heo /pes is necessary for the existence of a dis-
crete spectrum or not. Our next result will prove that it is not. In fact, we have the general inequality:

LL_S(E.) gHe
P+ P/ Pe

It can occur that (jt /p)_ = Heo /Pes and that i /p+ < (11 /p). which preserves the possibility of the pre-
sence of eigenvalues of A(B) in the interval ] B2 p_ /p+4, B2 (1 /p). [. The existence of the generalized
Stoneley waves will give an example of such eigenvalues.

We shall obtain our main result for a jump coefficient guide associated with (pg, A9, H0) and (Peo, Aeo,
Hoo) (cf. section 1.2). We shall define in appendix what is the Stoneley's equation associated with ((po,
AQ» HO)» (Poos Aoy Hoo)). To state our result we only have to define the set Eg as the set of coefficients
((P0> A0, HO)» (Poos Acoy Meo)) fOr which the corresponding Stoneley's equation admits at least one real
solution in the interval ] 0, (1 /p)_”2 [ where (u/ p). is equal to Min (Ko /P, Heo /Poo). Esis a non
empty subset of (R*)3 x (R*)3 and has been studied by several authors ([Ca.], [Mi.] p.165, [E.S.]
p.539). When ((po, A0, 10)> (Poos Acs, Heo)) belongs to Es, we denote by Vy the smallest solution in the
interval 10, (1 /p)_l/2 [ of the Stoneley's equation. We can state the following theorem.



TAEOREM 3.6

Suppose that (0, Mo» HO), (Poos Aes, Heo)) belongs to Es. Then for the corresponding jump coefficient
guide whose interface I'is of class C1, one has, for any me N*:

(3.5) B“'fisfﬂ s——'“;f )svit (< ‘;ﬁ),

In particular, there exists an increasing sequence (Bm)mz 1 of positive real numbers such that, for § >

Bm, the operator A(B) has at least m eigenvalues in the interval 10, p2 p-2[ which are s1(B) <...<

00

sm(B)-

We shall give the proof of this result later in this section. In fact, an attentive reading of this proof will
show that the previous theorem can be generalized as follows

Theorem 3.7

The conclusions of theorem 3.6 still hold as soon as the three following conditions are satisfied :
(i) There exist three open sets O, 01, 02 such that
.0=010V0, 01N0=0
- (p(x), Ax), W(x)) = (pi, A, ki) ifx e Oj,i=1,2
. the interface I'= d 0y N 2 0y is of class C!
(i) ((p1, A1, K1), (P2, A2, U2)) belongs to the set Es.
(iii) Vg, the smallest solution of the Stoneley’s equation associated with (p1, A1, 11), (P2, A2, H2)),
Hoo

172
is strictly smaller than (——J .
Poo

Remarks
. In fact, it will be clear in the proof of theorem that the interface I"only needs to be locally of class Cl.

. We shall see that the set Eg has the following symmetry property:

((P0, X0, HO)s (Poos Moo, Hoo)) € Es = ((Poo, Mooy Hoo), (PO, A0, HO)) € Es ‘
This property allows us to construct a medium for which (K /p)- = lee /P and for which guided waves
exist.

. The guided waves that we point out in theorem can be considered as generalized Stoneley waves.
These waves are interface waves (as the Rayleigh wave is a surface wave). Indeed it can be proved that,
for large f, their energy concentrates exponentially near the interface I'.

Proof of theorem 3.6

Let us recall that:
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(Po» Mo, po) ifxe O

’x * =
(p(x), A(x), 1(x)) {(p”’ Aes o) if x € @ = R2\D

and that the interface T between O and € is supposed to be C1. So, there exist locally:

o a system of orthonormal coordinates (0, x1, x2)
¢ a function fe CI(R)/f(0)=f(0)=0
¢ a neighborhood V of the origin 0

such that, for some a > 0:

raV={@x,x)e R2/x=fx)),x1€ ]1-a,al}
OnV={GnLx)e V/ixa<fx1),x1€ 1-a,al}
QnV={Gx)e Vixa>fix1),x1€ 1-a,al}

Then it is clear that there exists & > O such that

On V={(x1,x)e R2/xil<a,flx1) - d<x2<flx1) }
QA V={01x)e R/ i<a,fix1) <x2<fix1) + 3}

We choose ¢ in H(l) (- a,a ) and yg in C‘Z(R), 0<wyg<1such that yg(x2) =0if lx2| > & and yg(x2)
= 1 if [xg| < 8/2. We shall consider in the sequel test displacement fields # in the form:

u(x1, x2) = o(x1) ud(x2 - f(x1))
(3.6) 8
u0(x2) = yg(x2) ust(x2)

where 45t has been defined in appendix by (A.4) and (A.8). We have supposed implicitly that the first
coordinate u; is identically equal to 0. Let us note that the support of u is contained in:

Qq = {(x1,x2) € R2/ 1l <a, fixy) - § <xp <flx1) + 8}



For functions « of the form (3.6) we can calculate that:

a
a®;u,u) = Jloen)P dx) a'B; u, ud)
~-a
a +oo
+ (JIoaDR dep) ¢ [ueeo) w822 dxg)
-a -00

+00

3.7 a
3
+ (JO? ¢ @n? do) ( [t (Emk )
_a —co

+00

a
8 .
2( fo0) @' £ dxn) (o) wde). $om) d)
-a —oo

where a'(B;.,.) is defined by (A.2). When B becomes large, the function uSt is concentrated in a
neighborhood of x2 = 0. We shall explain later why this permits us to write:

a'(B; ud, ud) = a'(B; ust, ust) (1+O(B2 e-NBYy)

400 +o00
Juex) W8G2 dxa = ( Juo) Wt drg) (1+0(e-MB3))

+oo +00
S
68| [ued Eo? dr = ( [utx) G2 dx) (1+0(BeMBS))

+$o0 R aad
8 t
Jine2) ). Yoy o = ( ) wttep Goien) ) (1+0(BeMBS))

where 1 denotes a strictly positive constant. In the way, one easily checks that u, defined by (3.6),
satisfies:

a
(3.9) J puPdx = ( [ioGen)l? dep) (1406 MBS
-a

It suffices to join this result to (3.7) and (3.8) and apply the Cauchy-Schwartz inequality and identity
(A.9) to obtain:

LaBiuw) .2 B2y + L (s -npd
TRy < V2, (1+0(p2 e MBS ))+B2q(a,¢,f)(1+O(BenB )

where we have set:



+o00
st t
s o.n =t o (G500 P uom)axa ] SR 0P
0o X1l <a
3.10 ' | a
G40 +oo ) [l dxy
+ [_iu (Iu“l2 + uSl.%‘;) dx2 1 -aa
flon dxy
-a

It is then easy to see that there exists a positive constant C such that, for B large enough:

a
floeni ax
—l'q(a; 0,H<C sup )2 + C-a
B il <a s a
| floen)r axy
-a

Now, let (91, $2,..., Om) be functions associated to the m first eigenvalues of the operator -d%/dx2 in
H(l)(]-a, a[) and Vi the subspace of V generated by (¢ 43, ¢2 uS,..., ¢m u®). By definition of sm(B)
(cf. (3.2)) we have :

ﬁanﬁls V2 (1+0(B2 e MB3/2)) + C (1+0(B2 eMBBY) | suP  |f (xp)2 + Am (@)
B Ix1] < a B

Am(a@) = m2n2/4a2 denoting the mth eigenvalue of -d%/dx2 in H(l)(]-a, al). We obtain easily:

(3.11) limsupfﬂ‘_(ﬁsvit+c SUp  |f “(xp)|?
Bosteo P2 il < a

Now as f ’(0) = 0 and f’ is continuous, we know that:

Ve<0,3a>0,C SUP [f'(xpl2<e
kil<a

So by choosing a small enough, which is always possible, we see that lim sup (sm(B)/B?) is smaller
than Vzt + ¢ for all € > 0, which finally gives (3.5). To be complete we simply have to prove the
relations (3.8) and (3.9). We shall content ourselves to establish the third equality of (3.8). The other
ones can be obtained by analogous calculations.

From the equality:
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t
i dvs
T~ TVt e T

We use (A.10) (see appendix) to deduce (y'g(x2) = 1 if |xo| < 8/2) :

2

—z(xz)

S
400 2

d 2 dust
L H(xz) d‘; dxp 2 f s en EL;-Z—(Xz) dx;

+00
t
>( f e ‘f“;—i(xz)

(3.12) )
dxp ) (1 - CRe-nB3)

where 1 = [1-V2(W/p).] 12 8,

On the other hand we write :

) 2 t]2 2
duj dui st duf dys {2 d‘l’sl
dx; \V§+2 Vs dx; dx +| il dx;
which gives:
400 d 5
(3.13) ﬁr <
Iw K & dx; <
= duit2 of [dust|| Vs «t2|dWs 2
H ax dxy + 2 I Id.x dx; + u|u2| Ex——dxz
-00 2 |x|>§- 211dx2 |x|>g- 2

The Cauchy-Schwartz inequality permits us to estimate the two last terms of the right hand side of
(3.13) in terms of CP exp(-nP3d). It suffices to regroup this result with (3.12) to obtain the third relation
of (3.8).8

3.2 Study of the thresholds
Our two main existence results (sections 3.1.1 and 3.1.2) lead us naturally to introduce the quantities
(form2>1)

B0 = sup { Bm; V B < Bm, sm(B) = B2 =2
(3.14) Pe

B:n = inf { Bm; V B> Bm, Sm(B) < B2 u'p:'}



27

By definition, Bg is the mt lower threshold (or cut off wave number ) and B;] is the mth upper

threshold.
It is clear that the sequences (Bp) and (B:n) are increasing and that:

osﬁ?nsﬁ;sw, m=12,..

Of course one can have B?n = +o0, if A(B) has no eigenvalue. Otherwise, results of theorems (3.5) and
(3.6) express that, under correct assumptions, the numbers B:n are finite.

We can interpret graphically the meaning of the quantities B?n and B;] by considering, in the plane (j3,
), the curve @ = sy,(B)1/2. We know that this curve is located under the line ® = B(}oo /pos) /2.
Moreover: '
-as long as B < BO , the curve @ = sm(B)172 coincides with the line © = B(oo /Poo) /2,

-as soon as B > B?il, the curve @ = sm(B)!2 lies strictly under the line @ = B(}oo /pes) /2 and
represents the graph of the dispersion relation of the mth guided mode.

A priori, the numbers Bg] and B:n can be finite and different, as illustrated below.

w=Bu /p)?

o =s,(B)!?

B b B

Our first result concern the asymptotic behaviour of the sequence B&.

Theorem 3.8

The sequence ([3?n )1 8068 to infinity. More precisely, there exists a positive constant C (depending

onp, A, W) such that:
(315 By ,2CANM2 m=1,23,.,

where (l: dm>1 IS the sequence of the eigenvalues of the operator -A in the disc of radius R with

Neumann boundary condition.

Proof:




As the sequence (B?n) is increasing it is sufficient to prove (3.15). For this, we shall evaluate the
quantity a(B; u, 4) - B2 (leo /peo) [lull? and use the Max-Min characterization (3.1) of the numbers sm(PB).
With the help of (1.10) and (1.13), we can write:

a(B, u, u) - Bzgillullzz 7».]

RZ

Juy Jup |2
+llf [axz ax1

| divBul*dx + u,j | Vs * dx
R2

2
} dx +p(B, u, u).

By mtegratlon by parts, we eliminate the term —If-l- a—u-2-dx to prove that:

ox2 dx]

ou;  Jup\?
5;;+ax1

2 2
= U3 :,dx =f ldivﬁulzdx +Zf IVuj'de
RZ _]=1 RZ

and then to deduce the lower bound
a uu) 2 1 ||u2>(l+) divBu|? dx + . Vul? dx
3.16) | 4P B Il W 42' l m ,izl |
+p(B; u, u).

We have now to bound p(B; u, u) from below. For this, we use the inequality (¢ 2 0):

d 3 s B 2
2 (Ll-um)lézl—(ulw)"'m(uzw) Smg @ |wP+ €|Vl

Choosing € small enough, we can find positive constants C; and C; such that:

G171 a@uw-PEuR2c [ ViR ax-B2C [ i dx
Peo IxI<R Ix|< R

Let B be the open disc of center 0 and radius R and -AN the selfadjoint operator associated to the Lapla-
cian in B w1th Neumann boundary condition. If (7L )n>1 denotes the sequence of the eigenvalues of -
AN and (w ) is a corresponding sequence of eigenfunctions we know by the Max-Min principle that:

j Vv ax zxﬁf vPdx , Vve {ve H'B); (vwM=0,1<j<m
B B

Now, we define 3(m-1) elements of H by:
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N .

RO {(wj (x),0,0) if x| < R

! (0,0, 0) if x| > R

N .
Dz = {(0, wi (0, 0) if ] <
! (0; 0, 0) iflxl > R

N .
Oy = {(0, 0, wl () if Irl <
! (0,0, 0) if x] > R

Let V3n-3 be the subspace of H of dimension (3m-3) generated by these elements. If u € V3m W

note that on B the restrictions of u; belong to H 1(B) and are orthogonal to wllq,...,w m-1+ Then, we
have:

aB; u, u) - 62 =P (Cihy - CopD) [ Wi dx ¥ ue Vi g

When B2 is smaller than ( C 1/C2)7LI:1, the right hand side of this inequality is positive which, with (3.1),
proves that $3m-2(B) 2 B2 [eo /Peo . Thus, by theorem 3.2, we know that s3m-2(B) = B2 Heo /pes for
B < C AN)V2, C=(C1/CP12, which completes the proof.

Remark

The classical results about eigenvalues of the Laplacian operator with Neumann boundary condition
[R.S.2] permits us to say that there exists a positive constant Cy such that:

Bgn-2 >Cpnl2 (n=2)

Corollary 3.9

(i) The sequence B;‘ tends to +oo.
@) B3>0

(iii) For any B 2 0, the number of eigenvalues of A(B) in the interval (— B2, P = B2) is finite.
Poo

P+

Proof;

(i) is immediate and (ii) comes from (3. 15) for m =2 since X > 0. Finally, if A(B) had an infinite
number of eigenvalues, one would have B <P forany m Wthh contradicts the fact that B goes to
infinity.m

We can describe precisely the behaviour of the numbers Bg and B:n when the assumptions of theorem
3.5 are made very slightly stronger.




Theorem 3.00

If there exist an open U < R2 and a real number 8 > 0 such that:

u(x)+8< ae.xe U
p(x) Peo
then there exist two positive constants Cy and Cy such that, for large m :

(3.18)

cim2<p) <B° <CymlR2

Proof :
We have only to prove that B; < C, ml/2, We keep the principle of the proof of theorem 3.5. For test
functions « in the form u = (41, 0, 0), we have

(3.19) a; u,u)-B —Ilullz<(7» +2u+)f

2 2 Heo
ZIVulldx-Bf (—-—)pluxlzdx
R R?

P P

Let us consider the Laplacian operator with Dirichlet boundary condition in the open set U. Let (Xg)mgl
be the increasing sequence of corresponding eigenvalues and (vm)m>1 a sequence of associated
eigenfunctions. One has

|Vv‘2dx < 7\.,],),] lvPdx, Vve [vi,.., V]
7 v

Let us set

{uk(x) =(v(x),0,0) ifx e U
uk(x) = (0,0, 0 ifx ¢ U

Clearly the sequence (4¥) belongs to V. Now, if u is a linear combination of ul, u2,..., um, it is clear
that the right hand side member (3.19) is strictly negative as soon as f§ > C(kg/ﬁ)m, where the
constant C only depends on Lamé's coefficients. Then using the Max-Min principle, we deduce the

bound:
D
* A‘m 2
Bm <C -8—

which taking into account the classical properties of the sequence (7& ) gives the result.m
From corollary 3.9, we already know that the fourth threshold B4 is strictly positive. We are now going
to prove that it is also thrue for the third threshold B3

Theorem 3.11
We have Bg > 0 which means that, for B small enough, A(B) has at most two guided modes.

Proof :
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Let € and 1 be real numbers with 0 <€ <1 and 0 <1, and B' be the disc of center 0 and radius R' > R
(we shall fix R’ later in the proof). We have:

. f |aivPul ax 2 €. [ laivhul e

2
| us [2dx -if S |vu dx]
. nJg

j=1

> g x_[ 132(1-2n)f

B

We plug this result into (3.16) to obtain:

a(B; u, u) - B—||u||2>2 (@ - e—)[ |V +sz (%-%‘i) p u? dx ]
. B’ B’ =

j=1

-]

(3.20) +u_j | Vusffdx +132[ [—-B_) p + el (1- 2n)}u_7gdx
B’ B’

+2B I - u,o)[ (ulus)ﬁ—(uzus)
B'

Letus set P(Q) = {ve HI(Q); [vdx =0}.If Q isbounded, there exists a constant C(Q) > 0
Q
such that:

I |v[dx SC(Q)j |vvfdx, Vve P@Q)
Q Q

Let us denote by x the characteristic function of B' and let us consider the two elements of H:

{vl =(x, 0, 0)
v2 = (0, %, 0)

If an element u of V is orthogonal to vl and v2, the two first components uj and uy belong to P(B").

Thus:
(3.21) f | Vi Pdx
B

<cy|lE-=
( )”( o =) p

f' (b—'p—) p|uJ|2dx

Let us decompose H!(B') as H!(B") = P(B') + P(B") L with:
P(B)+ = { ve HI(B"; v is constant in B'}.

If we set:

U3 =l + U tp € P(B"), u3p € P(B)*

we can write (we identify “3P and its constant value in the ball B')



(3.22) [(E-”_"") p+e7L_(1-2T\)] uddx =(udp) U {(ﬁ-&) p+el.(1-2n)} dx |+D
5 LP P g LP Pe

where D can be estimated as follows (y is an arbitrary positive number)

(3.23) IDIS”(E-%"?)pw?»-(IQn) {YKR'Z(upr+C(B')(1+}Y-) f

qu3 |2 dx}
B'

We regroup (3.21), (3.22) and (3.23) in (3.20) to obtain for any u in V, orthogonal to [v1, v2]:
2 2
)2 f |V fax
ad B'

j=1
] f |Vu3 |2dx
Cad B,

\

Cad

n.
B =y

, g2t 2>( ek g2y || -
o u, 1) - B o—llulf 2 {u.- e 2= - BC®) | €0 o=

2 o 1 L He
_-peBya+LHy|lE-= er. (1-2
+[u B"C(B") ( +Y)H(P pm)p+ (1-2n)

(3.24) "
+ B lugpl U [(—E-p—)meh(l-m)} dx - yr(R")?
L -

H He
—-—)p+er.(1-2
(p p“)p (1-2n)

+2B f (H-Heo) [aaTl (uyu3) -iaixz (u2u3)] dx
B

Suppose for the moment that W = .. If we fix | = 1/4 and € < N /A, both quantities . - €A. /1 and
€A. (1-2m) are strictly positive. In particular, as (it /p) -(eo /P=o) = O When jx| = R, we can choose R'
large enough that

I [(E-—u:)p+£?»_(l-2n)}dx >0
L PP

o0

Now, we can choose 7, small enough, that

(3.25) YrR"?

B He
—-— A (1-2
(p pm)p+€ (1-2n)

B He
—.= A (1-2 dx
~<L.{(p pm)p+e ( n)}

Finally, if B is small enough, we shall have:

-

>0

A a2 H He
e L.BCBHIIE-22
H en B ()“(p p°°)p

(3.26) 3

2 e mo He
(1 -B C(B)(1+§ )||(5~p—)p+ex-(1-2n)

oo

L>0

and consequently
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a(B; u, ) - Bz'gillule 0,Vue(ueV;w,vi=0,j=1,2)

By characterization (3.1), we deduce that s3() = B2 peo /pee Which fneans that Bg 2B>0.
In the general case L # [l we have to estimate the last term of (3.24). For this, we write (. > 0):

i, NS

oIk Hoo|2|u3|2

Iy,
Lin| a5

2
+_|u u'oo“u.llz

u; Sa|u-u,°| ous

ou
2Bl“'|>1oo|‘a-3‘ E

The terms obtained with o [0uj /dx;|2 and ot — o] |Ou3 Jox;f2 can be estimated with the two first terms
of the right hand side of (3.24) by choosing a small enough. The terms obtained with (B%/cx) Ju;|2 do
not pose any problem because of (3.21).

It remains to treat the term in |u3f2. For this we use again the decomposition u3 = hp + “:J&.P and we
have then to choose R' large enough in order that

f [(—-—)p-—lu u«,|2+ek 1-2n) | dx >0
B

Then the end of the proof is exactly the same as in the case |l = ploo. B

We now examine the case of the two first thresholds.

Theorem 3.12
As soon as one of the two following conditions is satisfied:
1 (——- -= ) dx >0

)] 2 Pa P P
(ii) (————)pdx =0 and( <—

r2 Pe
one has:

* *

Bl = Bz =0

which means that the operator A(B) has at least two eigenvalues for any positive value of B.

Proof:

'Let us consider an integer n 2 R. We can define the function v in H 1(R2) by
vi(x) =1 if x| €

vi(x) = Log(lx}{/R)/Log(n/R) if R<[x]<n
vi(x) =0 if x| 2
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It is easy to check that ||V tends to 0 when n goes to infinity.
Assume that (i) holds. We consider test functions in the form u = otj ul: + a3 420 | (0, atp) € R2

. ul'“ = (vﬂ, 0’ 0)
where: uz’n = (O,V“, O)

For such functions we have:

3.27) aB;u, u)-Bzg:Hqu: bo(u, u) - (02 + ad) {32 (Ll"-&)p dx
had R2 peo p

where bo(u, u) is defined by (1.11) and satisfies:

bo(u, u) < C(o2 + ad) f , |vwn? dx

R

Thus, it suffices to choose n large enough, namely such that

2
v ar < B[ (B=lByp
RZ C R2 P P

in order that the right hand side of (3.27) be strictly negative. The max-min principle proves then that
*

B, =0.

When (ii) holds we use the idea of [Bo.]. We now set:

{ul'" = (V" + yw, 0, 0)
u2n = (0, v + yw, 0)

where w is a function of H1(R2) and y a real number.
One easily checks that 4 = otj ulm + o 42" implies one has:

aB; ) - B2 NulP = ot - @2+ 0D B2 | (BB p 2pw 4 D) dx
P- Rz Pe P

We choose now w such that
= Byowdr >0
R2 P= P
which is possible because of the inequality (1 /p)- < foo /Poo. Let us remark that

bo(u, u) < C(0? + a3) [

) (|vvnfP + 2| vwft) ax
A
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Then it suffices to choose ¥ small enough, that the terms in 42 be negligible compared to the term in Y,
and then to take n large enough.®

Now we obtain a necessary condition in order that the first threshold be strictly positive.

Theorem 3.13
Under the assumption

P P

the first threshold B(l) is smctly positive.

(—-——)p dx > —Lf (M - po)? dx
R2

Proof:
(i) For simplicity, we first give the proof when | = ... From (3.16) we deduce the inequality:

o0

aB; u, u) - B ollulP 2 uf | Vuldx +ﬁ2f Ay olup ax
B B P

Using the decomposition H!(B) = P(B) + P(B). introduced in the proof of theorem 3.11 (B is the
open ball of radius R), we can write:

w=uy+u-, u e PB),uy e PBY
Then, we have, as uP is constant in B,

) Heo 2 _ L Moo _L2 K Moo J_“
E.= de = | E-22)p ax 2 &= Cug) dx
L(p So)plu (L(P )P )Iup\ L( o) (up )

Heo
E- ) plupP dr

Using the inequality
2
2 up - up| <efug +%|up|2

and choosing € small enough, € > 0, we see that there exists a positive constant C (depending only on
H, p and €) such that:

p_H- 2 dx >1 B He dx 2 dx
f<p oo plub ax 23 | G50 ug - C | Il

Thus, we obtain

a(B; u, u) - Bzfl—"ill 2 2%—([ & By dx)lu#|2+u-f

S5 BIVuplzdx-Cﬂzf lupl? dx

B




36.
But there exists C(B) > 0 such that
C(B) j |VupPax > f lup|? dx
B B

Therefore as soon as 2 C/C(B) < WL, the quantity a(B; u, ) - B2 peo /pos llul|? is positive for any uin V,
which proves that 51(B) = B2 Lee /Po and consequently that Bl > 0.

(i) In the general case the proof is technically more complicated. As in the proof of theorem 3.11, we
introduce a ball B' of radius R' 2 R and use the inequality (3.20), with €, 1| positive constants. €, 1] and
R' will be determined later in the proof. For any o> 0, we can write that, for any x in R2:

o[22+ 9]

aX2

aul
ox 1

|28 G- ) [ ) (u2u3)” < a(]
p*

5 P P+ g + AusP)

Plugging this inequality into (3.20) leads to the following inequality:

) 2
a(B; u,u)-l32-t-?'—|lu||2 ZZ[H--weL)f |Vu;fax +p j [(E“E:) . :”) }lqudx}

- P P

+Bzf [(a-a—)p-l(u 12+ ed(1- 2n)]lu3|2dx+<u a)j |Vus [ dx
s B’

Because of the assumption of the theorem it is possible to find a > 0 such that

o <. and f [(-p--p—m L u«,)z]dno

We now fix N < 1/2 and choose € small enough in order that . - & > € A_ /1. Finally we choose R’
large enough that

f [(5' B*)P 5 (- p)? + 87\.-(1'271)J dx >0

To prove that a(B; u, u) - B2}l /P ||4l|? is positive for B small enough it suffices then to prove that

2
H.- - en)f IVuJ|2dx +Bf ':(E_Ei) (- u”) }| uiPdx 20
B’

P P

(u--a)f Vs P dx + B [ [(5—5—»: 2 (- p)? +er(1- 2n)J|u3|2dx>0
B' oo

for B small enough. This is easy using the arguments of part (i) of the proof.u
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Remark

We don't know what can be said about the two first thresholds in the case where

oo
o<| E-ypar sl @-p?ax
R2 P P H- R2

Finally we give an example for which one can prove that the upper and lower thresholds coincide.

Theorem 314

If the function W(x)/p(x) is, almost everywhere, smaller or equal to Yoo | Poo, then

328 BL=B,,  Vm=2l

Moreover the function B— B2 oo /e - Sm(B) is increasing.

Proof:
If B and B’ are two real positive numbers, we shall denote by Jg ' the isomorphism in V defined by

Ig.pw) = (u1, uz,%u_g) s Vu=(@i,uuz)eV.

Using (1.10) one easily checks that:

2l»l.,

a(B; Jp g(u), Jp p(w)) - p* -||JBB(“)||2—G(B u, u) - p' || |2

2
-(BZ_B.Z) [I %Ivu:;’dx +f (—-—)p (u +u%) dx
R? B R?

As 1L /p < Jeo /Poo a.€., we deduce that:

21»1«.

(3.29) a(B; Jaﬂ(u),Jpp(u)) B——||JBB(u>||2<a(B u, u) - B = llu I?,if B2 B

Letme N* and B' > B?n There exists Vm, an m-dimensional subspace of V, such that the right hand
side of (3.29) is strictly negative when u belongs to V. This implies that the left hand side is negative
for any B 2 B'and any uin Vi AsJgg(Vm) is a subspace of V of dimension m, one gets (3.28).
Now let P and B’ be such that 0 <B'<B. IfB'S Bm, B2 oo /Po is equal to sp(B") so that,
necessarily

3.30) p*? %“- - sm(B) < p? %1’- - sm(B).

If B0 < B, we rewrite (3.29) in the form :
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2 M , 2 e
B —p:IIuII2 - a(B’; u, u) < B E:lllg,,y(u)ll2 - a(B; Jg g(w), Jp g (1))

Dividing this inequality by [|ju|? and noting that ||Jg g(u)ll < llull, we get (3.30) again which completes
the proof of the theorem.®

Remarks

eWe don't know whether there exists (p(x), A(x), L(x)) for which Bom < B:n for some m.
oIf the assumption W(x) /p(x) € oo /Pes a.€. x € R2 holds, assumptions of theorems 3.5 and 3.12 also
hold so that for such a medium we know that:

(i) Guided wave exists
Gi) BY =By, (=Bm), Vme N

(iii) B1=P2=0<P3<...<PBp < +oo

(iv) Bm — +< whenm 5 +oo
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Conclusion

We have given in this paper a large variety of theorical results concerning guided waves in
heterogeneous elastic media. These results illustrate both the richness of the equations of elasticity,
in comparaison with the acoustic wave equation or even the Maxwell equations, with respect to
this particular phenomena, and the power of the mathematical tools borrowed from the spectral
theory of selfadjoint operators.

Nevertheless, some interesting open questions remain to be solved from a purely theorical point of
view. Let us quote, without being exhaustive, the questions concerning the regularity and the
monotonicity of the dispersion curves, the existence of eigenvalues embedded in the continuous
spectrum, the behaviour of corresponding eigenfunctions, continuous dependence of guided
waves with respect to the coefficients of the medium, high and low frequencies, comparaison
results between two media, and so on...

Moreover, though our results are interesting and rather fine from a qualitative point of view, the
quantitative information contained in these results is not yet sufficient. Numerical methods should
be a very useful complement to the present work and we intend to develop a strategy for the
numerical approximation of the waves we pointed out in this paper.
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APPENDIX
Construction of st
Contrary to what we have done in the preceeding sections we shall consider here the plane (xp, x3)
instead of the plane (x1, x2) and we shall be interested by the 2D linear elastodynamic equations in a
two layered medium, defined by:

Po, A‘0’ Ho if X2 < 0

(A1) (p, A, W(x2,x3) = (p, A, W)(x2) = { I T

The solutions we are looking for are 2D displacement fields with coordinates (42, u3). More precisely,
we are interested by the guided modes, that is to say by solutions of the 2D linear elastodynamic equa-
tions in the form:

(u2(x2, x3, 1), u3(x2, x3, 1)) = (H2(x2), U3(x2)) exp i( wt - Px3)

where:

+00
j (T ()2 + Nii3(x)12) dxg < +oo

00

In practice we shall use the same change of unknown functions as in sections 1.1 and 1.3 by setting:

u2(x2) = u(x2), u3(x2) = i u3(x2), u = (u2, u3).

Then we consider the positive selfadjoint operator acting in the space L2(R) (i.e. working with func-
tions of the only variable x») defined with the quadratic form:

A2  aBuu)= f{x %L%-Bm 2p[ l%%+ Buy 12 + |da‘£-|2 + B2 3] } dxsp
R

To express that u = (4, u3) is a guided mode associated with the eigenvalue ®? is equivalent to
writing that:

A3) adBuv)=w? |uvpx)de , Vve (HI(R))2.
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With the aid of assumption (A.1), problem (A.3) can be solved explicitely. In each half space {x3 <0}
and {x2 > 0}, one has a second order linear differential system with constant coefficients whose
solutions are linear combinations of the two following functions:

( ;S) . YsPx2 | GP) . Yefx2

where Yp and ¥s, and their real parts, satisfy in each half space:

2
@Z=RaHE , @?=pap (“ “)
Y P
x2 Re(yp) <0 , x2 Re(ys) < 0.

With these conditions, a normalized eigenfunction necessarily will have the following form, if we as-
sume that @2 = B2 ¢2 and c2 < (L /p)- = Min (110 /P0, Koo /P ) :

r

0
0 g +Bapx2 0 10 +Basx2.
Ap e -Ag |l |© ifx2< 0
1 N

where we have set:
. . 2 . . 1 2

(A5) ai=(1.—Pi_2)* o =[1-8e2)” =g,
d Ai+2m i

In order to ensure that (A.4) defines an eigenfunction, it is then necessary and sufficient to 1mpose the
continuity of the displacement u and of the normal stress (1 e. of the functions oﬁ (u) and 0 (u)) at the
interface {x = 0}. This leads to a 4x4 linear system in (A A A°°) that we can wnte
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0
A

Ms@| 5= |9
Ap 0

whose matrix Ms(c) is defined by:

S R S U

0 o0
(04 P -1 o P 1
(A.6) Ms(c) = p,o(Z-cz 92] -2uoa‘s) -uw(2—°2 pﬁ] “2Hecl
Ko Hoo
2uo°‘g -u0(2-°2 Pﬂ) 2oty Hoo(z-cz E::)
\_ Ho my,

Thus, u will be a guided mode associated with the eigenvalue w? = B2 c2 if and only if:

(A7)  det Ms(c)=0  O<c< (E)m
o)

This equation is called Stoneley's equation (see [Mi.], [E.S.]). We can now define the domain of
existence of Stoneley waves, Eg, by:

Es = { (p0, 20, 10)> (Poor Awos Hw)) € (R*)3x(R*)3/ (A.7) has at least one solution }.

It is well known that Egis not empty and clearly has the symmetry property:

((pO, XO’ ”0), (p°°’ X@’ “-00)) € ES = ((Poo, )‘-00’ u-oo), (PO, M’ HO)) € ES-

By convention we shall denote by ¢ = V; the smallest solution of (A.7) when the coefficients ((pg, Ao,

H0)5 (Posy Aco, Hoo)) belong to the domain Eg. We shall denote by u = ( ugt, u:s;t) the function defined by
(A.4) when the coefficients ag, a(s), a;' and a°5° are evaluated with ¢ = V. In this case the vector ( Ag,
A(s)’ A:, A°s°) belongs to the kernel of the matrix Ms(c) and is entirely determined, as Ker Mg(c) has
dimension 1, by the normalization condition:
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+ oo
A8 [ Wt pr2) dra = 1.

Then, equality (A.3) implies that:
A9 aBusuh =2V,

By simple calculations it is possible to check that there exists a constant C, depending only on (pg, Ao,
10) and (Peo, Aco, Hoo), Such that

sup f |ustra) P dxp, L [ ‘Q—(xz)] dxz
Pk B? Neyi b

(A.10) ) 1/2
< Cexp| -8(1 Y
2]

This inequality expresses the exponential decay of the Stoneley wave ust(xp) with the distance to the

interface {x2 = 0}.
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