archives-ouvertes

Prime numbers as a tool to design distributed algorithms
Michel Raynal

» To cite this version:

Michel Raynal. Prime numbers as a tool to design distributed algorithms. [Research Report] RR~-1001,
INRIA. 1989. <inria-00075558>

HAL Id: inria-00075558
https://hal.inria.fr /inria-00075558
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00075558
https://hal.archives-ouvertes.fr

LN

BN R RN SR (SRS Al e A B I A TS T A 9

S

S S N R AN P P IN

apports de Recherche

N° 1001

Programme 1

PRIME NUMBERS AS A TOOL
TO DESIGN DISTRIBUTED
ALGORITHMS

Michel RAYNAL

Mars 1989

g

PRIME NUMBERS AS A TOOL
TO DESIGN DISTRIBUTED ALGORITHMS

Les nombres premiers : un outil pour la conception des algorithms répartis

Publication Interne n° 458 - 14 Pages - Février 1989

Michel RAYNAL
IRISA

Campus de Beaulicu
35042 Rennes Cedex

- FRANCE -
E-mail: raynal@irisa.fr

Abstract

Prime numbers arc investigated as a tool to design distributed control algorithms. One
of major drawbacks in designing such algorithms lics in the inability for one or scveral
processes (or cven for an cxternal observer) to catch instantancously some part of the
global state of the system. It is shown in this paper how, in some cascs, prime numbers
can be used to make distributed observations allowing to make consistent decisions. Two
very different distributed algorithms are produced as an illustration of the proposed tool
(a mutual exclusion and a lermination detection algorithms).

Résumé :

L'impossibilité d'obtenir un état global de maniére instantanée gonstitue 1'un ({es
problémes les plus délicats a résoudre lors de la conception d'un algorithme de controle
réparti. Des outils algorithmiques particuliers tels que les horloges logiques ou les marqueurs
ont été introduit afin de pallier cette incapacité. On propose ici un autre outil pour résou.dre
ces problémes : les nombres premiers. Deux algorithms distribués (1'un réalisant une exclusmp
mutuelle, 1'autre détectant la terminaison répartie) sont exhibés pour illustrer 1'outil proposé,

N! ! I:l PAPIER RECUPERE ET RECYCLE

PRIME NUMBERS AS A TOOL
TO DESIGN DISTRIBUTED ALGORITHMS

Michel RAYNAL

IRISA
Campus de Beaulieu
35042 Rennes Cedex

- FRANCE -

E-mail: raynal@irisa.fr

Abstract

Prime numbers are investigated as a tool to design distributed control algorithms. One
of major drawbacks in designing such algorithms lies in the inability for one or several
processes (or even for an external observer) to catch instantaneously some part of the
global state of the system. It is shown in this paper how, in some cases, prime numbers
can be used to make distributed observations allowing to make consistent decisions. Two
very different distributed algorithms are produced as an illustration of the proposed tool
(a mutual exclusion and a termination detection algorithms).

1 INTRODUCTION

One of the more basic problems found in asynchronous distributed computations and distributed
systems lies in the inability for one or several processes the system is made of (or even for an
observer external to the system) to take instantaneously a consistent global snapshot[LEL77,
FRAB80, CL85, RAY88]. Among others causes, this inability comes from the not-bounded
communication delays for messages. So when designing a distributed algorithm needing some
kind of global knowledge, one has to introduce some devices allowing to get a consistent view of
the part of the system he needs. Logical clocks introduced by Lamport [LAM78] to distribute

a state machine or markers introduced by Misra [MIS83] and used on fifo channels by Chandy
and Lamport [CL85] are such devices.

This paper studies another such a device: prime numbers; each process of the system is
endowed with a (different) prime number. As we will see the unicity of the decomposition of an
integer in a product of prime numbers is a property which allows one or several processes (or
an external observer) to take consistent decisions concerning some aspects of the global state
of the system.

The §2 states the hypotheses. Then two simple and elegant distributed control algorithms
are produced: a mutual exclusion algorithm (§3) and a termination detection algorithm (§4).
Mutual exclusion and termination detection are two paradigms of distributed control. Qur aim
is not to obtain efficient algorithms from a number of messages point of view but to investigate
and to show that prime numbers and their properties can be a useful tool when designing some
kind of algorithms in a distributed context.

2 HYPOTHESES

We consider a distributed system made of n sites: Py, Py, .., P.—1; one and only one process
is associated to each site. These processes are linked by a connection network; there is no
central memory and processes communicate solely by means of messages with unpredictable
(and non-zero) transmission delays; communication channels are bidirectionnal.

Each process P; is endowed with an attribute a;; these attributes are natural integers,
different from 1, and prime two by two.

3 A MUTUAL EXCLUSION ALGORITHM
3.1 The algorithm

The network is supposed totally connected. Each P; owns a variable z; initialized to a; except
. for one x initialized to 1. Each process P; can read any variable zj. (This can be easily
implemented by a request message from P; to P; followed by a reply message from P; to P,).

Let Q be Ha,-
=1

Protocols to enter and exit the critical section are the following ones for each Pi:

Wait [}, (zm = Q/a,-);
< critical section >;
T; 1= x; * a;/aj;

In the exit part of the protocol the effect of the multiplication by a; is the loss by P; of the
privilege to use the critical section; the effect of the division by a; is to give P; the privilege.
If j = (i + 1) mod n the privilege to use the critical section turns around the logical ring:
Pk, Pk+1, .y Po, Pl, vey Pk, as in [LEL77, DIJ74]

Remark: The wait operation is implemented by having P; to ask the P;s the values of their
variables z; from time to time until the condition becomes true.

3.2 Proof

The privilege to enter the critical section is expressed by some configuration of the state variables
z;. It is very easy to see that initially only the process Pi (the one with zj initialized to 1) can
enter the critical section (without loss of generality we suppose k =0).

It is easy to show that in a centralized context (the z; are stored in a central memory and
the readings get always the last values of the variables) the privilege turns around the logical
ring iff a; # aj, Vi # 7.

In a distributed context a problem comes from the arbitrary (but finite) delays of the request
and reply messages. Two processes P; and Px can use at the same time for the value of some
x;, two different values the variable z; had previously. Consequently we have to prove that,
despite these potentially mutually inconsistent readings, mutual exclusion is always guaranted
(safety property) and that the privilege turns around the logical ring (liveness property).

Safety

Let z(:) be the last value obtained by F; as value of zx; it is possible to have zx(z) # xx for
k # i (but z;(i) = z; at any time).

Let us suppose that the privilege has completed ¢ full turns (t >0) and that in the turn
¢ + 1 the privilege is owned by P; . The state variables have the following values (V¢ > 0,V%):

To= 7, L1 = —37 - Ti-1 = 3y T = Ty - Tael =
ait! ast ai* aiyy a

Let us consider P,, (m # i) and suppose P, can obtain the privilege, ie:

n-1
[1 zx(m) = Q/am (1)
k=0
Wlth: 220 aa‘+1 aa,,,,_;u
1) zo(m) = ;&o-, z1(m) = -GH;I—, e Tpe1(m) = —;":‘,%—_—,—

2 . . +1 . .
Z)xm(m)::zm=f§r if m<i, féﬂ: if m>i

m+1

g Omi1tl aon—1t!
3) :cm+1(m) = -:—:'zit,}lr, a:,,_l(m) = _:iﬁ'r'
) m+2 0

the exponents are such that:
0<La;<t+1 for0<3<1~1
0La;<tfori<j<n-1 (2)
am=t+1lif m<<i, tif m>:

Two cases have to be examined according to the case m < i or m > i. We consider the first
one.

oo omoy+1 142 am41+1
. G Gy A Qi1
(1) Am<r= oot T a@mot TR gL e = @0---Gm1Gmy1-.Gnoy
a am g1 Omy2
that is to say:
oo a3+l am—1+1 142 oana+l _ apn-itl ag4l [o T t+2 on_z+1
ag® at* e, "7 et e "7 = ag af®"agrtat s an] (3)
Moreover:
M<IA2)=D> apy <t+1 te apoy <t+2 (4)

(2) A (3) A (4) = alt*om-1 divides ag"““...aff{'j‘i’“af:fl‘.‘az:]”l

A simular reasonning hold for the case m > i.
Summing up:

Vmd#1: Hmk(m) = Q/am = an divides a product of ag..Gm_10m41.-Gn_y

Consequently as the a; are prime two by two P,, cannot enter the critical section if it is the
P;’s turn. ‘

Liveness

If it is the P: ’s turn to enter the critical section it will enter it as soon as it has received the
last values of the variable z,,. (Recall the delays are finite).

4 A TERMINATION DETECTION ALGORITHM

4.1 Hypotheses

The termination detection problem is a paradigm of the distributed control [FRAS80, CL85,
MATS7, LY87]. A process P; can become passive at any time; a passive process can only be
made active by receiving a message; an active process can send messages to its neigbhours. We
suppose without loss of generality that a process is passive when it receives a message and that
a process does not send messages to itself. The communication network is totally connected.

Detect termination consists in detecting a state of the distributed application in which all
the processes are passive and all the channels are empty.

4.2 The algorithm

Conceptually an observer OBS is in charge of the termination detection. It can be implemented
in several ways: it can be a particular site, it can be duplicated on several sites, it can be
implemented by a circulating memory like a token travelling along a ring, a tree, etc [MAT87,
HJPR87, RAY8S]. :

At a conceptual level the implementation of the observer does not matter. The only hy-
pothese we assume is that control messages OBS receives from each process are received in
their sending order.

When a process P; becomes passive it sends to OBS a control message. Let us suppose’
that, when it was active for the last time, P; sent p application messages to P; and q to P.
Becoming passive it secnds OBS the following control message:

ctl(a® * af/a;)
The observer OBS in endowed with a variable t. It is initialized to the following value:

t init to Ha;
1€l

A

(Where I is the set of initially active processes). When it receives a control message ctl(n/d)
the observer OBS updates t in the following way:

t:=txn/d

When ¢ = 1 the observer claims the application is terminated: all the processes are passive
and the channels are empty.

4.3 Proof

The proof consists in showing:
o that if the application is terminated then eventually the observer will detect it (liveness),

e and that if the termination is detected then the application is actually terminated (safety).

Liveness

When the application is terminated on the one hand each message m sent to a F; has been
received and processed, and on the other hand all the processes are passive. Consequently if ¢
messages have been sent to P; OBS will receive af in total (by control messages) as the senders
of these messages are passive. When P; became definitively passive (after having received these
q messages) it has sent the observer in total 1/ a?™! if it was initially active (or 1/a! if it was
initialy passive). It follows that ¢ = 1 when OBS has received all the control messages.

Safety

The value of t represents some global snapshot of the system from the point of view of its
activity. The global snapshot S (global state) associated to t is the following one. The state of
a process in ¢ is [LY8T]:

e its local state when it sent the last control message received by OBS,

o the sets of messages it has sent to each of its neigbhours and the sets of messages it has
received from them up to the last control message it sent and which has been received by

OBS.

So at any time (each ”*” stands for any non negalive integer):

* % - - -
Qg Gq...0;_4 ai+1...an_1

*
a;

6

represents the values sent by P; and received (in fifo order) by OBS since the beginning; con-
sequently the value of ¢ has the following form:

* »* * * * * * * *
aj...ay_; Qg G}...a7_q Gjyq...Qp 1 Gge..Gp_g

t = .
ag af an_y
namely:
no n-1 Nn-1
¢t = Qg a] el
- do _d; dn_y
ag® ay'...a.;

1. if t = 1 and 3 m such that n,, # d,, then:
if nm > dn then a®™~%m divides ag°...amr7’ afn’"f{ ...ai"_‘ll
if N < dip then adm="m divides ag°...apm7' apmy'...annill
both case are impossible as the a; are prime. Consequently if ¢ = 1 then ny = dm, Ym.
In others words, to OBS’s knowledge, the number of messages sent to each process P;

equals the number of messages P; received.

2. Let us consider t =1, Vm: n,, = d,, and the application is not terminated. We consider
two cases according to the snapshot S associated to t is consistent or not [LY87].

(a) The snapshot S is consistent (namely there is no messages received and not sent
in S). As for OBS t indicates the number of messages sent equals the number of
messages received and as t is consistent it follows that there is no message sent and
not received. Consequently as the last time a process sent OBS a control message it
was passive the application is terminated.

/
Pkl -

Figure 1: an inconsistent snapshot with ¢ =1

(b) The snapshot S associated to ¢ is not consistent (there are messages in S which are
perceived as received and not sent). As ¢t = 1 and the snapshot associated is not
consistent there is (at least) one message m whose reception by P; is known by OBS
but not its sending, and there is a corresponding message m’ whose sending to P;
by some P; is known by OBS but not its reception. (see fig. 1, O stands for the last
sendings of control messages).

P, -
Pa j .
w il

S T .

N T
A
A

Ika

Y

Ts

Figure 2: two inconsistent snapshots.

the message m has been sent by some Py, after the snapshot associated to ¢t. So
there is a chain of activation: Py; has been activated after S by Py, which has been

8

v

W)

PTTOIERTeRIpRsReReE TP R SUERTISES SR EIES (i T e

activated by Py after S etc... such a chain is necessarily finite (the number of process
is finite and an active process sends a finite number of messages): so Py has been
activated after the snapshot by a message sent by Py, before the snapshot (figure 2).

Consequently there is a process Py for which ny # di in t, which contradicts the
hypotheses. Therefore it is not possible to have t = 1 when there is some activity in
the system.

Remark: A similar reasonning in used by Lai and Yang in [LY8T7] to show that
inconsistent snapshot can be used to detect deadlock.

5 ABOUT IMPLEMENTATIONS

An implementation using vectors of dimension n is obviously well-suited. For exam-
ple in the termination detection case the j th entry of a vector sent by P; in a control
message corresponds to the exponent of aj. If we consider such a coding for the
termination detection algorithm and an observer implemented by a token travelling
along a ring (which visits periodically each process), we obtain the algorithm called
"vector algorithm” proposed by Matterm in [MAT87]; if the coding uses matrices
instead of vectors and if observers are put on an arbitrary number of sites we obtain
an algorithm similar to the one proposed in [HJPR87].

6 CONCLUSION

A possible use of prime number to design distributed algorithms has been investi-
gated. One of the major drawbacks in designing such algorithms lies in the inability
for one or several processes (or for an external observer) to catch instantaneously a
global state of a distributed system [CL85]. Properties of prime numbers (namely
unicity of the decomposition of an integer) can allow to solve some of the problems
such an inability has given rise to. Two very different distributed algorithms have
been produced as an illustration of the proposed tool (one implementing a service -
mutual exclusion -, the other implementing an observation - termination detection -).

e e i et A1 T 7@ 291 e e

Acknowledgements

This work has been partly supported by French National Project C® (CNRS Project
on Parallelism). R. PEDRONO and A. COUVERT are acknowledged for their com-
ments which improve on the proofs.

References

[CL85) CHANDY M.,.LAMPORT L., Distributed Snapshots: determining
global states in distributed systems, ACM TOCS, Vol. 3.1, (1985), pp.
63-75.

[DIJ74] DIJKSTRA E.W.D., Self-stabilizing Systems in Spite of Distributed
Control, Comm. ACM, Vol. 17,11, (Nov. 1974), pp 643-644

[FRA80] FRANCEZ N., Distributed Termination, ACM Toplas, Vol. 2,1, (Jan.
1980), pp 42-55

[HIPR87] HELARY J.M,, JARD C., PLOUZEAU N, RAYNAL M., Detec-
tion of Stable Properties in Distributed Applications, Proc. 6th ACM
Symposium on PODC, Vancouver, (Aug. 1987), pp 125-136

[LEL77) LE LANN G., Distributed Systems: Towards a Formal Approach, IFIP
Congress, Toronto, (Aug. 1977), pp 155-160

[LAM78] LAMPORT L, Time, Clocks and the Ordering of Events in a Dis-
tributed system, Comm. ACM, Vol. 21,7, (July 1978), pp 558-565

[LY87] LAI T.H., YANG T.H., On Distributed Snapshots, Inf. Processing Let-
ters, Vol 25, (1987), pp 153-158

[MAT87] MATTERN F., Algorithms for Distributed Termination, Distributed
Computing, Vol. 2, (1987), pp 161-175

[MIS83] MISRA J., Detecting Termination of Distributed Computation using
Markers, Proc. 2d ACM Symposium on PODC, Montreal, (1983), pp

, 290-294
[RAY88] RAYNAL M., Networks and Distributed Computation: Concepts, Tools

and Algorithms, The MIT Press, (1988), 166p

10

PI 452

PI 453

Pl 454

PI 435

Pl 456

PI 457

PI 458

LISTE DES DERNIERES PUBLICATIONS INTERNES

LANCER DE RAYON : APPROCHES PARALLELES
Didier BADOUEL, Franc¢ois BODIN, Thierry PRIOL
16 Pages, Janvier 1989.

UN COMPILATEUR ESTELLE MULTI-PROCESSEURS POUR L'EX-

* PERIMENTATION D'ALGORITHMES DISTRIBUES SUR MACHINES

PARALLELES
Jean-Marc JEZEQUEL, Claude JARD
54 Pages, Janvier 1989,

REALISATION ET CALIBRATION D'UN SYSTEME EXPERIMENTAL
DE VISION COMPOSE D'UNE CAMERA MOBILE EMBARQUEE SUR
UN ROBOT-MANIPULATEUR

Francois CHAUMETTE, Patrick RIVES

36 Pages, Février 1989.

ARCHITECTURE SYSTOLIQUE POUR LA CORRECTION
AUTOMATIQUE DE LIBELLE D'ADRESSE

Dominique LAVENIER, Jean-Luc SCHARBARG, Patrice FRISON
22 Pages, Février 1989.

DISTRIBUTICN OF OPERATIONAL TIMES IN FAULT-TOLERANT
SYSTEMS MODELED BY SEMI-MARKOV REWARD PROCESSES
Gerardo RUBINO, Bruno SERICOLA

10 Pages, Février 1989.

TANDEM QUEUES WITH FEEDFORWARD FLOWS
Kamel SISMAIL
16 Pages, Février 1989,

PRIME NUMBERS AS A TOOL TO DESIGN DISTRIBUTED
ALGORITHMS

Michel RAYNAL

14 Pages, Février 1989.

Imprimé en France
ar
I Institut National de Recherche en Informatique et en Automatique

.,

”»

