N
N

N

HAL

open science

Knuth-Morris-Pratt algorithm: an analysis

Mireille Regnier

» To cite this version:

Mireille Regnier. Knuth-Morris-Pratt algorithm: an analysis. RR-0966, INRIA. 1989. inria-

00075593

HAL Id: inria-00075593
https://inria.hal.science/inria-00075593
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075593
https://hal.archives-ouvertes.fr

Rapports de Recherche

UNITTE DE RECHERCHE N° 966
NHIA—R@C@UEIN@@ URT

Programme 1

KNUTH-MORRIS-PRATT
ALGORITHM : AN ANALYSIS

NS

Institut National
en [nformatique Mireille REGNIER

et en Automatique

de\Voluceau
Rocguencourt
LeChesnay
~ranoce Janvier 1989

(1139638511 (L

-.B9bb6%*

PR

KNUTH-MORRIS-PRATT ALGORITHM: AN ANALYSIS
ANALYSE EN MOYENNE DE L’ALGORITHME DE KNUTH-MORRIS-PRATT

Mireille REGNIER
INRIA-Rocquencourt
78 153 Le Chesnay-FRANCE

Abstract: This paper deals with an analysis on the average of the Knuth-Morris-Pratt algorithm;
the constant of linearity c is derived. In particular, when the cardinality q of the alphabet is large,
it is proven that ¢ ~ 1 + %. An algebraic scheme is used, based on combinatorics on words and
generating functions.

Résumé: Nous réalisons une analyse en moyenne de l’algorithme de Knuth-Morris-Pratt; nous
obtenons la constante de linéarité c. En particulier, nous prouvons que, pour de grandes cardinalités
q de Ualphabet, on a: c~ 1+ %. Nous utilisons une méthode algébrique, basée sur la combinatoire
sur les mots et sur les fonctions genératrices.

H! !'Dmnsn RECUPERE ET RECYCLE

@

KNUTH-MORRIS-PRATT ALGORITHM: AN ANALYSIS

Mireille REGNIER
INRIA-Rocquencourt
78 153 Le Chesnay-FRANCE

Abstract

This paper deals with an analysis on the average of the Knuth-Morris-Pratt algorithm; the
constant of linearity c is derived. In particular, when the cardinality q of the alphabet is large,
it is proven that ¢ ~ 1 + %. An algebraic scheme is used, based on combinatorics on words and

generating functions.

I. INTRODUCTION:

We study here the Knuth-Morris-Pratt algorithm [KMP77] that searches a given pattern p in a text
t. This algorithm avoids going backward in a text, which may be a big advantage for some types
of memory. We are interested here in evaluating the number of comparisons performed to find all
occurrences of a pattern of size |p| in a text of size n. A preprocessing of the pattern p allows to build
an automaton, that, after each mismatch, keeps the largest substring of the string made of the last
characters read that still matches the pattern. Hence, a probabilistic analysis using Markov chains
seems natural, and this is the method adopted in [BA85,BA88]. Unfortunately, as discussed below
in Section 2., these methods of evaluation appear to be approximate and not powerful enough.
We propose here an algebraic scheme via generating functions and combinatorics on words, that
provides an exact expression of the number of comparisons, as a function of the cardinality ¢ of
the alphabet A. This allows a comparison with the naive algorithm, that is equivalent to Knuth-
Morris-Pratt when ¢ is big enough.

In Section II., we present a state of the art. We describe two variants of the algorithm and
the probabilistic methods of evaluation previously used, and we discuss the results. In Section III.,
we recall some basic properties of generating functions as well as some classical methods to derive
them for well-suited combinatorial structures. In Section IV., we derive the generating function of
the number of comparisons performed, for one variant of the algorithm.

II. STATE OF THE ART:

In IL1. we present the original Knuth-Morris-Pratt algorithm as described in [KMP77] and the
improvement suggested in [SE83]. In IL2. we discuss the analytical models (Markov chains)
proposed by other authors [BA85,BA88].

11.1. The Knuth-Morris-Pratt Algorithm:
Let us first adopt some notations and definitions.

Definition 1: The side of a string, or a word, w, on a g-ary alphabet is a non-empty subword
which is a (strict) right factor and a (strict) left factor of w.

Example (a): 01201201has two different sides: 01 and 01201.

In the following, p is a pattern that is searched in a text t. We note pfi] (resp. {[¢]) the i-th
character of the pattern p (resp. the text t). The algorithm uses a text pointer TP and a pattern
pointer PP that determine the next compa.rison'to be performed: if TP = i and PP = j, then
the i-th character of the text is to be compared to the j-th character of the pattern. After a
comparison, the pointers are updated, as indicated by the result. After a match, both pointers are
moved one step forward. Note that if PP = |p|, the pattern has been found, and PP will point
again to the first character of the pattern. If a mismatch occurs, two choices appear. If PP =1,
the text pointer is moved forward. In other cases, the text pointer is not updated. Never having to
read backward is an advantage of the Knuth-Morris-Pratt algorithm over the naive algorithm. To
update the pattern pointer PP, a function nezt is defined. For any given j, let the largest side of
the substring p[1]...p[j — 1] already read be p[1]...p[k — 1). Then nezt[j] = k and PP is moved
to k. Remark that whenever the value of PP is 1, PP remains equal to 1 after a mismatch.
Example (b): Let p = 012012123 be the pattern and ¢ = 32012012012123321 be the text. After
the first comparison (a mismatch between ¢[1] = 3 and p[1] = 0), the text pointer is moved to 2,
compared to 0 again. After the next move of TP to #[3] = 0, six matches occur. The string 012012
is recognized, PP points to p[7] = 1 and TP to t[9] = 0. After this mismatch, the longest side
of p[1]...p[6] = 012012 is 012, then PP is moved to 4. Now, £[9] matches to p[4] and the whole
pattern is found.

Remark: One can also use some additional information when a mismatch occurs, to move the text
pointer even when PT is not p[1]. For example, assume: '

p= 012012123
¢ = 320121012012123.

A mismatch occurs when [6] is compared to p[4]: obviously, ¢[6] is also different of p[1] = p[4].
Hence, we can avoid this comparison: the text pointer TP is moved to t[7] and compared to p{1].
This variant will be studied in Section V.

Using an automaton: One can also construct an automaton. Then each character in the text is
compared only once to the pattern (our analysis does not apply then). But this automaton may
have many states-between g|p| and g!?l- and be expensive to construct.

II.2. Probabilistic analysis:

A probabilistic approach -via Markov chains- to evaluate the number of text-pattern comparisons
performed is proposed in[BA85] and improved in [BA88]. We describe both of them and show why
this approach cannot provide exact evaluations.

To modellize the process by a Markov chain, Bath defines a set of states. State:,0 <3¢ < |p|+1,
occurs when (i + 1) matches have been found. Note that in state [p| + 1, the entire pattern has
been found: such a state is absorbant if we are only interested in finding the first occurrence of the
pattern p. Now, from any state ¢ < |p|, transitions are possible only to either one of the two states:
i+ 1 or nezt[i] depending whether the comparison ends in a match or in a mismatch. One gets the

scheme:

2 >---

(D3

. next (i) . .next (m)
It follows that different patterns (a.ssocxated to different functions nezt) define different Markov
chains. I.e. this Markov chain is not homogenous in space. For all possible Markov chains, transition
probabilities should be defined. Considering that most of the transitions are to states 1 or 2, an

3<z<m ne:ctz]-.
t=1,2:meztfi]=1

Then, the parameter of interest, the number of comparisons to be performed, is claimed to be
equal to the expectation of the absorbing state. This is also, by definition, the number of

approximate model is defined:

steps the process makes from a start until absorption. Unfortunately, this claim is true for the
naive algorithm, but is false for the Knuth-Morris-Pratt algorithm. As a matter of fact, in the
naive algorithm, when a mismatch occurs on the character p[j + 1], the text pointer is always
moved j steps backward. Thus, j lectures and comparisons are ”forgotten”, and will be repeated

later. Hence, j is a correct estimation of the cost. As the corresponding transition of the Markov

3

chain is from j to 1, it is also the number of steps the process made since the last passage through
state 1. But this claim turns out to be false for the Knuth-Morris-Pratt algorithm. The text pointer
is never moved backward. When a mismatch occurs, the last character read, only, is forgotten”
and recompared to a character of the pattern as indicated by the transitions of the chain: the cost
is constant. Hence, the final cost is now the number of times a backward transition is chosen. Such
a parameter cannot be easily derived from the classical theory of Markov chains. In particular, the
approximate model described above is of no help.

Baeza-Yates [BA88] improves this scheme. He considers the average number of comparisons
to find all occurrences of a given pattern, that can be derived from the study of Markov chains.
The basic idea is to use the steady states and find the fundamental matrix. The parameter to be
evaluated is the shift: a shift is defined, for each mismatch, as the number of characters read since
the last mismatch. Now, one out of these s characters is compared twice to the pattern. Hence,
the cost of the algorithm is: .

1+ E(;) .

From the steady state probability vector, one derives E(s) and Kantorovitch inequality allows to
get an approximation of E(1/s) from E(s). '

The Markov chain that modellizes the algorithm is different from the one above. As remarked
in [BA8S], i + 1 states is not enough, because of the memory of the algorithm. (The transition
probabilities out of a state may depend from the previous transition(s) to this state). Let us first
consider an example, assuming the size of the pattern p is 2. We note p = p[1]p[2]. Two cases may
occur: p[1] = p[2] or p[1] # p[2], which induce two different Markov chains. We are led to define 3
states.

State 1: the current text character z is to be compared to p[1], with no knowledge on z.
State 2: the current text character z is to be compared to p[2).

State 3: the current text character z is to be compared to p[1], with the additional knowledge:
z # p2).
At first, let us remark that State 3 is meaningful iff p[1] # p[2]. The assertion z # p[2] implies
z # p[1] when p[1] = p[2]; hence there is no need for a comparison. We get to this case if we have
a mismatch when comparing some text character z to p[2]. Such a character has to be recompared
to p[1]. With the conditional knowledge z # p[2], the probability for a match (i.e. to go to state
2) is q—i——l- and not %. The reader will notice that States 1 and 3 are almost equivalent: in both
cases, a comparison to p[1] is performed and the outgoing states are identical. But the transition

probabilities are different as well as the ingoing states.

5g Finally, one gets two Markov chains:

(a) p=2z (b)) p=2y

1l/q

1-1/q

1-1/(q-1) 1/(q-1)

Note that on a g-ary alphabet, ¢ 2-patterns are associated to scheme (a) while ¢(g — 1) 2-
patterns are associated to scheme (b).

The limits of the probabilistic methods appear now clearly. The Markov chains that modellize
the algorithm are non homogenous in space. When the length k of the pattern p increases, the
number of possible chains increases rapidly. Moreover, the knowledge of possible chains for |p| = &k
does not help to get the possible chains when |p| = k + 1. Hence the model quickly becomes
untractable. An approximation has to be done. In [BAS88], the author realizes an embedding in
a homogenous Markov chain. This approximation is illegal: one cannot ensure that the steady
states for this approximate model is a correct approximation of the steady states of the non-
homogenous Markov chain. In any case, the parameter of interest, namely E(1/s) is not derived
directly but deduced from E(s) via the Kantorovitch inequality. This introduces an other, and

important, approximation.

Our approach is algebraic. We derive the exact (algebraic) expression of the number of com-
parisons text-pattern performed by developing suitable generating functions. The basic idea to get
these generating functions is the following. Any character in the text is read once or twice. This
depends of the p previous characters in the tezt, at most. Hence, we will consider, classify and
enumerate the possible occurrences of p-patterns, or substrings of p-patterns, in the text.

II1. SOME PROPERTIES OF GENERATING FUNCTIONS:

Let E be a set such that a size can be defined on the elements of E. Here F will be a set of words
and the size of a word will be its length. Let s be some parameter defined for all the elements
(number of nodes in a graph, depth of a tree,...). The generating function associated to s is defined

as:

S(z) = anz"

5

where s, is the average value of the parameter s on the elements of size n. It may happen that all
the elements of E can be built from simple elements of E via simple combinatorial constructions.
If these constructions easily translate on relations on generating functions [FL88], the generating
function approach may become a quite powerful tool. In the following, we give some translation
rules. A(z) and B(z) are the generating functions associated to a same parameter computed on
different subsets A and B.

(a) additivity: The generating function associated to the disjoint union of two sets: AU B,
AN B = Q, is the sum of the associated generating functions:

A(z) + B(z2).
Proof: Z P I EzM + Ez"‘".
wEAUB w€A w€EB

'(b) Concatenation: Let us consider the words ¢ which are a concatenation of two words
a € A and b € B. The associated generating function is the product:

C(z) = A(2).B(2).

Proof:

Yool 3 gledle T Sl $ 0 S A B().

ceC a€AbEB a€AbEB a€A beB

(c) Repetitions of strings translate easily by an exponentiation.of the variable to some

power. For example, one associates
B(2%) and B(2%).A(2)

to the concatenated words:
bb and b.a.b

Proof:

E z|bab| - Z z2|b|.z|a| = E 32""_ E zlal = B(ZZ)A(Z)

a€AbeB a€AbEB beB a€A

(d) 3, a™[2"]A(z) = A(a). This relation is obvious from the definition. It will be useful in
the paper.

Examples: We compute here the generating functions associated to some basic, and useful, sets

of words.

(i) Let a be a given character. The set a* (resp. the set a*) is enumerated by:

| a(z) =

by 2
T (resp.a™(z) = Tt

6

(ii)

(i)

Proof: a* contains exactly one word of size n: a repeated n times. Hence, applying (a),

one gets:
. 1

a(z)= Zl.z": T3

n20

while:

at(z) = El.z" = — ,

n>1 1-2
Let A be a g-ary alphabet. The generating function enumerating the number of words is;

1

A(z) = T=e

Proof: A* is the disjoint union of the subset of words of size n. One has ¢™ words of

length n. Hence: 1

1-qz°

A(2) = Zq"z =

n>0
Notation: Let W,(z) = i—l—qz be the generating function of the words on a g-ary alphabet. |
The words beginning by a given character a are enumerated by the series S :

S(2) = 2.W,(2).

Finally, let us give some definitions and notations from combinatorics of words.

Definition 2: A word v € A* is said to be a factor of a word z € A* if there erist words
u,w € A* such that:
T = uow.

A word v € A" is said to be a left factor or a prefix (resp.a right factor or a suffix)
of a word x € A* if there ezists a word w € A* such that:

= vw (resp.z = wv) .

We will note in the following:
v X z(resp.v C z)

or, when the factors are strict:

v < z(resp.v C z).

IV. ENUMERATING THE COMPARISONS TEXT-PATTERN:

We first present our basic ideas. This leads us to define a notion of quasi-mismatch. The
generating function of quasi-mismatches, studied in Section IV.2., gives an upper bound on the
cost. Generalizing this notion of quasi-mismatch, we can deduce, in IV.3., the generating function

of the total cost.
IV.1. The basic ideas:

We remark that the Knuth-Morris-Pratt algorithm is almost memoryless. Given a character a in
a text, the number of comparisons performed on this character depends only of the word of size
|p| preceding it in the text, |p| being the size of the searched pattern. Hence, we will enumerate
possible preceding words inducing k comparisons. The average number of comparisons on a will
follow. To do so, we introduce the fundamental notion of quasi-mismatch, which will provide an

upper bound:
Definition 3: Leta be some character in the alphabet A. A quasi-mismatch is the occurrence
in the tezt of a pattern p'a such that: p' <p, paZAp

Remark: A quasi-mismatch is the occurrence of a string p’a such that a comparison with p
would imply a first mismatch on a and a second lecture of a. '

We shall prove that a second lecture of a character @ implies a quasi-mismatch. Hence, counting
the expectation of quasi-mismatches in the text, we will get an upper bound on the number of extra-
comparisons. '

Proposition 1: Let a be some character occurring in the tezt. A second lecture of this character

implies the ezistence of a quasi-mismatch.

Proof: Let a be a character occurring in a text. If the first comparison of @ with the pattern ends
in a match, or if this comparison is: a?p[1]}, the text pointer is moved and a will not be compared

again to the pattern. But, if the comparison ending in a mismatch was:

a?plsl, 1<j<|pls
then the largest side of p[1]...p{j — 1), say p[1]...p[k — 1], is searched and @ is compared to p[k].
This is the only case of multiple comparison. It implies that the predecessors of a be p(1]...p[j—1].
This is a sequence p' < p. Moreover, this ends in a mismatch iff p[1]...p[j — 1]a £ p.

Remark:

(i) This necessary condition is not sufficient. Assume for example:
p = 1021034
{ t = ...1021087...
One has: 10 < p and 103 £ p but § will be read only once, and match the pattern. It is
worth noticing in this counter-example that 103 is a factor (but not a left factor) of the

pattern.

(ii) The condition in Proposition 1 may be satisfied by several prefixes p’. For example, if:
p = 01024
{ t = ...0103..
one has 03 £ p and 0103 £ p while 0 < p and 010 < p.

To evaluate the expectation of quasi-mismatches, we introduce the following notation:

Definition 4: Let a be some character from an alphabet A. Note:

FO@G) = 3 70

where f,(z“) is the number of prefizes of length n of all possible patterns that may induce a quasi.
mismatch for a at position n. We note F(2) = 3, fno2" the generating function counting quasi-
mismatches at position n. One has:

fa=D fD =q.f@

a€A

F(z) =) F)(z)= qgF(2) =) far".
a€A n

In the next Section, we will derive this generating function, using the constructors recalled in

Section III. As any additional comparison implies a quasi-mismatch, this will give an upper bound

on the number of extra comparisons.

IV.2. An upper bound of the cost:

The aim of this Section is the derivation of Theorem 2, which establishes an upper bound to the
number of extra comparisons performed when using the Knuth-Morris-Pratt algorithm.

Theorem 2: For a given pattern p and a given text t of length n, let M, and C, be the random
variables counting the number of quasi-mismatches and of extra comparisons . We note M, and
Cr the average values taken over all possible random patterns of size |p| and tezts of size n. One

has:
Cn <M,
Co
n n
and: M 1 1 1
" — — -_— — — ———
T - Fp(qz) - q q|P|
where:) 2 1)2?
-1z
F(z) = aFa(2) = aPi(2).Ba(z) = T=2
z (g=1)z

] Pl(z)zq'l—z'l—(q—l)z

(1-2)(1-(g-1)2)
1-gqz

,_‘P2(2)=

9

and Fy(2) is the truncation of F' at order p.

Proof: Rule (b) in Section III will apply for suitable factorizations of the patterns. An example
was treated informally in Section IV.1. above. More formally, we have:

Factorization Lemma 3: Let a be a character. Then any non-empty string o can be factorized,

in a unique manner, as:

g =pp2p3
where:
a*s;,
p= ba*s;, be A - {a}
{a 83...0%8m
p2 =
€

.andv‘s; is a noh-empty word from A* — a*.
Example (c): Let o0 = 011023105. Depending on the character a, o has different decompositions.
We give three examples, corresponding to the three possible expressions for p;.
*a=2: (case (i))
p =0110,6=0,s;, = 110
p2 = 23105, 52 = 3105.
*a=1 (case (ii))
pn=011,5=11,b=0
p2 = 023105, 32 = 23105
*a=0 (case (iii))
7 = 011023, = 0,s; =023
p2 = 105,32 = 05.

One can understand intuitively this factorization. a is chosen as a partitioning element as, clearly,
a quasi-mismatch for a at position j implies p[j] # a. Only occurrences of prefixes o of the searched
pattern p, where p3 = ¢, i.e. with a last character different from a, can induce quasi-mismatches,
when this last character is replaced by a. p; represents the minimal prefixes that may induce
quasi-mismatches, depending on the searched pattern p. When a comparison a?p{1] fails, a is not
read twice; hence [p;| > 1. More precisely, no quasi-mismatch may occur before a position j > 1

10

such that: p{j] # @, and we get the three exclusive expressions. Finally, () is the number of
admissible prefixes p;p,, for all possible patterns p.

fr(:a) =# Upipaeas {plpz 2p |P1P2| = n}

. =[z"] E PLE IS P Ezlmlzlml

P1p2 P1P2

= [z"]zzhul Zzlml .

Note that the two basic generaring functions involved, 3, 7l and ¥ 2172l do not depend on
the character a, for reasons of symmetry. We derive their expressions in the following two Lemmas,

Lemma 5: Let P, = Up>1 E™ U {€} with:
E={zy/z € a* - {e},y € A* - a*}.

The generdting function P5(2) counting the words in P, is:

_ z (g-1)z i
Py(2) = _1+§[1_z.1_(q_1)z] .

Remark: The elements of P; are the strings p; of Lemma 3.

Proof of Lemma 5: The elements of E are non-empty words obtained by concatenation of a
non-empty word in ¢* and a non-empty word on a (g — 1)-ary alphabet: A — {a}. Applying rule
(b) yields the generating function:

z
1-2°

We-1(2) - 1].

Lemma 6: With the notations of Lemma 3, we note P, the set of the strings p, associated to a
given character. The generating function counting the number of words in P is:

z _(g-1)z
1-2z'1-(¢g~-1z°

P(2)=gq.

Proof of Lemma 6:
* Let E; be (case (i)) the subset of Py: Ey = (a* — {€}).(A* — a*). The generating function
associated to the set a* — {¢} and to the set A* — a* are: %; (see Example (i)) and

i—_—(h; (see Lemma 5). Hence:

* Let E; be (case (ii)) the subset of P;:
E; = Upea—ga)lba® ~ {e}).(4" - a*)]

11

As there are (g — 1) different choices for b, we get:

z (¢ -1)z
1-2z1-(¢g-1)z

Ey(2) = (¢-1)2

* Let (case (iii)) B3 = Ubea-{a}[0-(A — {a})*] . As there are (¢ — 1) choices for b, we get
the product: :
(¢ -1)2

1-(¢—1)z°

P; being the disjoint union Ey U E; U E3, Lemma 6 follows.

Ey(z) = (¢—1)z.

We can turn now to the proof of Theorem 2. From Lemmas F,G and H, we know that:
FO(2) = Py(2).P(2) .

An extra-comparison on a character z implies the existence of a quasi-mismatch (see Proposition
1). Hence: C, £ M, and %n- < 1_}_ As a quasi-mismatch always occurs at some position n such
that n < |p|, the function F' is truncated. Now, a given string p'z, |p'z| = n occurs in a text with
a probability ;:T. And p'z is a prefix of the searched pattern with a probability ?11“_ Hence, for a
given character a:

P
E(quasi — mismatch) = E f,(.“).qun = F,(,“)(g—ll-z-) ,

n=1

and: _

Cn

1
Yy = p(;l?)-

IV.3. The average cost of Knuth-Morris-Pratt algorithm:

This subsection is devoted to the demonstration of Theorem 7, which enunciates the average cost
of Knuth-Morris-Pratt algorithm. In the previous subsection, we have defined the notion of quasi-
mismatch which allows to derive an upper bound on the cost. The examples (i) and (ii) given
above indicate the origin of this overestimation. The condition enunciated in Proposition 1 is not
a sufficient condition; moreover, some mismatches may be counted several times. We evaluate here
this overestimation.

Theorem 7:Let Cy,(p) be the average number of extra-comparisons performed by ¢ Knuth-Morris-
Pratt algorithm on a tezxt of size n for a given pattern p. Let C, be the average value, taken over
all patterns of size |p|. It satisfies, asymptotically:

_ q-— 1 1 1 C_'n _ q-— 1 __1_
i TS"""I(F) - FIPI—I(qz) <SS SoT —qTSIPI-l(qz)'

12

Here M(2,z) is the function defined below in Proposition 10; Sipl-1 and Fjp)_y are the truncations
at order |p| — 1 of the entire functions S and F defined as:

S(z) = ZM(Z"‘,z)
m2>1 .)
F(z) = -I-[E M(2*™, 22 W,o(2) + sumpm>a M(z™, 2)] + E[(p + 1)M(2P*1, 2) + pM(2%7,2)] .

m2>1 p2>1

Corollary 8: C,, can be developed as a function of %

C..1 2 1 2 1
w e tETETo

Remark: Developing F yields: FIPI-I(?;}T) ~ ;}r- Hence, the result is known up to 0(;17).

The overestimation, i.e. the difference between the number of quasi-mismatches and the
number of extra-comparisons is, on the average, very closed to S)pp-1(;’1,-) In the following, we
characterize quasi-mjsmatches that induce an overestimation. Let us first consider two examples.

Example (d): p= 0102 and t =...0103...

In this case, the occurrences of 03 and 0103 in the text will both be counted as quasi-mismatches,

for the same mismatching character 3.
It may also happen that the condition (I) is not sufficient if a prefix is also a factor in the text:

Example (e): Let p = 0121101345. One has: 01 < 012 < p while 013 is a factor of p. According
to the definition, any occurrence of 013 will be counted as a quasi-mismatch. Nevertheless, 3 is not

a mismatching character, when 01211013 occurs in the text.

In both cases, some repetition appears in the pattern p. In order to characterize these repetitions,

we state the following lemma.
Multiplicity Lemma 9: Let p' and p”,|p'| < |p”|, be two sequences such that:

pl -_5 pn
pcyp

Padp padp

Then:
vu €P
. . P =ufvu)*
I(u,v) € A® x A* s.t. P =p’(vu)*
a Aou.

13

Proof: A basic result of combinatorics on words [LOTH)] yields that, whenever p’ X p” and p’ C p";

Y
3(u,v) € A* X A* s.t. {p” "“S"“)
p" =p.vu.

Now, if vu ¢ P, then vu = 2™,z € P. It follows that u C z™; hence, there exists a factorization:

"z = ae such that u = e.z?. Finally:

P = e.(ae)?.(ae)™P.(ae)™ = e.(ae)*, ae € P.

As p' < p” and p’a £ p, one has p'a £ p”; hence: a £ vu. []

We are led to enumerate such words.

Proposition 10: Let M(z,2) =3, veer zlvl 2Vl It satisfies:

Y M(z",3) = (Wy(2z) =)Wy(2) - V(2,2)
m>1
where: V(z,2) = Z5[e X5y P(2™2) - Wo(22) + 1]
and: P(z) = 3, u(d)[Wy(z)— 1](2?) is the generating function of primitive words. Equivalently:

M(z,2) =) w(d)[(Wy(22) - YW, (2) - V(z,2)|(=%)
d

where p is the Mébius function.

Proof: We enumerate the words u.vu where u is some word in A* — {€}. The generating function
associated to these words is: (Wy(zz) — 1)Wy(2). Now, vu = t*,t € P, and either u C t or u = et?,
with e C ¢t and p > 1. In the first case, one may rewrite u.vu as u.(v'u)™, m > 1, and these words

are associated to:

!
E ghul Velm = M(2™ 2).
u€A
viu€P

In the second case, one has:
u.vy = etP.i™

with the condition: p < m, as u C vu. Then:

[¢]-1
Z zle?’l ymitl — Z Z zmltl z zPlt, Z 23
«p teEP m>2 Jj=0
m>p>1
= Z Z zmltl(zltl - zmltl)
tEP m>2
=== Z[P(u"‘) P((zz)™)}.
m>2

14

As: ZmZI P(2™) = W,(2) - 1, one gets:

1
1-2°

(3 P(s2m) - W(za) +1] .

m2>1

Note that tle two conditions u C ¢ or u = et? are not exclusive. More precisely:

u=et’,p>1leCt U=t
<~
uCt v et*

The associated generating function is:

Z ghulzmivl = E P(zz") .

u€P m>1
Finally:
(Wy(zz) - DW,(z) = 3 M(™,2) + V(z,2).
m>1
Applying M@dbius inversion formulz, we get the expression of M(z,z). n

A refined upper bound: We can turn now to the proof of the refined upper bound in Theorem
7. The term Sj,—1(;1-;) is the average number of times we count quasi-mismatches for matching
characters (see Example (e)). Such events occur when:

p=u(vu)ps, a < p3s,a X vu
and when p’ = u(vu)'a occurs in the text. In such cases, all the ! sequences:
ua, u(vu)a,...,u(vu)' "la

are counted as quasi-mismatches, although the sequence p’ is a matching sequence. In Example
(e), we had:
a=3,u=01v=211,p3=345,l=1.
If [u(vu)'| = n, the probability to search such a pattern is P(u(vu)'a < p).P(a < vu) = F‘;-,-.’-’;'-l-;
the probability of occurrence of ¢/ in the text is qun-. Hence, as we have q choices for a, we must
deduce from Fp(-&l’-):
g-1 1 1 g—1
= D Mipa(@™)z =) = Sppea(5) X -
¢ 5 q q q
n

A refined lower bound: We have substracted so far the quasi-mismatches associated to matching
characters of the pattern. We have now to consider the case when several quasi-mismatches are
associated to a single mismatching character (see Example (d)). This implies:

{p’ = u(vu)'a

u(vu) <p, advu

15

(Note that whenever a < wvu, u(vu)~'a < p and a single quasi-mismatch is counted). If all
decompositions of the matching prefix are u(vu)!, then the next steps of this naive algorithm will
compare all the sequences of words u(vu)’a to p and all these comparisons will end in error. Hence,
the I + 1 quasi-mismatches are associated to I + 1 effective comparisons of a. We have then to
consider the case: u(vu)’ = 2(tz)™ It may happen that some comparisons u(vu)?a?p are skipped.

Example (f): p = 101210101210134 and the mismatching sequence 10121010121012 occurs in
the text. The matching prefix is: 101.2101012101 = 1.(1012101)(1012101). The longest matching
prefix preceding 2 is not 1.(012101) but 2101012101. The next comparison is 2?2 which ends in a

match. Hence, the comparison 1012?p will never be done.
One proves easily that either [or m is 1, say m. Now, two cases may occur:

(i) a < vu,a £ tz: two quasi-mismatches: u(vu)'a = 2(tz)a and za have been counted. As
u(vu)'~la < p, there was only 1 extra-comparison on a. Hence, the overestimation is 1.
(ii) @ < tz,a A vu: the comparisons u(vu)’a?p such that |u(vu)ia| < |z] are not performed.
As |z] < 1/2|u(vu)'|, the overestimation is at most 4% (resp. %) when ! is odd (resp.
even).
To get a better approximation of our overestimation, we distinguish the cases: j > 2and j = 1.
In any case, we have: |2] < |u(vu)!1|.
7 2 2: In case (i), the overestimation is upper bounded by: ?lizf!Q? MM z)(z=2= 317) In case
(ii), it is upper bounded by: [30,5; PM(2°%,2) + Lo (P = DM (227, 2)](z = 2 = J).
J = 1: The only case of interest is (ii). Then: z = z(yz)* and u = z(yz)*. Hence,applying rule (c),
we get the upper bound:

1 1

1.;. Z M(2*™,2%), W, (2)(z =2 = ;2.) .
m2>1

Summing these results, we get an upper bound of our overestimation, hence a lower bound for our

algorithm. n

V. CONCLUSION:

In this paper, we realized an analysis on the average of the Knuth-Morris-Pratt algorithm. This
algorithm is linear on the average, and we derived the constant of linearity, as a function of the
cardinality ¢ of the alphabet. Notably, when g is large, this constant c is equivalent to 1 + % Our
scheme of analysis is algebraic. We first reduce the problem of finding the number of comparisons to
a problem of word enumeration. Applying some known results from combinatorics of words, we are
able to compute the associated generating functions. This shows an example where constructions
of words satisfying certain properties translate into generating functions.

We believe this scheme can be extended to other string matching algorithms. Notably, variants
of Knuth-Morris-Pratt can be treated analogously. We are currently working on the analysis of

16

Boyer-Moore algorithm, using an algebraic scheme and generating functions.

s _ References:

[BA85] G. BARTH ”An Analytical Comparison of Two String Matching Algorithms” in Information
Processing Letters, 30 (1985) 249-256.

[BA8S] R. BAEZA-YATES ”Analysis of String-Matching Algorithms ” Waterloo Univ. Research
Report -

[CP88] M. CROCHEMORE AND D. PERRIN ”Pattern Matching in Strings” in LITP (Paris) Research
Report 88-5.

[FL84] PH. FLAJOLET ”Mathematical Methods in the Analysis of Algorithms and Data Structures”,
Lecture Notes for A Graduate Course on Computation Theory, Udine(Italy) 225-304(1984).

[FL85] PH. FLAJOLET ”Elements of a Theory of Combinatorial Structures” in Proc. FCT Conf,
Lecture Notes in Computer Science, (1985) 112-127.

[GI83] I. GOULDEN AND D. JACKSON ”Combinatorial Enumerations”, Wiley, New York, (1983).

[GO81] L.J. GUIBAS AND A.M.ODLYZKO ”String overlaps, pattern matching, and nontransitive
' games” in J. Comb. Theory (A), 30 (1981) 183-208.

(KMP77] D.E. KNUTH, J.H. MORRIS AND V.R. PRATT ”Fast Pattern Matching in Strings” in
SIAM J. Comput. 8, 2 (1977) 323-350.

[LO82] LOTHAIRE ”Combinatorics on Words”, Addison-Wesley, Reading,Mass., (1982).

(OD85] A.M. ODLYZKO ”Periodicities in Strings” in Combinatorial Algorithms on Words, Springer
NATO ASI SEr. F12, (1985) 241-254.

[RE88] M. REGNIER ”Enumeration of Sided Words” in preparation
- [SE83] R. SEDGEWICK "Algorithms” Addison-Wesley, Reading, Mass.,(1983).

Imprimé en France
. . par . .
P Institut National de Recherche en Informatique et en Automatique

\ 7]

