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ENUMERATION OF BORDERED WORDS
ENUMERATION DES MOTS A BORDS

Mireille REGNIER

Abstract: We consider here the family of bordered words on a g-ary alphabet, i.e. the words bwb.
We also consider the k-bordered words. We enumerate such words, using generating functions, and
derive asymptotic estimates by the Darboux method. In particular, we prove that the density of

k-bordered words is ag, ax # 0.

Résumé: Nous étudions dans ce papier la famille des mots & 1 bord sur un g-alphabet, i.e. les
mots de la forme bwb. Nous considérons aussi les mots & k& bords. Nous dénombrons ces mots, en
calculant les séries génératrices associées. Puis nous obtenons des estimations asymptotiques par
la méthode de Darboux. En particulier, nous prouvons que la densité des mots a k bords est non

nulle.
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ENUMERATION OF BORDERED WORDS
Le langage de la vache-qui-rit {

Mireille REGNIER
INRIA-Rocquencourt
78 153-Le Chesnay (FRANCE)

Abstract: We consider here the family of bordered words on a g-ary alphabet, i.e. the words bwb.
We also consider the k-bordered words. We enumerate such words, using generating functions, and
derive asymptotic estimates by the Darbouz method. In particular, we prove that the density of
k-bordered words is ay, o) # 0.

I. INTRODUCTION:

This note is devoted to 1-bordered words on a g-ary alphabet A, which are to be counted. A
1-bordered word w is defined as a word: bw'b where b and v’ are in A*, and b, the border, is non
empty. For example, w = 101.1.101. One can define recursively the set By, of the k + 1-bordered
words: w is in B4y if w is in By, and if its largest side is in By. For example, w is in B; as
b = 101 is in B;. To count the words in sets B, we make use of the associated generating functions
By(z). The scheme is the following: we first establish functional equations satisfied by the series
Bi(z). To do so, we need a unique representation of the words in Bx. This part makes use of the
general theorems in combinatorics on words. To get asymptotics for the coefficients, we do not
need to solve the functional equations. We study the singularities of By (z), that appear to be polar
singularities. Then one can apply the Darboux theorem, and prove that the number of k-bordered
words of length n, b, satisfies b* ~ a.q", where a4 is computable, with any given precision, from

the functional equation.

In Section II, we list some general theorems in combinatorics to be used in the following
sections. In Section III, we introduce our techniques on the set B;. In Section IV, we consider the
more general and intricate case of the set B;. In Section V, we extend the methods and results of
Section IV to the general case of sets By. In Section VI, we deal with the asymptotics of b%.

t This subtitle refers to the famous Rabier’s commercial drawing: a cow with two identical
© ” Vache-Qui-Rit” bozes as ear-rings. Inside each cheese boz, a cow with two earrings...



II. SOME COMBINATORIAL THEOREMS ON WORDS:
In all this paper we will use the:

Definition 1: The length of a word w on a g-ary alphabet is the number of letters w is a product
of and is denoted by |w|.

Definition 2: A word v € A* is said to be a factor of a word z € A* if there exist words u,w € A*
such that:
T = uvw.

A word v € A* is said to be a left (resp.a right ) factor of a word x € A* if there ezists a word
w € A* such that:
z = vw (resp.c = wv) .

We will note in the following:
v < z(resp.v C z)

or, when the factors are strict:
v < z(resp.v C z).

The following theorems are stated and proved in [LO83,Sect. 1.3.] in the general case of free
monoids. To introduce them, we first remark that if a given word w has two different sides b and
b', with |8'| > |b], there exist two words u and v, with |u| = |v], such that: b’ = bu = vb.

e S s EE P
b=b =l =]~ =~ =]~ |
bC¥ = ==t = ===
u v u

For example, if w = 01001001001, then: b = 01 and & = 01.001 = 010.01.

Definition 3: Two words u and v are said to be conjugate if there exist words a,e € A* such

that: u = ae,v = ea.

Theorem A: Two words u and v € A* are conjugate iff there erists some z € A* such that:
u=vz.

This equality holds iff there ezxist a,e € A* such that:
{'v = ea,u = ae

z € e(ae)*
The proof is given in [LO83], for free monoids. A direct proof will be given in Section III.

To determine a unique representation of 1-bordered words, we will use primitive words.
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Definition 4: A word z € A* is said to be primitive if it is not a power of another word. Let P

be the set of primitive words.

Theorem B: If
" =y", z,y€ A%,n,m > 0,

there exists a word z such that z,y € 2*.
In particular, for each word w € A™, there erists a unique primitive word z such that w € z*.

Theorem C: Two words z,y € AY commute iff they are powers of the same word. More precisely
the set of words commuting with a word z € At is a monoid generated by a single primitive word.

IIT 1-BORDERED WORDS:
We first state our definition of 1-bordered words.
Definition 5: Let A be a g-ary alphabet. Let B, be the set of words w of the form: bvb where
v € A*,b € A*. One says that w is a bordered word and that b is a border of w. One notes
S = A* ~ By its complement, the set of unbordered words. :
Remarks:
(i) The empty word and the words of length 1 are in S.
(ii) This definition does not allow overlaps. Accordingly, 0101 is a side of 01010101 but 010101 is

not.

Example: w = 1011101 is a 1-bordered word on a binary alphabet. The words b; = 1 and b; = 101

are both borders of w.

We see on this example that a word in B; may have several borders. In order to get a unique
representation of words in By (and more generally in By), we need to determine the relationship
between different sides of a given word. This problem of deciding a unique representation is fairly
general in combinatorics on words. Some interesting examples can be found in [CP88], [DA1878]
or [OD85].

Theorem 1: Let b and b’ be two borders of a same word w, with |b'| > |b|. Then there ezists a

primitive word z in A*, and a factorization: z = ae such that:

b=ez2Pp2>0
bV =e2%g>p

Example: Consider the 1-bordered word w = 1011101. The words ' = 101 and b = 1 are two
different borders. They satisfy the relationship above with: z =01,e = 1,a = 0.
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Proof: This is a consequence of Theorem A. As:w = bzb = b'z'V, one has: b' = bu = vb, and u

and v are conjugate. It is also worth giving a direct (and therefore intuitive) proof. We note:

{ b=bg
(n - Du| < o] < nlul.

bl < ful = Jo|
If n=1 then v = bv'
b =b.(v'b) = b.29 = e.2P.29

else b=e,u*l=¢e,.2°
b =e.zP.u=e.2?

Proposition 2: Any word w in By can be written, in @ single way, as: sw's, where s is in §* and

w' in A*
Proof: The smallest border is in S, and is the only border in S.

As a corollary of Proposition 2, we get the functional equation:
Bi(2) = [S(2%) - 1] W(2) (1)

We use the methods developed in [GJ83] and [FL84]. The concatenation s.w’ of two different words
translates in the product of the generating functions counting these words. The repetition of the
word s is taken into account by squaring z in the corresponding generating function S. Moreover,

we have exactly ¢” words of length n. Thus:

1
1-gqgz°

W) = Yt =

n>0
As: By(z)+ S(z) = W(z), Proposition 3 follows.

Proposition 3: The series By and S satisfy the functional equations:

22
Bu(2) =y — B(2)

Remark: Such an approach where combinatorial constructions translate into functional properties
of generating functions is quite powerful. A general framework can be found in [FL84]. An example,
related to the analysis of the Knuth-Morris-Pratt algorithm, can be found in [RESS].

In Section VI, we will derive asymptotics for the coefficients of these functions.
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IV. 2.BORDERED WORDS:

In this Section we generalize the scheme of the previous Section. We have seen that any word in
B; can be written, in a unique manner, under the form: sws. We define here a minimal set G
such that any word in B; can be written, in a unique manner: gowg;. Then, denoting Ga(2) (resp.
B;(z)) the generating function counting the words in G, (resp. in B;), one has:

By(2) = Go(2)W(2).

Thus, we first state the definition of the minimal set G2, extended for all the sets By. Then, we
will characterize the elements of G,. Finally, we will derive a functional equation on an associated

generating function.

Definition 5: A bordered word z is said to be k-minimal if:
(i) z € By
(ii)) wLz,wCz,weEB, Sw=1z
This subset of By is noted Giy1.-
Example: z = 1001001 € B;. As 1001 C z and 1001 < z, = ¢ G2, but 1001 G-Gz.

Remark: A word in G has no side in Br_;. And any word z in Bj.; contains exactly one side

in G . Hence, we define:

Definition 6: We note g(bx—1) the unigue k-minimal word such that:

g(bk—1) X bx—1 and g(bx—1) C bx_1.

We can get now an equivalent to Proposition 2:

Theorem 4: Any k-bordered word by in B) can be written, in a single way, as:
br = grwyk

with g € G.
Hint: Let bx_; be the largest border of b; and choose gx = g(bx—-1).

Our aim is now to enumerate the set Gi. To do so, we first derive some characterizations of
the words gx. For a sake of clarity, we first consider the case of Gs.
Our characterization of G will rely on the Lemmas of 1-factorization and 2-factorization.

Lemma 5 (Lemma of 1-factorization:) Let z = 2*,2 € P, be a word in L*. Then, if a word
s € S is a right (resp. left) factor of z, then s is a right (resp. left) factor of x.
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Proof: If s € z, then there exists a C z(or z = fa),a # € such that: s = a.z™,m > 1. Thus:

s = a.(fa)™ ! B.cr is not in S.

Remark 6: A word in S cannot overlap with himself.
As s = zu = vz implies (Theorem A): s = ea.e.(ae)* which is not in S.
We know that any word in B; can be written sas. Proposition 8 and Lemma L, a generalization

of Lemma 5, characterize the words sas that are in G;.

Lemma 7 of 2-factorization Let g; = sas be a word in G2, and z = wsas € z*, with z € P.

Then:
{ as
z =
usas

Example: Les us show what happens for a word in By, but not in G;, such as: 1.0100101. We
have:s = 1 and as = 0100101 € P. Let w = 00. Then 2 = wsas = 00101.00101 and z = 00101;

here z # as and sas € z.
Proposition 8 : Let Hy be the subset of By:
Hy = {sas;s € S,as € P}.

Then:
(2) G, CH,CB
(i) Any by € By can be written:

by =sas.(usas)™, usas € P

{ by =s(as)™

where s and a are defined by: g(b) = sas.

Proof:

(i) From Proposition 2, one can write g, = sa’s. If as ¢ P, the Lemma of 1-factorization
implies: g, = s(as)™, and g, is not minimal.

(ii) The proof of (ii) is deferred to the Appendix. It uses the important Remark 6 and Lemma
7 of 2-factorization, whose proof is also in Appendix. Note that the second form implies that by is

in Bs, as sas.usas is.

We can turn now to the study of the generating function of 1-bordered words. We prove:
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Theorem 9: Let Gy(z,2) = g,=s§sea,‘”lslz'“| be the bivariate generating function of the set G2.

It satisfies the functional equation:
[S(22) — Ga(22,2%)| W (2) = Ga(z,2) + Ga(z,2?) (2)
and we have:

By(z) = Gu(2*,2")W(2). . @)

Proof: We define a 3-variate generating function associated to H; — B;:
¢(z, Z, t3) = Z xlslzlaslt:lausaollmseGg lusaseP
We shall write two equations in ¢ and G and eliminate ¢ from them. We have:

Z zblzlvsl = S(zz)W(2).
551631
1=sws

From Proposition 8, this is also:

Z (Z x|s|2m|as| + Z Z x|s|z|‘as|zm[uaas|)

92€G2 m21 usas€P m>1
= E Ga(z,2™) + E H(z,z,2™).
m21 m2>1
Hence:
S(zz)W(z) = ZG’g(:c,z’") + Zq&(z,z,zm) (4)
m2>1 m>1

To get the equation (5), we consider the words g,wg; = sas.w.sas € B;. From the Lemma 7 of

2-factorization, we get:

Y alelabeoliseny g luen = 3 Go(z 2™ + Y d(z, 2, ™).

m>3 m2>1
Hence:

Ga(ats, 2t3)W(ts) = D Ga(z,2t5) + Y ¢(z,2,13). (5)

m2>3 . m2>1

Eliminating ¢ from (4) and (5) yields G.

V. PROPERTIES OF k-BORDERED WORDS

In this section, we extend the scheme of Section IV to the general case of k-bordered words. We
first study the set G, and prove a Lemma of k-factorization. Then, we associate to G a k-variate
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generating function Gk(tx,. ..,t). We prove that G(tx, ..., %) and Gi(2) satisfy equations similar
to (2) and (3).

We first derive some properties of Gy.

Proposition 10: Let gi be in G. It can be factorized as:
0k = k1Pt = ... =GBy = ... = Py
with g; € Gi,p; € P.
Theorem 11 (k-overlapping): Let gx be a word in Gi and z = z*,2 € P a word in L* such that:
9T = ygr, yE€L".
Then: z = wgx or 2 € {p1,...,Pk-1}-
Theorem 12: For any %, this decomposition is unique and has the following property:

475> ¢:¢9i.pi € Bj — Bjs1
If g;: C pi then{oi Z 2k+1'-j'_ L j J

Im,m < i: C pi = pm.
else { 0, ’__. 2k+1—.7'g': 2if1"~.7' P

Examples: o
k=1: g = s =€ §.
k=2: g; = s.as,8 € S,as € P.

k=3: g3 = s(as)® or sas.usas. We can rewrite:

sas.(as)? = s.(as)?
{

sas.usas = s.(asusas).

k=4: g4 = s(as)” or s(as)®.ws(as)? or sasusas.wsasusas or sas.(usas)® or s.(asusas)®. We can

rewrite, for example:
s.(asusas)® = sas.(usas.asusas.asusas) = $asusas.asasuSaASUIAs
We have: ¢,.p; € B; — Bszand g;.p;, g3.p3 € Bs.
Proof of Proposition 10: As gy € Bj_1, its largest border b satisfies:

b€ B2 CBy1C...CHB;.
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Thus, there exists a sequence: gx_1,gk—2,...,¢1 such that:

{91 2 X 2 gk-2 2 9k-12 9k
91€9:C...Cgr-2C gk-1C Gk
and we get the factorization.

Proof of Theorem 11: We know by Remark K that Theorem 11 holds for g; in G;. Assume now
that it holds true for Gy,...,Gk—1. If z # wg; we may assume z = 2: as we have then: z C gi,
thus g; = e,.2P with e, C z and p > 1. We get the equation:

gk.z2 = €,.2PT = ye,.2P = Y-Gk-

From Remark K, we know that g C z. Thus, we may define 7,1 <i <k —1 by:
9i €z C gita.

We have then: ¢i11% = ¥'gi41, With |z| < |gi4+1]- Applying Theorem 11, we have:

{ gi+1 =8m-Pm

p——y
z = Pm

and ,
{ 9m € Gi+1 C Gk

= gm =g:n'
I 2 Git1 jyk}

Now, if ¢ = k — 1, we have: gx—3 C = C g. From above, we know that: gi = gmp}, = gm.z*.

To prove in all other cases that p|, € {p1,...,Pk—1}, we remark that:
{ zCgr=>gr=ezPeCx
9iagi = gi-® = giy1 X gk = gk = §i-T0,0 LT

Moreover, we have p > 1( as z C gx—1 ) and m > 1 (as git+1 C gr—1 = 2|gi+1] < |gk]) . Then:
Ta = az
or (Theorem D): @ = € and g = g;.2a? = g;.pf", hence: z = p;.
Proof of Theorem 12: If p; € g; then |p;| > |gi]. As g; C g:.p%, we get g; C pi. Then:
i-Di = gi-wigi € Bi CBiy1 C...CB;CBj41 C ...

9



The expression of 8; follows immediately from the remark that the largest border of g;(wig;)™, m >
lis g,'(w,'g,’)lgﬁ—'l-'. : a
Now, if p; C g; the equation: g; = gip; = yg; implies:

{ 9 = gD = gmPly, 0 =2%1"7 1 .
pi = Py

Hence: gx = 6;.Pf = gm.Po,.p8i with: 8; = (2F+1-3 — 1) — 6.

We can now draw a scheme that generalizes the derivation of Gy and G in the previous
sections. We define some multivariate generating functions. i x(t1,...,%,%i+1,...,tk) counts
Hix = {9i-pilg: € Gi,pi € P,gi C i 0i.pi € Bx — Beg1}. And & py1(tr,-- s tistigrs- .- stk)
counts L; k41 = {gi-pilgi € Gi,pi € P,gi C pi, 8i-pi € Biyr}. One has: ¥y ; = ¢ij — ¢ij1.
Then: Gi(t,-..,tk) = Ef=1 Vi k(t1,- .- ) + f({#i,;}1<j<k-1)- For any k, counting {g;wg;} and
applying Theorem 12 yields k functional equations. These equations involve: 2k unknown, but
dependent, functions (@i k+1)1<i<k+1 and (i x)1<i<k. One can derive (@i,k+1)1<ick+1 from these
equations and hence: ¥; x = ¢; x — @i x+1. Finally, we get Gr41. We can also relate these notations
to the ones in Section IV:

#(t1,12,t3) = ¢2,2(t1, 12, 13)
(b1, ta,t2) = d12(t1,t2) = d2,2(t1, 22, 23)

We also have: ¢1,1(t1,%2) = Ga(t1,t2). Equation (4) counts {g1.wg1} and Equation (5) counts
{gz'ng}- »

VI. ASYMPTOTICS ON £-BORDERED WORDS

The equations derived in the previous sections are rather involved, and cannot be solved explicitly.
To derive asymptotics on the coefficients, we study the singularities of the generating functions and
use the Darboux Theorem [DA1878]. Examples of this approach are developed in [ST84).

Darboux Theorem: Let f(z) be some complez function, analytic for |z| < p, with a single

singularity, z = p, on its circle of convergence. If it can be continued as:
Z\-
f(z) = g9(2).(1- ;) *+h(2)
where g and h are analytic and s ranges in R — {0,—1,-2,...}, then:

fo = )= 55+ 0.
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In our case, W(z) = T—sz' has a unique singularity around 2 = ¢g. Moreover, each B(z) is the
product of W(z) by a, possibly intricate, generating function analytic around z = 1/q (precisely,
for |2| < Jr). This can be seen in Equations (1) and (2).

Theorem 13: Let By(z) = Y bl2" be the generating function of the bordered words on a g-ary
alphabet A. Then:
bl ~ ayq”"

where: oy = §( 31,)

Proof: We know that:W(2) = S(2) + B1(z). Thus, § and B; are both defined at least for |z| < %.
Hence S(2%) is analytic for |z] < :}3, notably around z = 1/q. We apply the Darboux theorem to
equation (1). Note that § (El:') can be numerically computed as:

_ (-1*
6= T o e

The different values of a; for ¢ = 2,3,10 are given in Table 2.

q 23
2 0.8638659
3 0.4617496

10 0.1101101
Table 1

Theorem 14: Let Bi(z) =3, bkz™ be the generating function of the k-bordered words. Then:
bk~ arg®
where: ap = Gk(aly, cens Elg')
Proof: The definition of G implies:
Bi(2) = Gi(22,...,2%).W(2).

A priori, Gi(z,...,2) is analytic around z = El" It allows for the application of the Darboux

theorem with s = 1 and ¢(z) = Gi(2%,...,2%).
CONCLUSION

In this paper, we have considered the k-bordered words. In an algebraic part, we use general results
in combinatorics on words to define a unique representation of k-bordered words. In particular,

we introduce and characterize minimal k-bordered words. Then, we show how these constructions
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translate into functional equations satisfied by the associated generating functions. Finally, we show
that these equations need not to be solved (the solutions are intricate) and get directly asymptotic
estimates on the number of k-bordered words. We prove that there are axq™ k-bordered words, or
equivalently, that the density of the family of k-bordered words is always non-zero. The constant
ay can be computed for any k from the functional equation, and is explicitly given, for various ¢,
when k£ = 1. Such methods also apply to other combinatorial problems on words.
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APPENDIX

Proof of Lemma 7: Proposition E implies s C 2. From Remark K: s = z = a € 2*, and the
mimimality constraint implies o = ¢, hence z = s = as. The case as C 2z C sas contradicts also
Remark K. Now, if s C 2 C as then (minimality condition) as ¢ 2*, and there exists a factorization

z=uv,v=<as, uCsorsCu

From Remark K (again!): s C v and s C v. Then: u = bs and v satisfies: ds < as and ds C as,

hence d = a. Thus z = u.v = bs.as which contradicts our assumption (z C as).

Proof of Proposition 8: We have already proved (i). Let h; = s’a’s’. From Proposition E and
Remark K, one has: s = s’ and: as < a's = as < a'. If we note: a’ = asb = csa, we have (Remark
K):

bZa=>sbZ sa = sbC a.

Thus, if b € a, we can factorize: a = dsb and we have: asb = csa = cs.dsb = csd.sb. Hence:
sdCa sds C as C sas
= , = d=a.
ds<a sds < sa < sas

From this contradiction, it follows that:

{_bgsa:bga

|b] < |sa] = b=a.

If |b] > |sal, then b = wsa and hy = sa’'s = saswsas and weapply the Lemma of 2-factorization.
Now, let b; be in By, not necessarily in Hy. Then:

s.(as)? ifa's € (as)*

= — s(a's)? =
bi=sws=s(ds)" = { s.(as(usas)™)? = sas.zsas otherwise

Applying Lemma 7 of 2-factorization in the second case yields saszsas = sas(usas)™ = b;.
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